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ABSTRACT

This paper is devoted to the R-estimation problem for the parameter of a stationary

ARMA model. The asymptotic uniform linearity of a suitable vector of rank statistics leads to

the asymptotic normality of
√

n-consistent R-estimates resulting from the minimization of the

norm of this vector. By using a discretized
√

n-consistent preliminary estimate, we construct

a new class of one-step R-estimators. We compute the asymptotic relative efficiency of the

proposed estimators with respect to the LS estimator. Efficiency properties are investigated

via a Monte-Carlo study in the particular case of an AR(1) model.

KEYWORDS AND PHRASES: R-estimation, ARMA models, local asymp-
totic normality, asymptotic linearity.

1 Introduction

R-estimation — estimation methods based on ranks — was initiated by Hodges and Lehmann
(1963), who proposed the first R-estimator for location. The theory subsequently has been de-
veloped and systematized in the general framework of linear models with independent errors; we
refer to the papers by Adichie (1967), Jurečková (1971), Koul (1971) and Jaeckel (1972), and the
monographs by Puri and Sen (1985) and Jurečková and Sen (1996) for a detailed account and
extensive bibliography.

Introducing R-estimation ideas to the context of time series analysis has been much slower.
A first successfull attempt has been made by Allal (1991), who proposes a R-estimator for the
parameter of a first-order autoregressive (AR(1)) model, based on the serial linear rank statistics
introduced by Hallin et al. (1985) and Hallin and Puri (1988). A theory of R-estimation has been
developed for higher order AR(p) models by Koul and Saleh (1993); the statistics on which their
method relies however are not genuinely rank-based, as they involve both the ranks (of residuals)
and the observations themselves.

The purpose of this paper is to investigate the problem of R-estimation in the more general
context of ARMA(p, q) models, of the form

Xt −A1Xt−1 − ...−ApXt−p = εt +B1εt−1 + ...+Bqεt−q , t ∈ Z, (1)
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where {εt; t ∈ Z} is white noise with unspecified density g. Contrary to Koul and Saleh (1993), the
statistics we are using are genuinely rank-based, in the sense that they only depend on the vector
of (residual) ranks.

An important tool in our approach is the LAN property of ARMA models for given g (satisfying
mild regularity assumptions). This LAN result was established in Kreiss (1987, a and b). More
particularly, we will use a rank-based version of this result, as given in Hallin and Puri (1994).

The paper is organized as follows. Section 2 introduces notation and the main technical as-
sumptions. Section 3 presents the asymptotic representation and asymptotic normality results for
serial rank statistics to be used in the sequel. Section 4 studies the R-estimation problem in ARMA
model. Section 5 gives a method of constructing, with the help of a preliminary

√
n-consistent

estimate of θ0, a class of asymptotic R-estimators. Section 6 provides the asymptotic relative
efficiencies of R-estimators with respect to the least-squares estimate. In Section 7, we investigate
the finite-sample performance of the proposed estimates via a Monte-Carlo study. The appendix
contains details of the proof of Proposition 3.3.

2 Notation and basic assumptions

In this section we introduce a class of serial rank statistics and state the basic assumptions to be
made. The ARMA(p, q) model (1) can be written under the form

A(L)Xt = B(L)εt, t ∈ Z,

where L is the lag operator, A(L) := 1 −
p
∑

i=1

AiL
i and B(L) := 1 +

q
∑

i=1

BiL
i. The parameter

θ0 = (A1, ..., Ap, B1, ..., Bq) ∈ R
p+q is chosen in such a way that both the stationarity and the

invertibility conditions are fulfilled.

Let X(n) := (X
(n)
1 , . . . , X

(n)
n ) be an observed series of length n, and denote by H

(n)
g (θ0) the

hypothesis under which X(n) is generated by model (1). Denote by R
(n)
t (θ0) the rank of the

residual Z
(n)
t (θ0) among

{

Z
(n)
1 (θ0), . . . , Z

(n)
n (θ0)

}

, where

Z
(n)
t (θ0) :=

A(L)

B(L)
X

(n)
t , t = 1, . . . , n.

We suppose that the vector (ε−q+1, . . . , ε0, X−p+1, . . . , X0) is observed, or that X
(n)
t = 0,

t ≤ 0. Such assumptions have no influence on asymptotic results. Then, under H
(n)
g (θ0),

{

Z
(n)
1 (θ0), . . . , Z

(n)
n (θ0)

}

is white noise, with probability density function g.

