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Abstract

We consider two-person sports where each rally is initiated by a server, the other

player (the receiver) becoming the server when he/she wins a rally. Historically,

these sports used a scoring based on the side-out scoring system, in which points

are only scored by the server. Recently, however, some federations have switched to

the rally-point scoring system in which a point is scored on every rally. As various

authors before us, we study how much this change affects the game. Our approach

is based on a rally-level analysis of the process through which, besides the well-

known probability distribution of the scores, we also obtain the distribution of the

number of rallies. This yields a comprehensive knowledge of the process at hand,

and allows for an in-depth comparison of both scoring systems. In particular,

our results help to explain why the transition from one scoring system to the

other has more important implications than those predicted from game-winning

probabilities alone. Some of our findings are quite surprising, and unattainable

through Monte Carlo experiments. Our results are of high practical relevance to
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international federations and local tournament organizers alike, and also open the

way to efficient estimation of the rally-winning probabilities.

Keywords and phrases: Combinatorial derivations; Duration analysis; Point estima-

tion; Scoring rules; Two-person sports

1 Introduction.

We consider a class of two-person sports for which each rally is initiated by a server—

the other player is then called the receiver—and for which the rules and scoring system

satisfy one of the following two definitions.

Side-out scoring system: (i) the server in the first rally is determined by

flipping a coin. (ii) If a rally is won by the server, the latter scores a point

and serves in the next rally. Otherwise, the receiver becomes the server in

the next rally, but no point is scored. (iii) The winner of the game is the first

player to score n points.

Rally-point scoring system: (i) the server in the first rally is determined by

flipping a coin. (ii) If a rally is won by the server, the latter serves in the next

rally. Otherwise, the receiver becomes the server in the next rally. A point

is scored after each rally. (iii) The winner of the game is the first player to

score n points.

A match would typically consist of a sequence of such games, and the winner of the

match is the first player to win M games. Actually, it is usually so that in game m ≥

2, the first server is not determined by flipping a coin, but rather according to some

prespecified rule: the most common one states that the first server in game m is the

winner in game m− 1, but alternatively, the players might simply take turns as the first

server in each game until the match is over. It turns out that, in the probabilistic model
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we consider below, the probability that a fixed player wins the match is the same under

both rules; see [1]. This clearly allows us to focus on a single game in the sequel—as

in most previous works in the field (references will be given below). Extensions of our

results to the match level can then trivially be obtained by appropriate conditioning

arguments, taking into account the very rule adopted for determining the first server in

each game.

The side-out scoring system has been used in various sports, sometimes up to tiny

unimportant refinements, involving typically, in case of a tie at n− 1, the possibility (for

the receiver) to choose whether the game should be played to n+` (for some fixed ` ≥ 2) or

to n; see Section 2. When based on the so-called English scoring system, Squash currently

uses (n,M) = (9, 3). Racquetball is essentially characterized by (n,M) = (15, 2) (the

possible third game is actually played to 11 only). Until 2006, Badminton was using

(n,M) = (15, 2) and (n,M) = (11, 2) for men’s and women’s singles, respectively—

with an exception in 2002, where (n,M) = (7, 3) was experimented. Volleyball, for

which the term persons above should of course be understood as teams, was based on

(n,M) = (15, 3) until 2000. In both badminton and volleyball, this scoring system was

then replaced with the rally-point system. Similarly, squash, at the international level,

now is based on the American version of its scoring system, which is nothing but the rally-

point system, in this case with (n,M) = (11, 3). Investigating the deep implications of

this transition from the original side-out scoring system to the rally-point scoring system

was one of the main motivations for this work; see Section 4.

Irrespective of the scoring system adopted, the most common probabilistic model for

the sequence of rallies assumes that the rally outcomes are i.i.d., in the sense that they

(i) are mutually independent (the probability that a player wins a rally is not affected

by outcomes of the other rallies) and (ii) are, conditionally on the server, identically

distributed (the probability that a player wins a rally when serving is constant over

time). This implies that the game is governed by the parameter (pa, pb) ∈ [0, 1]× [0, 1],
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where the rally-winning probability pa (resp., pb) is the probability that Player A (resp.,

Player B) wins a rally when serving.

This model is the most widely accepted choice for mathematical analysis of sports like

badminton (see references below), tennis (see [4, 6]) or table-tennis (see [12]), although the

existence of such player-related “governing parameters” may be disputable—Discussion

of this, and the consequences of using different modeling assumptions can be found in [7].

We will throughout refer to the above probabilistic model as the server model, in contrast

with the no-server model in which any rally is won by A with probability p irrespective

of the server, that is, the submodel obtained when taking p = pa = 1− pb.

The probabilistic properties of a single game played under the side-out scoring system

have been investigated in various works. Hsi and Burich [2] attempted to derive the

probability distribution of game scores—in the sequel, we simply speak of the score

distribution—in terms of pa and pb, but their derivation based on standard combinatorial

arguments was wrong. The correct score distribution (hence also the resulting game-

winning probabilities) was first obtained in [9] by applying results on sums of random

variables having the modified geometric distribution. Keller [3] computed probabilities

of very extreme scores, whereas Marcus [5] derived the complete score distribution in the

no-server model. Strauss and Arnold [14], by identifying the point earning process as a

Markov chain, obtained more directly the same general result as in [9]. They further used

the score distribution to define maximum likelihood estimators and moment estimators

of the rally-winning probabilities (both in the server and no-server models), and based on

these estimates a ranking system (relying on Bradley-Terry paired comparison methods)

for the players of a league or tournament. Simmons [13] determined the score distribution

under the two scoring systems, this time by using a quick and direct combinatorial

analysis of a single game. He discussed handicapping and strategies (for deciding whether

the receiver should go for a game played to n + ` or not in case of a tie at n − 1), and

attempted a comparison of the two scoring systems. More recently, Percy [8] used Monte
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Carlo simulations to compare game-winning probabilities and expected durations for both

scoring systems in the no-server model.

To sum up, the score distributions have been obtained through several different prob-

abilistic methods, and were used to discuss several aspects of the game. In contrast, the

distribution of the number of rallies needed to complete a single game (D, say) remains

virtually unexplored for the side-out scoring system (for the rally-point scoring system,

the distribution of D is simply determined by the score distribution). To the best of our

knowledge, the only theoretical result on D under the side-out scoring system provides

lower and upper bounds for the expected value of D; see (20) in [13], or (2) below. Beyond

the lack of exact results on D (only approximate theoretical results or simulation-based

results are available so far), it should be noted that only the expected value of D has been

studied in the literature. This is all the more surprising because, in various sports (e.g.,

in badminton and volleyball), uncertainty about D—which is related to its variance,

not to its expected value—was one of the most important arguments to switch from the

side-out scoring system to the rally-point scoring system. Exact results on the moments

of D—or even better, its distribution—are then much desirable as they would allow to

investigate whether the transition to the rally-point system indeed reduced uncertainty

about D. More generally, precise results on the distribution of D would allow for a much

deeper comparison of both scoring systems. They would also be of high practical rele-

vance, e.g., to tournament organizers, who need planning their events and deciding in

advance the number of matches—hence the number of players—the events will be able

to host.

For the side-out scoring system, however, results on the distribution of D cannot be

obtained from a point-level analysis of the game. That is the reason why the present

work rather relies on a rally-level combinatorial analysis. This allows to get of rid of

the uncertainty about the number of rallies needed to score a single point, and results

into an exact computation of the distribution of D—and actually, even of the number
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of rallies needed to achieve any fixed score. We derive explicitly the expectation and

variance of D, and use our results to compare the two scoring systems not only in terms

of game-winning probabilities, but also in terms of durations. Some of our findings are

quite surprising, and unattainable through Monte Carlo experiments; see Section 5.

