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Abstract

A procedure relying on linear programming techniques is developed to com-

pute (regression) quantile regions that have been defined recently. In the

location case, this procedure allows for computing halfspace depth regions

even beyond dimension two. The corresponding algorithm is described in

detail, and illustrations are provided both for simulated and real data. The

efficiency of a Matlab implementation of the algorithm1 is also investigated

through extensive simulations.
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1. Introduction

Due to the lack of a satisfactory concept of multivariate quantile, Koenker

and Bassett (Econometrica 1978)’s celebrated theory of quantile regression

has for long been restricted to single-output regression problems, which con-

stitutes a severe limitation. Various works tried to extend quantile regres-

sion to the multiple-output context; see, e.g., Chaudhuri (1996), Koltchinskii

(1997), Chakraborty (2003), Wei (2008), or Kong and Mizera (2008). Here,

the focus is on the quantiles that were proposed in Hallin, Paindaveine and

Šiman (2010)—hereafter referred to as HPŠ10—and that can be described

as follows.

Consider a multiple-output regression problem where the m-variate re-

sponse Y is to be regressed on the p-variate vector of regressors X =

(1,W ′)′—so that {(w′,y′)′ : w ∈ Rp−1,y ∈ Rm} = Rp−1 × Rm is the

natural space for considering fitted regression “objects”. Assume that cor-

responding data points (xi,yi) ∈ Rp × Rm, i = 1, . . . , n, are given. For

any τ ∈ (0, 1) and u ∈ Sm−1 := {y ∈ Rm : ‖y‖ = 1}, the sample HPŠ10

(τu)-quantile is defined as any element of the collection Π
(n)
τu of hyperplanes

π
(n)
τu := {(w′,y′)′ ∈ Rp−1 × Rm : b̂

′
τuy − â

′
τu(1,w′)′ = 0}, with

(â′τu, b̂
′
τu)′ ∈ arg min

n∑
i=1

ρτ (b̃
′
yi − ã

′xi) subject to u′b̃ = 1, (1)

where ρτ (x) = x(τ − I(x < 0)) is the well-known τ -quantile check function.

In other words, this regression (τu)-quantile simply is the traditional (single-

output) Koenker and Basset (1978) regression quantile of order τ obtained

when considering, in Rm+p−1, the oriented vectorial line bearing (0′p−1,u
′)′

as the “vertical” axis (that is, as the axis of the univariate response).
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Each optimal solution (â′τu, b̂
′
τu)′ to (1) can be associated with the upper

(τu)-quantile halfspaceH
(n)+
τu = {(w′,y′)′ ∈ Rp−1×Rm : b̂

′
τuy−â

′
τu(1,w′)′ ≥

0}. For τ ∈ (0, 1), HPŠ10 then defines (sample) τ -quantile regions as

R(n)(τ) :=
⋂

u∈Sm−1

⋂{
H(n)+
τu

}
, (2)

where
⋂{

H
(n)+
τu

}
stands for the intersection over all optimal solutions cor-

responding to fixed τ and u. In the location case p = 1, these regions were

shown to coincide with the Tukey (1975) halfspace depth regions; see Theo-

rem 4.2 of HPŠ10. In the general regression case p > 1, they form a family

of nested polyhedral regions wrapping, up to the classical quantile crossings,

a median or deepest regression hypertube. As shown in Section 7 of HPŠ10,

these quantile regions allow for a much richer regression analysis than any

traditional multiple-output regression method can provide.

Computing R(n)(τ) (for some fixed τ), however, is a very challenging

problem even when all the regression (τu)-quantiles are uniquely defined. In

this case, each such regression quantile hyperplane (as any standard single-

output Koenker and Basset (1978) regression quantile hyperplane in Rm+p−1)

must contain m + p − 1 data points almost surely if the underlying distri-

bution of (W ′,Y ′)′ is absolutely continuous with respect to the Lebesgue

measure. This implies that the collection of all such regression quantiles is

finite, and that R(n)(τ) could then be in principle computed exactly. Nev-

ertheless, considering all (m + p − 1)-tuples of data points is unfeasible for

practical datasets, so that computing the quantile regions remains a very

difficult issue. Even in the location case where the problem reduces to com-

puting halfspace depth regions, there is no exact implementable (non-trivial)
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solution beyond dimension two, at least to the best of the authors’ knowledge.

The main objective of this paper is to provide a solution to this problem

in the general regression case (p ≥ 1), by showing how to compute efficiently,

for any fixed τ ∈ (0, 1), the finite collection of all regression (τu)-quantiles.