Consider the serial rank statistics of order k (k = 1, . . . , n−1), known as a rank autocorrelation
of order k,

r
(n)
k (θ0) :=

{

(n− k)−1
n
∑

t=k+1

J1

(

R
(n)
t (θ0)

n+ 1

)

J2

(

R
(n)
t−k(θ0)

n+ 1

)

−m(n)

}/

σ
(n)
k , (2)

where J1 and J2 are score functions, and m(n) and σ
(n)
k are normalizing constants such that

(n−k)1/2r(n)
k (θ0) is standardized underH(n)(θ0) (the hypothesis under which the density g remains

unspecified). See Hallin and Puri (1994), pp. 186-187 for explicit values of m(n) and σ
(n)
k .
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Also denote by r
(n)
k,g the g-rank autocorrelation of order k, i.e., the rank statistic (2) with

J1 := ϕg ◦G−1 and J2 := G−1, where ϕg(.) := −g′

g (.) and G−1 denotes the generalized inverse of
the cdf G associated with g.

Throughout the paper we assume that the following assumptions hold for the error density g
and the score functions J1 and J2.

Assumptions A.1.

(i)

∫

xg(x) dx = 0 and 0 < σ2 :=

∫

x2g(x) dx <∞.

(ii) g is absolutely continuous, with a.e. derivative g′, and strongly unimodal.

1. The Fisher information I(g) :=

∫

[g′(x)

g(x)

]2

g(x) dx is finite.

(iii) g(x) > 0 ∀x ∈ R and (ε−q+1; . . . ; ε0;X−p+1; . . . ;X0) possesses a nowhere vanishing joint

density g0(.,θ) that satisfies g0(.,θ(n))− g0(.,θ0) = op(1), under H
(n)
g (θ0), as θ(n) → θ0.

Assumptions A.2.

(i) J1 and J2 are nondecreasing and square-integrable functions such that

1
∫

0

Ji(u) du = 0,

i = 1, 2.

(ii) J1 ◦G and J2 ◦G are Lipschitz.

Remark 2.1
Assumptions A.1 are used in proving the LAN property. Assumption A.2(ii) is verified, for

example, if Ji = Φ−1(.) andG is normal (Φ(.) stands for the standard normal distribution function),
Ji(u) = 2u− 1 and G is normal or logistic or Ji(u) = ln( u

1−u ) and G is logistic. It easily can be
weakened into a piecewise Lipschitz assumption, which also accomodates such distributions as the
double exponential.

3 Asymptotic representation and asymptotic normality

Consider the sequence of local alternatives H
(n)
g

(

θ0 + n−1/2τ (n)
)

, where τ (n) := (γ(n), δ(n)) ∈
R
p+q is such that sup

n

(

τ (n)′τ (n)
)

< ∞, and denote by
{

ψ
(1)
t , . . . , ψ

(p+q)
t ; t ∈ Z

}

a fundamental

system of solutions of the homogeneous equation

A(L)B(L)ψt = 0, t ∈ Z

(convenient choices of a fundamental system are given in Section 4 of Hallin and Puri (1994)).
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Associated with this fundamental system, denote by Cψ(θ0) and W 2
ψ(θ0) the matrices whose

elements are ψ
(j)
i and

∞
∑

t=1

ψ
(i)
t ψ

(j)
t (i, j = 1, . . . , p+ q), respectively. Finally, let

M(θ0) :=

























1 0 . . . 0 1 0 . . . 0
g1 1 . . . h1 1 . . .
...

...
...

...
gp−1 . . . . . . 1 hq−1 . . . . . . 1
gp . . . . . . g1 hq . . . . . . h1

...
...