Our results reveal significant differences between both scoring systems, and help to

explain why the transition from one scoring system to the other has more important

implications than those predicted from game-winning probabilities alone. As suggested

above, they could be used by tournament organizers to plan accurately their events, but

also by national or international federations to better perform the possible transition

from the side-out scoring system to the rally-point one; see Section 6 for a discussion.

Also, our results allow for estimating, somewhat in the spirit of [4], the probability that

a particular player wins a match (not only at the beginning, but at any stage during its

progress), as well as forecasting the duration of the said match. This, of course, would

have important applications for TV broadcast programmers, among others. Finally, our

results open the way to efficient estimation of the rally-winning probabilities, based on

observed scores and durations; see Section 6 for a discussion.

The outline of the paper is as follows. In Section 2, we describe our rally-level analysis

of a single game played under the side-out scoring system, and show that it also leads

to the score distribution already derived in [9, 13] and [14]. Section 3 explains how this

rally-level analysis further provides (i) the expectation and variance of the number of

rallies needed to achieve a fixed score (Section 3.1) and also (ii) the corresponding exact

distribution (Section 3.2). In Section 4, we then use our results in order to compare

the side-out and rally-point scoring systems, both in terms of game-winning probabil-

ities (Section 4.1) and durations (Section 4.2). In Section 5, we perform Monte Carlo

simulations and compare the results with our theoretical findings. Section 6 presents the

conclusion and provides some final comments. Finally, an appendix collects proofs of

technical results.
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2 Rally-level derivation of the score distribution un-

der the side-out scoring system.

In this section, we conduct our rally-level analysis of a single game played under the

side-out scoring system. We will make the distinction between A-games and B-games,

with the former (resp., the latter) being defined as games in which Player A (resp.,

Player B) is the first server. Wherever possible, we will state our results/definitions

in the context of A-games only; in such cases the corresponding results/definitions for

B-games can then be obtained by exchanging the roles played by A and B, that is, by

exchanging (i) pa and pb and (ii) the number of points scored by each player. Whenever

not specified, the server S will be considered random, and we will denote by sa := P[S =

A] and sb := P[S = B] = 1− sa the probabilities that the game considered is an A-game

and a B-game, respectively. This both covers games where the first server is determined

by flipping a coin and games where the first server is fixed (by letting sa ∈ {0, 1}).

Our rally-level analysis of the game will be based on the concepts of interruptions

and exchanges first introduced in [2]. More precisely, we adopt

Definition 1 An A-interruption is a sequence of rallies in which B gains the right to

serve from A, scores at least one point, then (unless the game is over) relinquishes the

service back to A, who will score at least one point. An exchange is a sequence of two

rallies in which one player gains the right to serve, but immediately loses this right before

he/she scores any point (so that the potential of consecutive scoring by his/her opponent

is not interrupted).

We point out that A-interruptions are characterized in terms of score changes only

(and in particular may contain one or several exchanges) and that, at any time, an

exchange clearly occurs with probability q := qaqb := (1− pa)(1− pb).

Now, for C ∈ {A,B}, denote by Eα,β,C(r, j) the event associated with a sequence of
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rallies that (i) gives rise to α points scored by Player A and β points scored by Player B,

(ii) involves exactly r A-interruptions and j exchanges, and (iii) is such that Player C

scores a point in the last rally; the superscript C therefore indicates who is scoring the

last point, and it is assumed here that α > 0 (resp., β > 0) if C = A (resp., if C = B).

We will write

pα,β,C2

C1
(r, j) := P[Eα,β,C2(r, j)|S = C1], C1, C2 ∈ {A,B}.

We then have the following result (see the Appendix for the proof).

Lemma 1 Let γ0 := min{β, 1}, γ1 := min{α, β}, and γ2 := min{α, β−1}. Then, setting(
−1
−1

)
:= 1, we have pα,β,AA (r, j) =

(
α+β+j−1

j

)(
α
r

)(
β−1
r−1

)
pαap

β
b q

r+j, r ∈ {γ0, . . . , γ1}, j ∈ N,

and pα,β,BA (r, j) =
(
α+β+j−1

j

)(
α
r−1

)(
β−1
r−1

)
pαap

β
b qaq

r+j−1, r ∈ {1, . . . , γ2 + 1}, j ∈ N.

By taking into account all possible values for the numbers of A-interruptions and

exchanges, Lemma 1 quite easily leads to the following result (see the Appendix for the

proof), which then trivially provides the score distribution in an A-game, hence also the

corresponding game-winning probabilities.

Theorem 1 Let pα,β,C2

C1
:= P[Eα,β,C2|S = C1], where Eα,β,C2 := ∪r,j Eα,β,C2(r, j), with C1, C2 ∈

{A,B}. Then pα,β,AA =
pαap

β
b

(1−q)α+β

∑γ1
r=γ0

(
α
r

)(
β−1
r−1

)
qr and pα,β,BA =

pαap
β
b
qa

(1−q)α+β

∑γ2+1
r=1

(
α
r−1

)(
β−1
r−1

)
qr−1.

In the sequel, we denote game scores by couples of integers, where the first entry (resp.,

second entry) stands for the number of points scored by Player A (resp., by Player B).

With this notation, a C-game ends on the score (n, k) (resp., (k, n)), k ∈ {0, 1, . . . , n−1},

with probability pn,k,AC (resp., pk,n,BC ), hence is won by A (resp., by B) with the (game-

winning) probability

pAC := P[EA|S = C] =
n−1∑
k=0

pn,k,AC

(resp., pBC := 1 − pAC); throughout, EA := ∪n−1
k=0E

n,k,A (resp., EB := ∪n−1
k=0E

k,n,B) denotes

the event that the game—irrespective of the initial server—is won by A (resp., by B).
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Of course, unconditional on the initial server, we have

pn,k,A := P[En,k,A] = pn,k,AA sa + pn,k,AB sb, pk,n,B := P[Ek,n,B] = pk,n,BA sa + pk,n,BB sb,

and

pC := P[EC ] = pCAsa + pCBsb,

for C ∈ {A,B}.

Figures 1(a)-(b) present, for an A-game with n = 15, the score distributions associated

with (pa, pb) = (.7, .5), (.6, .5), (.5, .5), and (.4, .5). We reversed the k-axis in Figure 1(b),

since, among all scores associated with a victory of B, the score (14,15) can be considered

the closest to the score (15,14) (associated with a victory of A). It then makes sense

to regard Figures 1(a)-(b) as a single plot. The resulting “global” probability curves

are quite smooth and, as expected, unimodal (with the exception of the pa = pb = .5

curve, which is slightly bimodal). It appears that these score distributions are extremely

sensitive to (pa, pb), as are the corresponding game-winning probabilities (pAA ranges from

.94 to .22, when, for fixed pb = .5, pa goes from .7 to .4). For pa = pb = .5, we would

expect the global probability curve to be symmetric. The advantage Player A is given by

serving first in the game, however, makes this curve slightly asymmetric; this is quantified

by the corresponding probability that A wins the game, namely pAA = .53 > .47 = pBA.