Since computing a single upper quantile halfspace H
(n)+
τu can be done in a

straightforward way (by using single-output quantile regression techniques),

the challenge here is to aggregate efficiently the information associated with

the various fixed-τ directional quantile halfspaces.

The present work has much in common with parametric programming

and sensitivity analysis and is particularly close to Shi and Lukas (2005) and

Lukas and Shi (2006) that deal with sensitivity of constrained linear L1 re-

gression. Perturbations in rows and columns of the constraints matrix have

been widely discussed in general linear programming context as well; see

Kon-Popovska (2003), and references therein. Interestingly, the very special

form of the problem considered here and the row and column permutations

employed lead to surprisingly simple and neat results, which makes it pos-

sible to solve the problem for all u’s efficiently. This contribution therefore

confirms the trend that applications of parametric programming in compu-

tational geometry still grow in number; see Raković et al. (2003) for another

paper on this topic.

The outline of the paper is as follows. Section 2 derives a procedure

that solves Problem (1) with given fixed τ ∈ (0, 1) for all u ∈ Sm−1 by

means of parametric linear programming. In Section 3, the corresponding

algorithm is described in detail (a Matlab implementation of this algo-

rithm can be downloaded from http://homepages.ulb.ac.be/~dpaindav).
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Section 4 provides some illustrations of quantile regions, both on simulated

data (Section 4.1) and real data (Section 4.2). Extensive simulations are con-

ducted in Section 5 to evaluate the efficiency of the Matlab implementation

of the algorithm. Finally, some technical matters related to the algorithm

are discussed in the Appendix.

2. Description of the procedure

This section describes a solution to the problem from the Introduction

by means of parametric linear programming, and provides the theoretical

background for the algorithm presented in Section 3. The structure of this

section closely follows the accompanying Matlab code and splits into three

subsections. Section 2.1 rewrites the problem (1) as a linear program in a

convenient way and shows that the assumption u ∈ Sm−1 can be relaxed

without any harm into u ∈ Rm (or more precisely, into Rm \ {0}). Sec-

tion 2.2 then demonstrates that the resulting space Rm of the u’s can be

segmented into (a finite collection of) polyhedral cones, each corresponding

to a single (τu)-quantile halfspace H
(n)+
τu . Finally, Section 2.3 explains how

to find all neighboring cones adjacent to a given one by means of simplex

post-optimization, which paves the way for finding the whole conic segmen-

tation and thus solves the problem completely.

2.1. Simplification of the linear problem

The following notation will be used throughout. The vectors 0` and 1`

are defined as the `-dimensional zero vector and the `-dimensional vector

of ones, respectively. The symbols I`×` and Or×s respectively refer to the `-

dimensional identity matrix and the zero r×s matrix. The positive and nega-
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tive parts of a `-vector v = (v1, . . . , v`)
′ are defined as v+ := (max(v1, 0), . . . ,

max(v`, 0))′ and v− := (max(−v1, 0), . . . ,max(−v`, 0))′, respectively, which

yields v = v+ − v−. The vector of residuals ri = ri(ã, b̃) := b̃
′
yi − ã

′xi,

i = 1, . . . , n, will be denoted as r = (r1, . . . , rn)′. From the n×m (response)

matrix

Y := (y1, . . . ,yn)′ =: (yc1, . . . ,y
c
m)

and the n× p (design) matrix

X := (x1, . . . ,xn)′ =: (xc1, . . . ,x
c
p),

one can construct

Uy := (yc1,−yc1, . . . ,ycm,−ycm) and Vx := (xc1,−xc1, . . . ,xcp,−xcp),

respectively. In the setup described in the Introduction, xc1 = 1n. The

general notation is used here because sometimes it may be interesting to work

with another xc1 (for example, when multiple identical observations occur in

the sample, which may be relevant for resampling procedures) and because

the algorithm presented in Section 3 does not require any special assumption

on xc1 at all. Finally, to make the connection between the text and the code

as tight as possible, all vector inequalities are interpreted coordinatewise and

some basic Matlab notation is used hereinafter, mainly for submatrices and

subvectors with possibly permuted rows or columns.