...
...

gp+q−1 . . . . . . gq hp+q−1 . . . . . . hp

























,

where gi and hi are the Green’s functions associated with the operatorsA(L) and B(L) respectively.
Note that all the above quantities are continuous functions of θ0. In the sequel, the notation

ψ
(i)
t (θ0), Cψ(θ0), M(θ0) and W 2

ψ(θ0) will be avoided.
Now define the vector of rank statistics

√
nT (n)(θ0) :=

(

n−1
∑

k=1

(n− k)1/2ψ
(1)
k (θ0)r

(n)
k,g (θ0), . . . ,

n−1
∑

k=1

(n− k)1/2ψ
(p+q)
k (θ0)r

(n)
k,g (θ0)

)

′

. (3)

Then we can show the following proposition :

Proposition 3.1 (Asymptotic representation) Assume that A.1 and A.2(i) hold. Then,

(i) n1/2r
(n)
k (θ0) = I−1

(J1,J2)
n−1/2

n
∑

t=k+1

J1◦G(Z
(n)
t (θ0))J2◦G(Z

(n)
t−k(θ0))+op(1), under H

(n)
g (θ0),

as n→∞, where I2
(J1,J2)

:=

1
∫

0

[J1(u)]
2 du

1
∫

0

[J2(u)]
2 du;

(ii) the rank statistics n1/2r
(n)
k (θ0) is asymptotically standard normal under H (n)(θ0)

Proof. (i) See Section 4 of Hallin et al. (1985).
(ii) Use (i) and the central limit theorem of k-dependent random variables (See Yoshihara
(1976)). 2

Proposition 3.2 (Hallin and Puri 1994) Local asymptotic normality.

Assume that A.1 and A.2(i) hold. Let Λ = Λ
(n)

θ0+n−1/2τ (n)/θ0;g
be the log-likelihood ratio for

H
(n)
g (θ0 + n−1/2τ (n)) with respect to H

(n)
g (θ0). Then, under H

(n)
g (θ0),

Λ = τ (n)′∆(n)
g (θ0)−

1

2
σ2I(g)τ (n)′Γ(θ0)τ

(n) + op(1),

as n→∞, where
∆(n)
g (θ0) := σ[nI(g)]1/2M ′(θ0)C

′−1
ψ (θ0)T

(n)(θ0)
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and

Γ(θ0) := M ′(θ0)C
′−1
ψ (θ0)W

2
ψ(θ0)C

−1
ψ (θ0)M(θ0).

Moreover, the limiting distribution of ∆(n)
g (θ0) under H

(n)
g (θ0) is N

(

0, σ2I(g)Γ(θ0)
)

.

Proof. See Proposition 4.1 of Hallin and Puri (1994). 2

As a consequence we obtain the following corollary.

Corollary 3.1 Assume that A.1 and A.2(i) hold. Then, the following properties hold :

(i) The limiting distribution of ∆(n)
g (θ0) − σ2I(g)Γ(θ0)τ

(n) under H
(n)
g (θ0 + n−1/2τ (n)) is

N
(

0, σ2I(g)Γ(θ0)
)

.

(ii) The limiting distribution of n1/2r
(n)
k (θ0) under H

(n)
g (θ0 + n−1/2τ (n)) is

N
(

c(J1, J2, g)(a
(n)
k + b

(n)
k ), 1

)

, where

c(J1, J2, g) := I−1
(J1,J2)

1
∫

0

J1(u)ϕg ◦G−1(u) du

1
∫

0

J2(u)G
−1(u) du.

and

a
(n)
k :=

p
∑

j=1

γ
(n)
j gk−j and b

(n)
k :=

q
∑

j=1

δ
(n)
j hk−j .

Proof. (i) This follows by applying Le Cam’s third lemma (see Hájek and Šidák (1967)) in
Proposition 3.2.

(ii) The asymptotic normality under H
(n)
g (θ0 + n−1/2τ (n)) follows by piecing together Proposi-

tion 3.1, the asymptotic joint normality of
(

n1/2r
(n)
k (θ0),Λ

(n)

θ0+n−1/2τ (n)/θ0;g

)

under H
(n)
g (θ0),

and Le Cam’s third lemma. 2

Let us now turn to asymptotic uniform linearity of the rank autocorrelation coefficients :

Proposition 3.3 Assume that A.1 and A.2 hold. Then, for all k and all c > 0, under H
(n)
g (θ0),

as n→∞,

sup
‖τ (n)‖≤c

∣

∣

∣n1/2
[

r
(n)
k (θ0 + n−1/2τ (n))− r

(n)
k (θ0)

]

+ c(J1, J2, g)(a
(n)
k + b

(n)
k )
∣

∣

∣ = op(1). (4)

The proof is rather technical and we defer it to the Appendix.