As mentioned in the Introduction, sports based on the side-out scoring system may

involve tie-breaks in case of a tie at n − 1. This means that, at this tie, the receiver

has the option of playing through to n or “setting to `” (for a fixed ` ≥ 2), in which

case the winner is the first player to score ` further points. For instance, games in the

current side-out scoring system for squash are played to n = 9 points, and the receiver,

at (8, 8), may decide whether the game is to 9 or 10 points (` = 2). Before the transition

to the rally-point system in 2006, similar tie-break rules were used in badminton, there

with n = 15 and ` = 3. Assuming that the game is always set to ` in case of a tie

at n− 1, the resulting score distribution can then be easily derived from Theorem 1 by
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Figure 1: All subfigures refer to an A-game played under the side-out scoring system with n = 15. Left: for (pa, pb) =

(.7, .5), (.6, .5), (.5, .5), and (.4, .5), (a) probabilities pn,k,AA that Player A wins the game on the score (n, k) (along with

the probabilities pAA that Player A wins the game), (c) expected values en,k,AA and (e) standard deviations (vn,k,AA )1/2

of the numbers of rallies D conditional on the corresponding events (along with the expected values eAA and standard

deviations (vAA)1/2 of D conditional on a victory of A). Right: the corresponding values for victories of B on the

score (k, n). As for the expected values and standard deviations of D unconditional on the score or the winner, we

have (eA, v
1/2
A ) = (33.5, 8.6), (41.6, 9.5), (48.7, 10.1), and (52.5, 11.5), for (pa, pb) = (.7, .5), (.6, .5), (.5, .5), and (.4, .5),

respectively. Estimated probabilities, expectations, and standard deviations based on 5, 000 replications are also reported

(thinner lines in plots and numbers between parentheses in legend boxes). Dashed lines in (c) correspond to the lower and

upper bounds in (2); see [13].
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appropriate conditioning; for instance, the score (n+`−1, n+k−1), k ∈ {0, 1, . . . , `−1}

occurs in an A-game with probability pn−1,n−1,A
A p`,k,AA +pn−1,n−1,B

A p`,k,AB . We stress that all

results we derive in the later sections can also be extended to scoring systems involving

tie-breaks, again by appropriate conditioning. Finally, various papers discuss tie-break

strategies (whether to play through or to set the game to `) on the basis of pa and pb;

see, e.g., [8, 10, 11] or [13].

3 Distribution of the number of rallies under the

side-out scoring system.

As mentioned in the Introduction, the literature contains few results about the number

of rallies D needed to complete a single game played under the side-out scoring system.

Of course, the distribution of D can always be investigated by simulations; see, e.g., [8],

where Monte Carlo methods are used to estimate the expectation of D for a broad range

of rally-winning probabilities in the no-server model. To the best of our knowledge, the

only available theoretical result is due to Simmons [13], and provides lower and upper

bounds on the expectation of D in an A-game conditional on a victory of A on the

score (n, k). More specifically, letting

eα,β,C2

C1
:= E[D |Eα,β,C2 , S = C1], C1, C2 ∈ {A,B}, (1)

Simmons’ result states that

(n+ k) 1+q
1−q ≤ en,k,AA ≤ (n+ k) 1+q

1−q + 2k, k = 0, 1, . . . , n− 1. (2)

Unless a shutout is considered (that is, k = 0), this is only an approximate result,

whose accuracy quickly decreases with k. Again, the reason why no exact results are

available is that all analyses of the game in the literature are of a point-level nature. In

sharp contrast, our rally-level analysis allows, inter alia, for obtaining exact values of all

moments of D, as well as its complete distribution.
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3.1 Moments.

We first introduce the following notation. Let Rα,β,A
A (resp., Rα,β,B

A ) be a random vari-

able assuming values r = γ0, γ0 + 1, . . . , γ1 (resp., r = 1, 2, . . . , γ2 + 1) with correspond-

ing probabilities Wα,β,A
A (q, r) :=

(
α
r

)(
β−1
r−1

)
qr/ [

∑γ1
s=γ0

(
α
s

)(
β−1
s−1

)
qs] (resp., Wα,β,B

A (q, r) :=(
α
r−1

)(
β−1
r−1

)
qr−1/ [

∑γ2+1
s=1

(
α
s−1

)(
β−1
s−1

)
qs−1]). Conditioning with respect to the number of A-

interruptions and exchanges then yields the following result (see the Appendix for the

proof).

Theorem 2 Let t 7→ Mα,β,C2

C1
(t) = E[etD |Eα,β,C2 , S = C1], C1, C2 ∈ {A,B}, be the

moment generating function of D conditional on the event Eα,β,C2 ∩ [S = C1], and

let δC1,C2 = 1 if C1 = C2 and 0 otherwise. Then

Mα,β,C
A (t) =

(
(1− q)et

1− qe2t

)α+β

E[et(2R
α,β,C
A −δB,C)],

for C ∈ {A,B}.

Quite remarkably, those moment generating functions (hence also all resulting mo-

ments) depend on (pa, pb) through q = (1 − pa)(1 − pb) only. Taking first and second

derivatives with respect to t in the above expressions and setting t = 0 then directly

yields the following closed form expressions for the expected values eα,β,C2

C1
from (1) and

for the corresponding variances

vα,β,C2

C1
:= Var[D |Eα,β,C2 , S = C1], C1, C2 ∈ {A,B}.

Corollary 1 For C ∈ {A,B}, we have (i) eα,β,CA = (α+ β) 1+q
1−q − δB,C + 2 E[Rα,β,C

A ] and

(ii) vα,β,CA = 4(α + β) q
(1−q)2 + 4 Var[Rα,β,C

A ]. Moreover, (iii) eα,β,CA is strictly monotone

increasing in q.

Clearly, Corollary 1 confirms Simmons’ result that the expected number of rallies in

an A-game won by A on the score (n, k) is en,k,AA = n 1+q
1−q for k = 0. More interestingly,
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it also shows that the exact value for any k > 0 is given by

en,k,AA = (n+ k) 1+q
1−q + 2

∑k
r=1 rW

n,k,A
A (q, r), k = 1, . . . , n− 1. (3)

Note that this is compatible with Simmons’ result in (2) since the second term in the

right-hand side of (3) is a weighted mean of 2r, r = 1, . . . , k. Similarly, the expected

number of rallies in an A-game won by B on the score (k, n), k = 0, 1, . . . , n − 1, is

ek,n,BA = (n+ k) 1+q
1−q − 1 + 2

∑k+1
r=1 rW

k,n,B
A (q, r).

The expectation and variance of D, in a C-game won by A, are then given by


eAC := E[D|EA, S = C] = 1

pAC

∑n−1
k=0 p

n,k,A
C en,k,AC

vAC := Var[D|EA, S = C] =
[

1
pAC

∑n−1
k=0 p

n,k,A
C (vn,k,AC + (en,k,AC )2)

]
− (eAC)2,

(4)

while, in a C-game unconditional on the winner, they are given by


eC := E[D|S = C] = pACe

A
C + pBCe

B
C ,

vC := Var[D|S = C] = (vAC + (eAC)2)pAC + (vBC + (eBC)2)pBC − (eC)2.

(5)

Finally, unconditional on the server, this yields

eA := E[D|EA] = eAAsa + eABsb, e := E[D] = eAsa + eBsb,

vA := Var[D|EA] = (vAA + (eAA)2)sa + (vAB + (eAB)2)sb − (eA)2,

v := Var[D] = (vA + e2
A)sa + (vB + e2

B)sb − e2.