4 Estimators based on ranks

In this section we introduce a class of R-estimates based on ranks for the parameter θ0 of the
ARMA model.
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4.1 Definition of the R-estimators

Define the vector of rank statistics

√
nT

(n)
J1,J2

(θ0) :=

(

n−1
∑

k=1

(n− k)1/2ψ
(1)
k (θ0)r

(n)
k (θ0), . . . ,

n−1
∑

k=1

(n− k)1/2ψ
(p+q)
k (θ0)r

(n)
k (θ0)

)

′

and put

∆
(n)
J1,J2

(θ0) := n1/2M ′(θ0)C
′−1
ψ (θ0)T

(n)
J1,J2

(θ0).

Obviously, when the scores J1(.) and J2(.) are ϕg ◦G−1(.) and G−1(.) respectively, we obtain the
central sequence up to a positive factor. More precisely,

∆(n)
g (θ0) = σI1/2(g)∆

(n)
ϕg◦G−1,G−1(θ0).

It easily follows from Proposition 3.1 that the vector ∆
(n)
J1,J2

(θ0) is asymptotically normal, under

H
(n)
g (θ0), with mean zero and covariance matrix Γ(θ0). This suggests estimating the unknown

parameter θ0 by the value of θ for which ∆
(n)
J1,J2

(θ) is as near to zero as possible, i.e., to estimate
θ0 by

θ̄
(n)

:= argmin
θ
‖∆(n)

J1,J2
(θ)‖, (5)

where ‖.‖ is any standard norm in R
p+q.

4.2 Asymptotic uniform linearity

In this subsection we give the asymptotic uniform linearity of ∆
(n)
J1,J2

(θ0+n
−1/2τ (n)) in ‖τ (n)‖ ≤ c.

Proposition 4.1 Assume that A.1 and A.2 hold. Then for all c > 0, under H
(n)
g (θ0), as n→∞,

sup
‖τ (n)‖≤c

∥

∥

∥∆
(n)
J1,J2

(θ0 + n−1/2τ (n))−∆
(n)
J1,J2

(θ0) + c(J1, J2, g)Γ(θ0)τ
(n)
∥

∥

∥ = op(1). (6)

Proof. For s = 1, . . . , p+ q, denote by T
(n)s
J1,J2

(.) the sth component of
√
nT

(n)
J1,J2

(.).
We proceed by proving that

sup
‖τ (n)‖≤c

∣

∣

∣T
(n)s
J1,J2

(θ0 + n−1/2τ (n))− T
(n)s
J1,J2

(θ0) + c(J1, J2, g)

∞
∑

k=1

ψ
(s)
k (θ0)(a

(n)
k + b

(n)
k )
∣

∣

∣ = op(1),

under H
(n)
g (θ0), as n→∞. We have

T
(n)s
J1,J2

(θ0 + n−1/2τ (n))− T
(n)s
J1,J2

(θ0) + c(J1, J2, g)
∞
∑

k=1

ψ
(s)
k (θ0)(a

(n)
k + b

(n)
k ) = (7)

n−1
∑

k=1

ψ
(s)
k (θ0)

{

(n− k)1/2
[

r
(n)
k (θ0 + n−1/2τ (n))− r

(n)
k (θ0)

]

+ c(J1, J2, g)(a
(n)
k + b

(n)
k )
}

+c(J1, J2, g)

∞
∑

k=n

ψ
(s)
k (θ0)(a

(n)
k + b

(n)
k )

+

n−1
∑

k=1

(n− k)1/2
[

ψ
(s)
k (θ0 + n−1/2τ (n))− ψ

(s)
k (θ0)

]

r
(n)
k (θ0 + n−1/2τ (n)).
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Since the AUL result of Proposition 3.3 holds uniformly over the set {k = 1, . . . , n− 1}, the first
term of the right side of (7) is ōp(1), as n→∞, where ōp(1) stands for some sequence converging to

zero uniformly over the set
{

‖τ (n)‖ ≤ c
}

. The particular form of a
(n)
k and b

(n)
k , and the exponential

decrease in k of ψ
(s)
k (.) imply that the second term of the right side of (7) converges to 0, uniformly

in ‖τ (n)‖ ≤ c as n → ∞. The exact variance of the third term, under H
(n)
g (θ0 + n−1/2τ (n)), is

bounded by
∞
∑

k=1

[

ψ
(s)
k (θ0 + n−1/2τ (n))− ψ

(s)
k (θ0)

]2

+

(

∞
∑

k=1

∣

∣

∣ψ
(s)
k (θ0 + n−1/2τ (n))− ψ

(s)
k (θ0)

∣

∣

∣

)2

.

This latter quantity is o(1) as n → ∞; indeed, sup
{∣

∣

∣ψ
(s)
k (θ)

∣

∣

∣ : s = 1, . . . , p+ q; θ ∈ K
}

≤ Abi,

where A > 0, 0 < b < 1 and K is a compact set in R
p+q, and θ 7→ ψ

(s)
k (θ) is continuous.

Consequently, under H
(n)
g (θ0), hence also, due to contiguity, under H

(n)
g (θ0 + n−1/2τ (n)), the

third term on the right side of (7) is ōp(1), as n→∞. This completes the proof of (6).
The end of the proof is obvious, because M(θ0 +n−1/2τ (n)) and Cψ(θ0 +n−1/2τ (n)) converge

respectively to M(θ0) and Cψ(θ0), uniformly in ‖τ (n)‖ ≤ c . 2

4.3 Asymptotic normality of R-estimates

This subsection gives the limit law of R-estimates.

Proposition 4.2 Assume that A.1 and A.2 hold. Let (θ̄
(n)

) be a
√
n-consistent solution of (5),

then the asymptotic distribution of
√
n
(

θ̄
(n) − θ0

)

under H
(n)
g (θ0) is N

(

0, c−2(J1, J2, g)Γ
−1(θ0)

)

.

Proof. From Proposition 3.1, the vector ∆
(n)
J1,J2

(θ0) is asymptotically normal with mean 0 and

covariance matrix Γ(θ0), under H(n)(θ0). The result follows from the Cramér-Wald device and
Proposition 4.1. 2

Proposition 4.3 Assume that A.1 and A.2 hold, and suppose that λ′∆
(n)
J1,J2

(θ0 + b n−1/2λ) is

monotone in b for every ‖λ‖ = 1. Then, for any solution (θ̄
(n)

) of (5), the asymptotic distribution

of
√
n
(

θ̄
(n) − θ0

)

under H
(n)
g (θ0) is N

(

0, c−2(J1, J2, g)Γ
−1(θ0)

)

.

Proof. The proof proceeds along the same lines as in Jurečková (1971). 2

However, it is not easy to prove the
√
n-consistency of any solution of (5), or to find reasonable

assumptions ensuring the monotonicity in b of λ′∆
(n)
J1,J2

(θ0+b n−1/2λ). That is why we propose the
following construction of R-estimators, that allows for trivial asymptotic properties and achievable
local and asymptotic optimality.

5 Construction of asymptotic R-estimates

In this section we adopt the Le Cam-Hájek approach to construct a class of asymptotic R-estimators

θ̂
(n)

satisfying

∆
(n)
J1,J2

(θ̂
(n)

) = opθ0

(1).
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For this purpose, let (θ̃
(n)

) denote a discretized
√
n-consistent preliminary estimate of θ0, i.e., a

sequence of estimates such that

(i)
√
n
(

θ̃
(n) − θ0

)

= Opθ0

(1), as n→∞,

(ii) the number of possible values of θ̃
(n)

in balls of the form
{

θ ∈ R
p+q :

√
n ‖θ − θ0‖ ≤ c

}

, c > 0 fixed

remains bounded, as n→∞.
The

√
n-consistent condition is satisfied by all estimates that are usually considered in the

context of ARMA models (see for example Fuller (1976)), and the discreteness condition goes back
to Le Cam and has been useful in a variety of problems connected with the analysis of time series
data.

Proposition 5.1 Assume that A.1 and A.2 hold. Define

θ̂
(n)

= θ̃
(n)

+
1√
n
c−1(J1, J2, g)Γ

−1(θ̃
(n)

)∆
(n)
J1,J2

(θ̃
(n)

). (8)

Then,
√
n(θ̂

(n) − θ0) = c−1(J1, J2, g)Γ
−1(θ0)∆

(n)
J1,J2

(θ0) + opθ0

(1), (9)

and the asymptotic distribution of
√
n
(

θ̂
(n) − θ0

)

under H
(n)
g (θ0) is N

(

0, c−2(J1, J2, g)Γ
−1(θ0)

)

.