(6)

Figures 1(c)-(f) plot, for n = 15, en,k,AA , ek,n,BA , (vn,k,AA )1/2, and (vk,n,BA )1/2 versus k

for (pa, pb) = (.7, .5), (.6, .5), (.5, .5), and (.4, .5), and report the corresponding numerical

values of eAA, eBA, eA, (vAA)1/2, (vBA)1/2, and (vA)1/2. All expectation and standard deviation

curves appear to be strictly monotone increasing functions of the number (n+k) of points

scored, which was maybe expected. More surprising is the fact that—if one discards very

small values of k—these curves are also roughly linear. Clearly, Simmons’ lower and upper

bounds (2), which are plotted versus k in Figure 1(c), only provide poor approximations

of the exact expected values, particularly so for large k.
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The dependence on (pa, pb) may be more interesting than that on k. Note that, for

each k, en,k,AA and ek,n,BA (hence also, eAA, eBA, and eA) are decreasing functions of pa,

which confirms Corollary 1(iii). Similarly, all quantities related to standard deviations

also seem to be decreasing functions of pa. Now, it is seen that, as a function of pa,

the expectation eAA is more spread out than eBA. Indeed, the former ranges from 32.95

(pa = .7) to 56.30 (pa = .4), whereas the latter ranges from 41.95 to 51.43. On the

contrary, the standard deviation of D is more concentrated in an A-game won by A

(where it ranges from 8.34 (pa = .7) to 10.90 (pa = .4)) than in an A-game won by B

(where it ranges from 7.36 to 11.44). This phenomenon will appear even more clearly in

Figure 3 below, where the same values of (pa, pb) are considered. Note that the values

of eAA, eBA, and eA are totally in line with the score distribution and the expected values

of D for each scores. For instance, the value eBA = 41.95 for pa = .7 translates the fact

that when B wins such an A-game, it is very likely (see Figure 1(b)) that he/she will do so

on a score that is quite tight, resulting on a large expected value for D (whereas, à priori,

the values of ek,n,BA range from 47.82 to 21.29 when k goes from 14 to 0). The dependence

of the expectation and standard deviation of D on rally-winning probabilities will further

be investigated in Section 4 for the no-server model when comparing the side-out scoring

system with its rally-point counterpart.

Finally, in the case pa = pb = .5, the fact that A is the first server in the game

again brings some asymmetry in the expected values and standard deviations of D; in

particular, this serve advantage alone is responsible for the fact that 48.31 = eAA < eBA =

49.17, and, maybe more mysteriously, that 10.23 = (vAA)1/2 > (vBA)1/2 = 9.95.

3.2 Distribution

The moment generating functions given in Theorem 2 allow, through a suitable change

of variables, for obtaining the corresponding probability generating functions. These

can in turn be rewritten as power series whose coefficients yield the distribution of D
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conditional on the event Eα,β,C ∩ [S = A] (see the Appendix for the proof).

Theorem 3 Let z 7→ Gα,β,C2

C1
(z) = E[zD |Eα,β,C2 , S = C1], C1, C2 ∈ {A,B}, be the

probability generating function of D conditional on the event Eα,β,C2 ∩ [S = C1]. Then,

for C ∈ {A,B},

Gα,β,C
A (z) =

pαap
β
b
q
δB,C
a

pα,β,CA

∑∞
j=0 qjHα,β,C

A (j) zα+β+2j+δB,C ,

where, writing m+ := max(m, 0), we let

Hα,β,A
A (j) :=

∑j
l=(j−γ1)+

(
α+β+l−1

l

)(
α
j−l

)(
β−1
j−l−1

)

and

Hα,β,B
A (j) :=

∑j
l=(j−γ2)+

(
α+β+l−1

l

)(
α
j−l

)(
β−1
j−l

)
.

This result gives the probability distribution of D, conditional on Eα,β,C ∩ [S = A],

for C ∈ {A,B}. Note that, as expected, we have P[D = d |Eα,β,A, S = A] = 0 =

P[D = d + 1 |Eα,β,B, S = A] for all d < α + β. Moreover, for all nonnegative integer j,

P[D = α + β + 2j + 1 | Eα,β,A, S = A] = 0 = P[D = α + β + 2j | Eα,β,B, S = A]. In the

sequel, we refer to this as the server-effect.

Theorem 3 of course allows for investigating the shape of the distribution of D above

all scores, and not only, as in Figures 1(c)-(f), its expectation and standard deviation.

This is what is done in Figure 2, which plots, as a function of the score, quantiles of

order α = .01, .05, .25, .5, .75, .95, and .99 for (pa, pb) = (.6, .5). For each α, two

types of quantiles are reported, namely (i) the standard quantile qα := inf{d : P[D ≤

d |Eα,β,C , S = A] ≥ α} and (ii) an interpolated quantile, for which the interpolation is

conducted linearly over the set (d, d+2) containing the expected quantile (here, we avoid

interpolating over (d, d+ 1) because of the above server-effect, which implies that either

d or d + 1 does not bear any probability mass). One of the most prominent features of

Figure 2 is the wiggliness of the standard quantile curves, which is directly associated
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Figure 2: Both subfigures refer to an A-game played under the side-out scoring system with n = 15 and (pa, pb) = (.6, .5).

Subfigure (a) (resp., Subfigure (b)) reports, as a function of k, the α-quantile of the number of rallies needed to complete

the game, conditional on a victory of A on the score (n, k) (resp., conditional on a victory of B on the score (k, n)),

with α = .01, .05, .25, .50, .75, .95, and .99. Solid lines (resp., dotted lines) correspond to standard (resp., interpolated)

quantiles; see Section 3.2 for details. The thicker solid curves give the expected values of D conditional on the same events,

hence are the same as in Figure 1(c)-(d).
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with the server-effect. It should be noted that the expectation curves (which are the same

as in Figures 1(c)-(d)) stand slightly above the median curves, which possibly indicates

that, above each score, the conditional distribution of D is somewhat asymmetric to the

right. This (light) asymmetry is confirmed by the other quantiles curves.

Now, the probability distribution of D in an A-game, unconditional on the score,

is of course derived trivially from its conditional version obtained above and the score

distribution of Section 2. The general form of this distribution is somewhat obscure (and

will not be explicitly given here), but it yields easily interpretable expressions for small

values of d. For instance, one obtains

P[D = n|S = A] = pna ,

P[D = n+ 1|S = A] = qap
n
b ,

P[D = n+ 2|S = A] = nqpna + paqap
n
b , . . .

Finally, the unconditional distribution of D is simply obtained through P[D = k] =

P[D = k|S = A]sa + P[D = k|S = B]sb, k ≥ 0, where one computes the distribution for

a B-game by inverting pa and pb in the distribution for an A-game.

Figure 3 shows that there are a number of remarkable aspects to these distributions.

First note the influence of the above mentioned server-effect, which causes the wiggliness

visible in most curves there. Also note that the distributions in Figure 3(c) are much

less wiggling than the corresponding curves in Figures 3(a)-(b). As it turns out, this

wiggliness is present, albeit more or less markedly, at all stages (that is, not only to the

right of the mode) for every choice of (pa, pb). Most importantly, despite their irregular

aspect, all curves are essentially unimodal, as expected.

Now, consider the dependence on pa of the position and spread of these curves. One

sees that while their spread clearly increases much more rapidly with pa in Figure 3(b)

than in Figure 3(a), the opposite can be said for their mode. This is easily understood

in view of the corresponding means and variances, which are recalled in the legend boxes

17



Figure 3: All subfigures refer to an A-game played under the side-out scoring system with n = 15. For (pa, pb) = (.7, .5),

(.6, .5), (.5, .5), and (.4, .5), they report the probabilities that the number of rallies D needed to complete the game takes

value d, (a) conditional upon a victory of Player A, (b) conditional upon a victory of Player B, and (c) unconditional.

Estimated probabilities, expectations, and standard deviations based on 20, 000 replications are also reported (thinner

lines in plots and numbers between parentheses in legend boxes).18



(and coincide with those from Figure 1). As for the curves in Figure 3(c), they are ob-

tained by averaging the corresponding curves in Figure 3(a) and Figure 3(b) with weights

pAA and pBA = 1 − pAA, respectively. Taking into account the values of these probabilities

explains why the curves with pa = .7 and pa = .6 are essentially the corresponding

curves in Figure 3(a), whereas that with pa = .4 is closer to the corresponding curve in

Figure 3(b).

4 Comparison with the rally-point scoring system.

One of the main motivations for this work was to compare more deeply the side-out

scoring system considered in Sections 2 and 3 with the rally-point scoring system. As

mentioned in the Introduction, many sports recently switched (e.g., badminton, volley-

ball)—or are in the process of switching (e.g., squash)—from the side-out scoring system

to its rally-point counterpart, whereas others (e.g., racquetball) so far are sticking to

the side-out scoring system. It is therefore natural to investigate the implications of the

transition to the rally-point system.

The literature, however, has focused on the impact of the scoring system on the

outcome of the game—studied by comparing the game-winning probabilities under both

scoring systems; see, e.g., [13]. This is all the more surprising since there have been, in the

sport community, much debate and questions about how much the duration of the game is

affected by the scoring system. Moreover, it is usually reported that the main motivation

for turning to the rally-point system is to regulate the playing time (that is, to make

the length of the match more predictable), which is of primary importance for television,

for instance. Whether the transition to the rally-point system has indeed served that

goal, and, if it has, to what extent, are questions that have not been considered in the

literature, and were at best addressed on empirical grounds only (by international sport

federations).
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In this section, we will provide an in-depth comparison of the two scoring systems,

both in terms of game-winning probabilities and in terms of durations, which will provide

theoretical answers to the questions above. Again, this is made possible by our rally-level

analysis of the game and the results of the previous sections on the distribution of the

number of rallies under the side-out scoring system. As we will discuss in Section 6, our

results are potentially of high interest both for international federations and for local

tournament organizers.

4.1 Game-winning probabilities.

Although the game-winning probabilities for an A-game played under the rally-point

system have already been obtained in the literature (see, e.g., [13]), we start by deriving

them quickly, mainly for the sake of completeness, but also because they easily follow

from the combinatorial methods used in the previous sections. First note that there

cannot be exchanges in the rally-point scoring system, as it is understood in Definition 1

that no point is scored in an exchange. We then denote by Ēα,β,C
A (r) (C ∈ {A,B}) the

event associated with a sequence of rallies that, in the rally-point system, (i) gives rise

to α points scored by Player A and β points scored by Player B, (ii) involves exactly r

A-interruptions, and (iii) is such that Player C scores a point in the last rally; again, it

is assumed here that α > 0 (resp., β > 0) if C = A (resp., if C = B). We write

p̄α,β,C2

C1
(r) := P[Ēα,β,C2(r)|S = C1], C1, C2 ∈ {A,B}.

The following result then follows along the same lines as for Lemma 1 and Theorem 1.

Theorem 4 (i) With the notation above, p̄α,β,AA (r) =
(
α
r

)(
β−1
r−1

)
pα−ra pβ−rb (qaqb)

r, r ∈

{γ0, . . . , γ1}, and p̄α,β,BA (r) =
(
α
r−1

)(
β−1
r−1

)
pα−r+1
a pβ−rb qa(qaqb)

r−1, r ∈ {1, . . . , γ2 + 1}. (ii)

Writing p̄α,β,CA for the probability of the event Ēα,β,C
A := ∪r Ēα,β,C

A (r), we have p̄α,β,AA =

pαap
β
b

∑γ1
r=γ0

(
α
r

)(
β−1
r−1

)
(tatb)

r and p̄α,β,BA = pαap
β−1
b qa

∑γ2+1
r=1

(
α
r−1

)(
β−1
r−1

)
(tatb)

r−1, where we let

ta = qa/pa and tb = qb/pb.

20



Remark 1 These expressions further simplify in the no-server model (p :=)pa = 1− pb.

There we indeed have tb = t−1
a , so that the above formulas yield p̄α,β,AA =

(
α+β−1

β

)
pα(1−p)β

and p̄α,β,BA =
(
α+β−1

α

)
pα(1− p)β.

Of course, the resulting score distribution and game-winning probabilities for an A-

game directly follow from Theorem 4. In accordance with the notation adopted for the

side-out scoring system, we will write

p̄AC := P[ĒA|S = C] := P[∪n−1
k=0E

n,k,A|S = C] :=
n−1∑
k=0

p̄n,k,AC , p̄BC := 1− p̄AC ,

p̄n,k,A := P[Ēn,k,A] = p̄n,k,AA sa + p̄n,k,AB sb, p̄
k,n,B := P[Ēk,n,B] = p̄k,n,BA sa + p̄k,n,BB sb,

and

p̄C := P[ĒC ] = p̄CAsa + p̄CBsb.

Figures 4(a)-(b) plot the same score distribution curves as in Figures 1(a)-(b), re-

spectively, but in the case of an A-game played under the rally-point scoring system with

n = 21. Both pairs of plots look roughly similar, although extreme scores seem to be less

likely in the rally-point scoring; this confirms the findings from [13] according to which

shutouts are less frequent under the rally-point scoring system. Note also that, unlike for

the side-out scoring, the (pa, pb) = (.5, .5) curve in Figure 4(a) is the exact reverse image

of the corresponding one in Figure 4(b): for the rally-point scoring, Player A of course

does not get any advantage from serving first if (pa, pb) = (.5, .5), which is confirmed by

the game-winning probabilities p̄AA = p̄BA = .5.

Again, the dependence of the game-winning probabilities on (pa, pb) is of primary

importance. We will investigate this dependence visually and compare it with the corre-

sponding dependence for the side-out scoring system. To do so, we focus on the no-server

version (p = pa = 1−pb) of Badminton, where, as already mentioned, the side-out scoring

system with n = 15 (men’s singles) was recently replaced with the rally-point one char-

acterized by n = 21. The results are reported in Figures 5(a)-(b). Figure 5(a) supports

the claim—reported, e.g., in [8] or [13]—stating that, for any fixed p, the scoring barely
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Figure 4: Both subfigures refer to an A-game played under the rally-point scoring system with n = 21. Subfigure (a):

for (pa, pb) = (.7, .5), (.6, .5), (.5, .5), and (.4, .5), probabilities p̄n,k,AA that Player A wins the game on the score (n, k),

along with the probabilities p̄AA that Player A wins the game. Subfigures (b): the corresponding values for victories of B on

the score (k, n). Estimated probabilities based on 5, 000 replications are also reported (thinner lines in plots and numbers

between parentheses in legend boxes).
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Figure 5: As a function of p = pa = 1 − pb (hence, in the no-server model), probabilities pAA (in blue) that Player A

wins an n = 15 side-out A-game, along with the probabilities p̄AA (in red) that Player A wins an n = 21 rally-point

A-game. Expectations (first row) and standard deviations (second row) of the number of rallies needed to complete the

corresponding games, unconditional on the winner (first column), conditional on a victory of Player A (second column),

and conditional on a victory of Player B (third column). Estimated probabilities, expectations, and standard deviations

(based on 200 replications at each value of p = 0, .0005, .0010, .0015, . . . , .9995) are also reported (thinner lines).
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influences game-winning probabilities. Now, while Figure 5(b) shows that the probability

that Player A wins an A-game is essentially the same for both scoring systems if he/she

is the best player (p̄AA/p
A
A ∈ (.926, 1) for p ≥ .5, and p̄AA/p

A
A ∈ (.997, 1) for p > .7), it tells

another story for p < .5: there, the probability that A wins an A-game played under the

rally-point system (i) becomes relatively negligible for very small values of p (in the sense

that p̄AA/p
A
A → 0 as p→ 0) and (ii) can be up to 28 times larger than under the side-out

system (for values of p close to .1). Of course, one can say that (i) is irrelevant since it is

associated with an event (namely, a victory of A) occurring with very small probability;

(ii), however, constitutes an important difference between both scoring systems for values

of p that are not so extreme.