In addition

∆
(n)
J1,J2

(θ̂
(n)

) = opθ0

(1).

Finally, the sequence of estimators (θ̂
(n)

) associated with the scores J1 := ϕg ◦G−1 and J2 := G−1

is locally and asymptotically minimax under the innovation density g.

Proof. Since Γ(θ̃
(n)

) is consistent for Γ(θ0), we have

√
n
(

θ̂
(n) − θ0

)

− c−1(J1, J2, g)Γ
−1(θ0)∆

(n)
J1,J2

(θ0)

=
√
n
(

θ̃
(n) − θ0

)

+ c−1(J1, J2, g)Γ
−1(θ0)

(

∆
(n)
J1,J2

(θ̃
(n)

)−∆
(n)
J1,J2

(θ0)
)

+ opθ0

(1),

which, in view of Proposition 4.1, is a opθ0

(1). The end of the proof is straightforward. 2

The following corollary shows that θ̂
(n)

and θ̄
(n)

are asymptotically equivalent.

Proposition 5.2 Assume that A.1 and A.2 hold. Let (θ̄
(n)

) be a
√
n-consistent solution of (5).

Then √
n
(

θ̂
(n) − θ̄

(n)
)

= op(1),

under H
(n)
g (θ0).

Proof. The desired result readily follows from the fact that both θ̂
(n)

and θ̄
(n)

satisfy (9). 2

The advantage of θ̂
(n)

is that, contrary to θ̄
(n)

, it can be computed easily and its asymptotic
properties are evident.
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Score functions Density types
J1(u)J2(v) Normal Logistic Double-exp.

van der Waerden 1.000 1.048 1.226
Φ−1(u)Φ−1(v)

Wilcoxon 0.948 1.098 1.482
(2u− 1) ln( v

1−v )

Laplace 0.612 0.812 2.000
sign(2u− 1)F−1

e (v)

Figure 1: Asymptotic relative efficiencies of the proposed R-estimator (for van der Waer-
den, Wilcoxon and Laplace scores) w.r.t. the LS-estimator under normal, logistic and double-
exponential innovation densities.

6 Asymptotic relative efficiencies

We now compute the ARE of the proposed estimators with respect to the usual Gaussian estimator,
namely the LS estimator. These AREs are obtained as the ratios of the asymptotic variances of the

considered estimators. The asymptotic variance-covariance matrix of the proposed R-estimate θ̂
(n)

is given in Proposition 5.1, and it is well-known that the asymptotic variance-covariance matrix of

the LS estimate θ̂
(n)

LS is Γ−1(θ0). Therefore, the ARE of θ̂
(n)

w.r.t. θ̂
(n)

LS is given by

AREg(θ̂
(n)
/θ̂

(n)

LS ) = c2(J1, J2, g).

Figure 1 summarizes the numerical values of the AREs of the proposed R-estimator w.r.t. the
least-squares estimator for various score functions and density types.

Figure 1 illustrates the gains of efficiency achievable by using R-estimator. Note that, when
using van der Waerden scores, the AREs are uniformly larger than or equal to one. This result was
established by Chernoff and Savage (1958) for linear models with independent errors and extended
to the ARMA case by Hallin (1994).

Proceeding as above, we can check that the ARE of the proposed R-estimator w.r.t. the LAM
(locally and asymptotically minimax) estimator (i.e., the one based on the scores J1 := ϕg ◦G−1

and J2 := G−1 under H
(n)
g (θ0)) is given by

AREg(θ̂
(n)
/θ̂

(n)

LAM,g) = c2(J1, J2, g)σ
−2 I−1(g).

7 Simulation results

We now present the results of a Monte-Carlo study that confirms the efficiency results that were
presented in the previous section. The protocol of the study is the following. We generated
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Estimators Density types
Normal Logistic Double-exp.

LS estimate -0.0020 -0.0009 -0.0018
694e-6 745e-6 709e-6

van der Waerden -0.0022 -0.0013 -0.0018
R-estimate 735e-6 701e-6 601e-6

Wilcoxon -0.0022 -0.0011 -0.0014
R-estimate 807e-6 658e-6 481e-6

Laplace -0.0030 -0.0012 -0.0012
R-estimate 1317e-6 908e-6 410e-6

Van der Waerden -0.0058 -0.0047 -0.0046
KS-estimate 752e-6 719e-6 571e-6

Wilcoxon -0.0060 -0.0045 -0.0040
KS-estimate 813e-6 680e-6 473e-6

Laplace -0.0097 -0.0069 -0.0063
KS-estimate 1368e-6 994e-6 541e-6

Figure 2: Simulation results.

independently M = 300 series of n = 500 observations from an AR(1) model with parameter θ0 =
ρ0 = 0.8 and standard normal, logistic and double-exponential innovation densities, respectively.

For each series, we computed the following seven estimators of ρ0 : Koul and Saleh’s estimator
(for van der Waerden, Wilcoxon and Laplace scores), our one-step estimator (for van der Waerden,
Wilcoxon and Laplace scores), and the LS estimator. For each estimate, we report the mean

deviation 1
M

∑M
m=1 ρ̂

(n)
m −ρ0 and the mean square error 1

M

∑M
m=1(ρ̂

(n)
m −ρ0)

2. Results are presented
in Figure 2.

Figure 2 confirms the hierarchy of the AREs in Figure 1. Note, in particular, that correctly
specified scores lead to the most efficient estimators. The proposed estimators compete very well
w.r.t. Koul and Saleh’s estimators (see Koul and Saleh (1993)).

8 Appendix

We now prove Proposition 3.3. Along the same lines as in the proof of Proposition 5.1 of Hallin

and Puri (1994), we show that under H
(n)
g (θ0),

n1/2
[

r
(n)
k (θ0 + n−1/2τ (n))− r

(n)
k (θ0)

]

+ c(J1, J2, g)(a
(n)
k + b

(n)
k ) = op(1), (10)

as n→∞.
(this result is proved in Hallin and Puri (1994) only for the scores J1 := ϕg ◦G−1 and J2 := G−1).
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Using the asymptotic representation in Proposition 3.1, one could obtain

r̃
(n)
k (θ0 + n−1/2τ (n))− r̃

(n)
k (θ0) + Ic(J1, J2, g)(a

(n)
k + b

(n)
k ) = opθ0

(1), as n→∞, (11)

where

r̃
(n)
k (.) = n−1/2

n
∑

t=k+1

J1 ◦G(Z
(n)
t (.))J2 ◦G(Z

(n)
t−k(.)).

Let ε > 0. As in Kreiss (1987,b), we decompose the set B = {τ ∈ R
p+q : ‖τ‖ ≤ c} into the

hypercubes whose vertices are at the points ε(j1, ..., jp+q), ji = 0,±1, ...,±N(ε), i = 1, ..., p + q.
For each τ ∈ B, let τ ∗ denote the vertex nearest to zero of the sub-cube containing τ and we
adopt the notations θ = θ0 + n−1/2τ and θ∗ = θ0 + n−1/2τ ∗.

From (11) we have

sup
‖τ ‖≤c

∣

∣

∣r̃
(n)
k (θ∗)− r̃

(n)
k (θ0) + Ic(J1, J2, g)(a

(n)∗
k + b

(n)∗
k )

∣

∣

∣ = opθ0

(1), as n→∞, (12)

where a
(n)∗
k and b

(n)∗
k are associated with τ ∗. Considering an arbitrary hypercube B∗ in the

decomposition, we have

sup
τ∈B∗

∣

∣

∣r̃
(n)
k (θ∗)− r̃

(n)
k (θ) + Ic(J1, J2, g)(a

(n)∗
k + b

(n)∗
k − a

(n)
k − b

(n)
k )
∣

∣

∣ ≤ U (n) + V (n), (13)

where

V (n) = sup
τ∈B∗

∣

∣

∣Ic(J1, J2, g)(a
(n)∗
k + b

(n)∗
k − a

(n)
k − b

(n)
k )
∣

∣

∣ ≤ I |c(J1, J2, g)|(p+ q)ε, (14)

U (n) = sup
τ∈B∗

∣

∣

∣r̃
(n)
k (θ∗)− r̃

(n)
k (θ)