4.2 Durations.

In the rally-point system, the number of rallies needed to achieve the event Ēα,β,C2∩ [S =

C1] is not random: with obvious notation, it is almost surely equal to ēα,β,C2

C1
= α + β,

which explains why Figure 4 does not contain the rally-point counterparts of Figure 1(c)-

(f). The various conditional and unconditional means and variances of the number of

rallies in the rally-point system (that is, the quantities ēAC , v̄AC , ēC , v̄C , ēA, v̄A, ē, v̄) can

then be readily computed from the game-winning probabilities given in Theorem 4, in

the exact same way as in (4)-(6) for the side-out scoring system. More generally, the

corresponding distribution of the number of rallies in a game trivially follows from the

same game-winning probabilities.

Figures 5(c)-(h) plot, as functions of p = pa = 1− pb (hence, in the no-server model),

expected values and standard deviations of the numbers of rallies needed to complete (i)

A-games played under the side-out system with n = 15 and (ii) A-games played under

the rally-point system with n = 21. Clearly, those plots allow for an in-depth (original)

comparison of both scoring systems. Let us first focus on durations unconditional on the
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winner of the game. Figure 5(c) shows that games played under the side-out system will

last longer than those played under the rally-point one for players of roughly the same

level (which was expected since the side-out system will then lead to many exchanges),

whereas the opposite is true when one player is much stronger (which is explained by

the fact that shutouts require more rallies in the rally-point scoring considered than

in the side-out one). Maybe less expected is the fact (Figure 5(f)) that the standard

deviation of D is, uniformly in p ∈ (0, 1), smaller for the rally-point scoring system than

for the side-out system, which shows that the transition to the rally-point system indeed

makes the length of the game more predictable. The twin-peak shape of both standard

deviation curves is even more surprising. Finally, note that, while the rally-point curves

in Figures 5(c) and (f) are symmetric about p = .5, the side-out curves are not, which

is due to the server-effect. This materializes into the limits of eA given by 16 and 15

as p→ 0 and p→ 1, respectively (which was expected: if Player B wins each rally with

probability one, he/she will indeed need 16 rallies to win an A-game, since he/she has to

regain the right to serve before scoring his/her first point), but also translates into (i) the

fact that the mode of the side-out curve in Figure 5(c) is not exactly located in p = .5

and (ii) the slightly different heights of the two local (side-out) maxima in Figure 5(f).

We then turn to durations conditional on the winner of the game, whose expected val-

ues and standard deviations are reported in Figures 5(d), (e), (g), and (h). These figures

look most interesting and reveal important differences between both scoring systems.

Even the general shape of the curves there are of a different nature for both scorings;

for instance, the rally-point curves in Figures 5(d)-(e) are monotonic, while the side-out

ones are unimodal. Similarly, in Figure 5(g), the rally-point curve is unimodal, whereas

the side-out curve exhibits a most unexpected bimodal shape. It is also interesting to

look at limits as p → 0 or p → 1 in those four subfigures; these limits, which are de-

rived in Appendix A.3, are plotted as short horizontal lines. Consider first limits above

events occurring with probability one, that is, limits as p → 1 in Figures 5(d), (g) and
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limits as p → 0 in Figures 5(e), (h). The resulting limits are totally in line with the

intuition: the four conditional standard deviations go to zero, which implies that the

limiting conditional distribution of D simply is almost surely equal to the corresponding

limiting (conditional) expectations. The latter themselves assume very natural values:

for instance, for the same reason as above, eBA converges to 16, which is therefore the

limit of D in probability.

Much more surprising is what happens for limits above events occurring with proba-

bility zero, that is, limits as p→ 0 in Figures 5(d), (g) and limits as p→ 1 in Figures 5(e),

(h). Focussing first on the side-out scoring system, it is seen that a (miraculous) vic-

tory of A will require, in the limit, almost surely D = 15 points, while the limiting

conditional distribution of D for victories of B is non-degenerate. The latter distribu-

tion is shown (see Appendix A.3) to be uniform over {n + 1, n + 2, . . . , 2n} (hence is

stochastically bounded!), which is compatible with the values n+ 1 + (n− 1)/2(≈ 3n/2)

and (n − 1)2/12 for the limiting expectation and variance, respectively. It should be

noted here that this huge difference between those two limiting conditional distributions

of D is entirely due to the server-effect. In the absence of the server-effect, the subfig-

ures (e) and (h) should indeed be the exact reverse image of the subfigures (d) and (g),

respectively. Similarly, the bimodality of the side-out curve in Figure 5(g) is also due to

the server-effect. We then consider the rally-point scoring, which is not affected by the

server-effect, so that it is sufficient to consider at the limits as p → 0 in Figures 5(d),

(g). There, one also gets a non-degenerate limiting conditional distribution for D, with

expectation 2n2/(n+ 1)(≈ 2n) and variance 2n2(n− 1)/[(n+ 1)2(n+ 2)](≈ 2).

5 Simulations.

We performed several Monte Carlo simulations, one for each figure considered so far

(except Figure 2, as it already contains many theoretical curves). To describe the general

procedure, we focus on the Monte Carlo experiment associated with the side-out scoring
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system in Figure 5 (results for the rally-point scoring system there or for the other figures

are obtained similarly). For each of the 1, 999 values of p considered in Figure 5, the

corresponding values of pAA(p), eA(p), vA(p), eCA(p), vCA(p), C ∈ {A,B}, were estimated

on the basis of J = 200 independent replications of an A-game played under the side-out

scoring system with pa = 1 − pb = p. Of course, for each fixed p, the game-winning

probability pCA(p) is simply estimated by the proportion of games won by C in the J

corresponding A-games:

p̂CA(p) :=
JC

J
:=

1

J

J∑
j=1

ICj ,

where ICj , j = 1, . . . , J , is equal to one (resp., zero) if Player C won (resp., lost) the jth

game. The corresponding estimates for eA(p), vA(p), eCA(p), and vCA(p) then are given by

êA(p) :=
1

J

J∑
j=1

dj v̂A(p) :=
1

J

J∑
j=1

(
dj − êA(p)

)2
,

êCA(p) :=
1

JC

J∑
j=1

djI
C
j , and v̂CA(p) :=

1

JC

J∑
j=1

(
dj − êCA(p)

)2
ICj , (7)

where dj, j = 1, . . . , J , is the total number of rallies in the jth game. These estimates are

plotted in thin blue lines in Figure 5. Clearly, these simulations validate our theoretical

results in Figures 5(a), (c), and (f). To describe what happens in the other plots, consider,

e.g., Figure 5(g). There, it appears that the theoretical results are confirmed for large

values of p only. However, this is simply explained by the fact that for small values

of p, the denominator of v̂AA(p) (see (7)) is very small. Actually, among the 542 × 200

A-games associated with the 542 values of p ≤ .2710, not a single one here led to a

victory of A, so that the corresponding estimates v̂AA(p) are not even defined. Of course,

values of p slightly larger than .2710 still give rise to a small number of victories of A,

so that the corresponding estimates v̂AA(p) are highly unreliable. The situation improves

substantially as p increases, as it can be seen in Figure 5(g). Figures 5(b), (d), (e),

and (h) can be interpreted exactly in the same way.

This underlines the fact that expectations and variances conditional on events with

small probabilities are extremely difficult—if not impossible—to estimate. To quantify
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this, let us focus again on Figure 5(g), and consider the local maximum on the left of

the plot, which is (on the grid of values of p at hand) located in p0 := .0085. The

probability pAA(p0) of a victory of A in an A-game played under the side-out scoring

system with p = p0 is about 3.5 × 10−31. Estimating vAA(p0) with the same accuracy as

that achieved for, e.g., vAA(.5) in Figure 5(g) would then require a number of replications

of (fixed p0) A-games that is about 200 × pAA(.5)/pAA(p0) ≈ 3 × 1032. Assuming that

106 replications can be performed in a second by a super computer (which is overly

optimistic), this estimation of vAA(p0) would still require not less than 9.5×1018 years! This

means that it is indeed impossible to estimate in a reliable way the conditional variance

curve for p close to p0 so that Monte Carlo experiments cannot reveal the existence of

the local maximum in p0. Similarly, without our theoretical analysis, there is no hope

to learn about the degeneracy (resp., non-degeneracy) of the limiting distribution of D

conditional on a victory of A as p→ 0 (resp., conditional on a victory of B as p→ 1).