∣

∣

∣

= sup
τ∈B∗

∣

∣

∣n−1/2
n
∑

t=k+1

J1 ◦G(Zt(θ
∗))J2 ◦G(Zt−k(θ

∗))− J1 ◦G(Zt(θ))J2 ◦G(Zt−k(θ))
∣

∣

∣

≤ U
(n)
k,1 + U

(n)
k,2 ,

where

U
(n)
k,1 = sup

τ∈B∗

∣

∣

∣n−1/2
n
∑

t=k+1

[J1 ◦G(Zt(θ
∗))− J1 ◦G(Zt(θ))] J2 ◦G(Zt−k(θ

∗))
∣

∣

∣,

and

U
(n)
k,2 = sup

τ∈B∗

∣

∣

∣n−1/2
n
∑

t=k+1

[J2 ◦G(Zt−k(θ
∗))− J2 ◦G(Zt−k(θ))] J1 ◦G(Zt(θ))

∣

∣

∣.

Kreiss (1987b, equation (2.3)) shows that

Zt(θ
∗)− Zt(θ) = (θ − θ∗)′z(θ)(t− 1,θ∗),

11



where z(θ)(t − 1,θ∗) :=

t
∑

s=1

h∗s−1 (Xt−s, ..., , Xt−s+1−p, Zt−s(θ), ..., Zt−s+1−q(θ))
′
(here the (h∗i )’s

denote the Green’s functions associated with the operator B∗[L] := 1 +

q
∑

i=1

B∗
i L

i). From this

identity and assumption A.2(ii), U
(n)
k,1 is bounded by

n−1H1(p+ q)ε sup
τ∈B∗

n
∑

t=k+1

‖z(θ)(t− 1,θ∗)‖
∣

∣

∣
J2 ◦G(Zt−k(θ

∗))
∣

∣

∣
, (15)

where H1 is the Lipshitz constant for J1 ◦G. Now consider the maximum over all hypercubes of B.
We have

Eθ0
maxB∗ sup

τ∈B∗

∥

∥

∥z(θ)(t− 1,θ∗)
∥

∥

∥

2

≤
p−1
∑

i=0

Eθ0
max
B∗

sup
τ∈B∗

[

t
∑

s=1

h∗s−1Xt−s−i

]2

+

q−1
∑

i=0

Eθ0
max
B∗

sup
τ∈B∗

[

t
∑

s=1

h∗s−1Zt−s−i(θ)

]2

.

The first term can be bounded by

t
∑

s=1

[max suph∗2s−1]Eθ0
[X1]

2, which is O(1) uniformly in t, because

of Lemma 5.1 of Kreiss (1987,b). The second term can be bounded by

O(1) +Eθ0
max sup[

t
∑

s=1

h∗s−1(θ0 − θ)z(θ0)(t− s− k − 1,θ)]2, which is O(1) +O(
ε2

n
).

It follows that Eθ0
maxB∗ sup

τ∈B∗

‖z(θ)(t − 1,θ∗)‖2 = O(1) uniformly in t. Similarly, using the

inequality [J2 ◦G(Zt−k(θ
∗))]2 ≤ 2[J2 ◦G(Zt−k(θ

∗))− J2 ◦G(Zt−k(θ0))]
2 + 2[J2 ◦G(Zt−k(θ0))]

2,
we obtain that Eθ0

maxB∗ sup
τ∈B∗

[J2 ◦G(Zt−k(θ
∗))]2 = O(1), uniformly in t.

The Cauchy-Schwarz inequality applied to (15) then yields

Eθ0
max
B∗

U
(n)
k,1 = εO(1). (16)

Analogous to (16), one obtains

Eθ0
max
B∗

U
(n)
k,2 = εO(1). (17)

Piecing together (13), (14), (16), and (17) we thus have, as n→∞,

max
B∗

sup
τ∈B∗

∣

∣

∣
r̃
(n)
k (θ∗)− r̃

(n)
k (θ) + Ic(J1, J2, g)(a

(n)∗
k + b

(n)∗
k − a

(n)
k − b

(n)
k )
∣

∣

∣
= op

θ0

(1). (18)

The result straightforwardly follows from (12) and (18) by letting ε→ 0. 2
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Université Mohamed Premier, Département de Mathématique et ISRO
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