We will not comment in detail the Monte Carlo results associated with the other

figures. We just report that they again confirm our theoretical findings, whenever possi-

ble, that is, whenever they are not associated with conditional results above events with

small probabilities.

6 Conclusion and final comments.

This paper provides a complete rally-level probabilistic description for games played

under the side-out scoring system. It complements the previous main contributions

from [9, 13] and [14] by adding to the well-known game-winning probabilities an ex-

haustive knowledge of the random duration of the game. This brings a much better

understanding of the underlying process as a whole, as is demonstrated in Sections 2

to 4.

In this final section, we will mainly focus on the practical implications of our findings.
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For this, we may restrict to (pa, pb) ∈ [.4, .6]×[.4, .6], say, since players tend to be grouped

according to strength. For such values of the rally-winning probabilities, our results

show that the recent transition—in mens’ singles’ Badminton—from the n = 15 side-out

scoring system to the n = 21 rally-point one strongly affected the properties of the game.

They indeed indicate that games played under the rally-point scoring system are much

shorter than those played according to the side-out one, and that the uncertainty in the

duration of the match is significantly reduced. Our results allow to quantify both effects.

On the other hand, they show that game-winning probabilities are essentially the same

for both scoring systems. It is then tempting to conclude (as in [8, 13]) that the outcomes

of the games are barely influenced by the scoring system adopted. While this is strictly

valid in the model, it is highly disputable under possible violations of the model. For

instance, i.i.d.-ness (see page 3) may fail to hold for long games involving players with

different fitness levels, a violation of the model under which scoring systems, through

their impact on the duration of the games (see above), may significantly influence the

outcomes of the games.

In practice, the results of this paper can be useful to many actors of the sport com-

munity. For the international sport federations playing with the idea of replacing the

side-out scoring system with the rally-point one, our results could be used to tune n (i.e.,

the number of points to be scored to win a rally-point game) according to their wishes.

For the sake of illustration, consider again the transition performed by the International

Badminton Federation (IBF). Presumably, its objective was (i) to make the duration of

the game more predictable and (ii) to ensure that the outcome of the matches would

change as little as possible. If this was indeed the objective, then our results show that

it has only been partially achieved : it is indeed easy to see that other choices of n would

have been even better in that respect, the choice of n = 27 (see Figure 6(d) and (b)),

being optimal. Moreover, this last choice would have affected the duration of the game

much less than n = 21 (see Figure 6(c)), and thus would have made the outcome of the
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Figure 6: Subfigures (a)-(e) here report Subfigures (a)-(c), (f), and (e) from Figure 5 with the only difference that the

rally-point scoring here is based on n = 27 (the side-out scoring is still based on n = 15).
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matches more robust to possible violations of the model.

For organizers of local tournaments played under the side-out scoring system, our

results can be used to control, for any fixed number of planned matches, the time required

to complete their events. Such a control over this random time, at any fixed tolerance

level, can indeed be achieved in a quite direct way from our results on the duration of

a game played under the side-out scoring system. Organizers can then deduce, at the

corresponding tolerance level, the number of matches—hence the number of players—

their events will be able to host. This of course concerns the sports that are still using

this scoring system, such as racquetball and squash (for the latter, only in countries

currently using the so-called English scoring system).

Finally, since our results provide a complete description of the duration process in

the side-out scoring system, they also open the way to more efficient estimation of the

rally-winning probabilities (pa, pb) there. However, a full discussion of this is beyond the

scope of this paper, and is actually the topic of current research.

A Appendix: proofs.

A.1 Proofs of Lemma 1 and Theorem 1.

In the Appendix, we simply write interruptions for A-interruptions.

Proof of Lemma 1. Clearly, pα,β,AA (r, j) = Kr,j p
α
ap

β
b (qaqb)

r+j, where Kr,j is the number

of ways of setting r interruptions and j exchanges in the sequence of rallies achieving the

event under consideration. Regarding interruptions, we argue as in [2], and say those r

interruptions should be put into the α possible spots (remember the last point should

be won by A), while the β points scored by B should be distributed among those r

interruptions—with at least one point scored by B in each interruption (so that there

may be at most r = min(α, β) interruptions). There are exactly
(
α
r

)(
β−1
r−1

)
ways to achieve
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this. As for the j exchanges, they may occur at any time and thus there are as many

ways of placing j interruptions as there are distributions of j indistinguishable balls into

α + β urns, i.e.
(
α+β−1

j

)
. Summing up, we have proved that

pα,β,AA (r, j) =

(
α + β − 1

j

)(
α

r

)(
β − 1

r − 1

)
pαap

β
b (qaqb)

r+j,

with r = min(β, 1), . . . ,min(α, β), j ∈ N.

As for pα,β,BA (r, j), this probability is clearly of the form Lr,j p
α
ap

β
b qa(qaqb)

r+j−1. In

this case, there are α + 1 possible spots for the r interruptions. But since B scores the

last point, the sequence of rallies should end with an interruption. There are therefore(
α
r−1

)
ways to insert the interruptions. Each interruption contains at least one point for

B, so that r ≤ min(α + 1, β). The result follows by noting that there are
(
β−1
r−1

)
ways

of distributing the β points scored by B into those r interruptions, and by dealing with

exchanges as for pα,β,AA (r, j). �

Proof of Theorem 1. The result directly follows from Lemma 1 by writing pα,β,AA =∑
r,j p

α,β,A
A (r, j) and pα,β,BA =

∑
r,j p

α,β,B
A (r, j) (where the sums are over all possible values

of r and j in each case), and by using the equality
∑∞
j=0

(
m+j−1

j

)
zj = (1− z)−m for any

z ∈ [0, 1). �

A.2 Proofs of Theorems 2 and 3 and of Corollary 1.

Proof of Theorem 2. First note that if A scores the last point in an A-game in which

the score is α to β after j exchanges (j ∈ {0, 1, . . .}) and r interruptions (r ∈ {γ0, . . . , γ1}),

then there have been α+β+2(r+j) rallies . Conditioning on the number of interruptions

and exchanges therefore yields

Mα,β,A
A (t) = (pα,β,AA )−1

∑
j

∑
r

et(α+β+2(r+j))pα,β,AA (r, j)
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(where the sums are over all possible values of r and j in each case) and thus, from

Lemma 1 and Theorem 1,

Mα,β,A
A (t) =

et(α+β)∑
j (e2tq)

j
(
α+β+j−1

j

)∑
r e

2tr
(
α
r

)(
β−1
r−1

)
qr

(1− q)−(α+β)
∑
r

(
α
r

)(
β−1
r−1

)
qr

= ((1− q)et)α+β
(∑

j (e2tq)
j
(
α+β+j−1

j

)) (∑
r e

2trWα,β,A
A (q, r)

)
.

The first claim of Theorem 2 follows.

For the second claim, it suffices to note that if B scores the last point in an A-game

in which the score is of α to β after j exchanges (j ∈ {0, 1, . . .}) and r interruptions

(r ∈ {1, . . . , γ2 + 1}), then the number of rallies equals α + β + 2(r − 1 + j) + 1; the

computations above then hold with only minor changes. �

Proof of Corollary 1. Taking first and second derivatives of the moment generating

functions yields the expectations and variances given in Corollary 1. Moreover it can

easily be seen that derivatives of the expected values with respect to q are positive by

using the Cauchy-Schwarz inequality, and thus the latter are strictly monotone increasing

in q. �

Proof of Theorem 3. The change of variables z = et in the moment generating

functions given in Theorem 2 immediately yields the probability generating functions.

If β = 0, the latter is already in the form of an infinite series Gα,0,A
A (z) =

∑∞
j=0(1 −

q)αqj
(
α+j−1

j

)
zα+2j. If β > 0, we have

Gα,β,A
A (z) = (1− q)α+βzα+β

∞∑
j=0

Kjz
2j

γ1∑
r=1

Wrz
2r,

where Kj = qj
(
α+β+j−1

j

)
and Wr = Wα,β,A

A (q, r). This double sum satisfies

∞∑
j=0

Kj

γ1∑
r=1

Wrz
2(j+r) =

γ1∑
j=1

z2j

j−1∑
l=0

KlWj−l

+
∞∑

j=γ1+1

z2j

 j−1∑
l=j−γ1

KlWj−l

 .
The same arguments are readily adapted to Gα,β,B

A (z), and Theorem 3 follows. �
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A.3 The distribution of the number of rallies, in the no-server

model, for extreme rally-winning probabilities.

As announced in Section 4.2, we determine here the limiting behavior of the number of

rallies D, in the no-server model, for p → 0 and p → 1, conditional on the winner of

the A-game considered. We start with the limit under almost sure events, that is, limits

as p → 1 (resp., p → 0) for the distribution of D conditional on a victory of A (resp.,

of B).

Proposition 1 Let, for the side-out scoring system, t 7→ MC
A (t) = E[etD |EC , S = A],

C ∈ {A,B}, be the moment generating function of D conditional on the event EC ∩ [S =

A]. Denote by t 7→ M̄C
A (t) = E[etD | ĒC , S = A], C ∈ {A,B}, the corresponding moment

generating function for the rally-point system. Then, (i) as p → 1, MA
A (t) → ent and

M̄A
A (t)→ ent; (ii) as p→ 0, MB

A (t)→ e(n+1)t and M̄B
A (t)→ ent.

Proof. (i) By conditioning, we get MA
A (t) =

∑n−1
k=0 M

n,k,A
A (t)pn,k,AA /pAA. It is easy to check

that limp→1 p
n,k,A
A /pAA = δk,0 and that limp→1M

n,k,A
A (t) = e(n+k)t. Hence limp→1M

A
A (t) =

ent. Likewise, M̄A
A (t) =

∑n−1
k=0 e

(n+k)tp̄n,k,AA /p̄AA. Again, it is easy to check that limp→1

p̄n,k,AA /p̄AA = δk,0. Hence, we indeed have M̄A
A (t)→ ent. (ii) The proof is similar, and thus

left to the reader. �

Corollary 2 (i) As p→ 1, (eAA, v
A
A)→ (n, 0) and (ēAA, v̄

A
A)→ (n, 0), so that, conditional

on a victory of A in an A-game, D
P→ n, irrespective of the scoring system; (ii) as p→ 0,

(eBA, v
B
A)→ (n+ 1, 0) and (ēBA, v̄

B
A)→ (n, 0), so that, conditional on a victory of B in an

A-game, D
P→ n+ 1 (resp., n) for the side-out (resp., rally-point) scoring system.

As shown by Proposition 1 and Corollary 2, the situation is here very clear. In each

of the four cases considered, only one trajectory is possible, namely that for which all

rallies in the game will be won by the winner of the game.
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Next we derive the limiting conditional distribution of D under events which occur

with zero probability, that is, limits as p → 1 (resp., p → 0) for the distribution of D

conditional on a victory of B (resp., of A). Our conclusions are much more surprising.

Proposition 2 Let m(t) :=
∑n−1
k=0 e

(n+k)t
(
n+k−1

k

)/∑n−1
k=0

(
n+k−1

k

)
. Then, (i) as p → 0,

MA
A (t)→ ent and M̄A

A (t)→ m(t); (ii) as p→ 1, MB
A (t)→ (e(n+1)t− e(2n+1)t)/(n(1− et))

and M̄B
A (t) → m(t). In particular, as p → 1, the limiting distribution of D conditional

on the event EB ∩ [S = A] is uniform over the set {n+ 1, . . . , 2n}.

Proof. We first prove the assertions for the rally-point scoring system. In this

case, M̄A
A (t) =

∑n−1
k=0 e

(n+k)tp̄n,k,AA /p̄AA. Now, from Remark 1 it is immediate that limp→0

pn,k,AA /pAA =
(
n+k−1

k

)/∑n−1
k=0

(
n+k−1

k

)
, which proves the claim for M̄A

A (t) (hence, by sym-

metry, also for M̄B
A (t)).

Next consider the assertions for the side-out scoring system. First note that, as

before, MA
A (t) =

∑n−1
k=0 M

n,k,A
A (t)pn,k,AA /pAA and MB

A (t) =
∑n−1
k=0 M

k,n,B
A (t)pk,n,BA /pBA. Now

fix k ∈ {0, . . . , n− 1}. Using Theorem 1, one readily shows that

lim
p→0

pn,k,AA

/
pAA = δk,0 and lim

p→1
pk,n,BA

/
pBA = 1/n.

Combining these results and the definitions of the moment generating functions, it is

then straightforward to show that

lim
p→0

Mn,k,A
A (t) = e(n+k)t and lim

p→1
Mk,n,B

A (t) = e(n+k+1)t.

The claim follows. �

Corollary 3 (i) As p → 0, (eAA, v
A
A) → (n, 0) and (ēAA, v̄

A
A) → ( 2n2

n+1
, 2n2(n−1)

(n+1)2(n+2)
); as

p→ 1, (eBA, v
B
A)→ (3n+1

2
, (n−1)2

12
) and (ēBA, v̄

B
A)→ ( 2n2

n+1
, 2n2(n−1)

(n+1)2(n+2)
).

It is remarkable that we can again give a complete description of the “distribution of

the process” (by this, we mean that we can again list all trajectories of rallies leading to

the event considered, and give, for each such trajectory, its probability). Consider first
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the side-out scoring system. For victories of A, the situation is very clear: Corollary 3

indeed yields that, conditional on a victory of A in an A-game, D
P→ n as p→ 0, which

implies that the only possible trajectory of rallies is the one for which all rallies in the

game are won by A. Turn then to victories of B. There, we obtained in the proof of

Proposition 2 that all scores (k, n) are equally likely. It is actually easy to show that,

conditional on Ek,n,B ∩ [S = A], D
P→ n + k + 1 as p → 1. This implies that there

are exactly n equally likely trajectories: A first scores k points, then loses his/her serve,

before B scores n (miraculous) points and wins the game (k = 0, . . . , n− 1).

Consider finally the rally-point system. In this case, it is sufficient to study the

distribution of the scores after victories of A (when p→ 0) since the number of rallies is

a function of the scores only, and since the conclusions will, by symmetry, be identical

for victories of B (when p → 1). Clearly, for any fixed k ∈ {0, 1, . . . , n − 1}, there

are exactly
(
n+k−1

k

)
trajectories leading to the score (n, k), and those trajectories are

equally likely. Each such trajectory will then occur with probability 1/
∑n−1
k=0

(
n+k−1

k

)
,

because, as we have seen in the proof of Proposition 2, the score (n, k) occurs with

probability
(
n+k−1

k

)/∑n−1
k=0

(
n+k−1

k

)
. These considerations provide the whole distribution

of the process: there are
∑n−1
k=0

(
n+k−1

k

)
equally likely possible trajectories, namely the

ones we have just considered. The exact limiting distribution of D can of course trivially

be computed from this.
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