With this notation, the optimization problem (1), for any u = (u1, . . . , um)′

∈ Sm−1, can be represented as the linear program

min
zP

c′PzP subject to APzP = bP , zP ≥ 0, (P)
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with its dual twin brother

max
(λ,µ′P )′

λ subject to A′P (λ,µ′P )′ ≤ cP , (D)

where

zP = (a′(ã), b′(b̃), r′+, r
′
−)′ ∈ R2p+2m+2n,

a = a(ã) = (ã1+, ã1−, . . . , ãp+, ãp−)′ ∈ R2p,

b = b(b̃) = (̃b1+, b̃1−, . . . , b̃m+, b̃m−)′ ∈ R2m,

cP = (0′2p+2m, τ1
′
n, (1− τ)1′n)′ ∈ R2p+2m+2n,

bP = (1,0′n)′ ∈ Rn+1,

AP =

A1
P (1×(2p+2m+2n))

A2
P (n×(2p+2m+2n))

 =

 0′2p ω′2m 0′n 0′n

−Vx
n×2p Uy

n×2m −In×n In×n

 ,

ω2m = (u1,−u1, . . . , um,−um)′ ∈ R2m,

and (λ,µ′P )′ is the Lagrange multiplier vector corresponding to the equality

constraints in (P).

Now, consider some u0 such that there exists a solution (â′τu0
, b̂
′
τu0

)′ to

(1) with only non-zero entries, and denote by ẑP the corresponding optimal

solution to (P). One can then define

• Ia (resp., Ĩa) as the vector containing indices of positive coordinates

in a(âτu0) (resp., a(−âτu0)), and Îa as the vector collecting the in-

dices from {1, 2, . . . , 2p} contained neither in Ia nor in Ĩa. The vec-

tors Ia and Ĩa have common dimension p′, say, so that Îa has dimen-

sion 2(p−p′). For instance, if âτu0 = (2, 0,−4)′, then one has a(âτu0) =

(2, 0, 0, 0, 0, 4), Ia = (1, 6)′, a(−âτu0) = (0, 2, 0, 0, 4, 0), Ĩa = (2, 5)′,

and Îa = (3, 4)′.
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• Ib, Ĩb and Îb as the vectors obtained by adding 2p to each entry of

the vectors obtained analogously from b(b̂τu0) and b(−b̂τu0). The vec-

tors Ib and Ĩb have common dimension m′, say, so that Îb has di-

mension 2(m − m′); with the same âτu0 as above (yielding p = 3)

and b̂τu0 = (−1, 2, 0)′, one obtains Ib = (2, 3)′ + (6, 6)′ = (8, 9)′,

Ĩb = (1, 4)′ + (6, 6)′ = (7, 10)′, and Îb = (5, 6)′ + (6, 6)′ = (11, 12)′.

• IZ , Ie and Ĩe as the vectors containing indices of observations with

zero, positive, and negative residuals, respectively. Their dimensions—

ζ, π, and ν, say (satisfying ζ + π + ν = n)—of course are the numbers

of zero, positive and negative residuals, respectively. For any u0, there

can almost surely be found an optimal solution ẑP with ζ = p+m− 1.

It is further assumed that Ia, Ĩa, Îa, Ib, Ĩb, Îb, IZ , Ie and Ĩe are sorted

in ascending order. Although an optimal solution with non-zero entries (i.e.,

with m = m′, p = p′ and empty vectors Îa and Îb) can be found almost

surely for any u0, the general case m′ < m and p′ < p may occur (but always

with ζ = p′ +m′ − 1, equivalently with p′ +m′ + π + ν = n+ 1) during the

simplex post-optimization (see Section 2.3) leading from the optimal basis

for u0 to different optimal bases for other vectors u. This is the reason why

the general case is considered here.

Below, only the case π 6= 0 and ν 6= 0 is treated, but the other (simpler)

cases can be handled analogously. Finally, put

IB = (I ′a, I
′
b, 2(p+m)1′π + I ′e, (2p+ 2m+ n)1′ν + Ĩ

′
e)
′, IR = (I ′Z , I

′
e, Ĩ
′
e)
′
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and

IC = (I ′B, Ĩ
′
a, Ĩ

′
b, Î
′
a, Î

′
b, 2(p+m)1′ζ + I ′Z , (2p+ 2m+ n)1′ζ + I ′Z ,

(2p+ 2m+ n)1′π + I ′e, 2(p+m)1′ν + Ĩ
′
e)
′;

the vector IB then consists of all the indices of basic variables. Therefore,

it seems natural to permute the rows and columns of AP according to IR

and IC (in the spirit of Narula and Wellington (2002)), and to replace (P)

with the strictly equivalent problem

min
zN

c′NzN subject to ANzN = bN , zN ≥ 0, (N)

where

zN = zP (IC), cN = cP (IC), bN = bP

and

AN =

A1
N(1×(2p+2m+2n))

A2
N(n×(2p+2m+2n))

 =

 A1
P (IC)

A2
P (IR, IC)


(the vector bP remains untouched by this change since its last n components

are equal). Alternatively,

zN = P′CzP , cN = P′CcP , bN =

(
1 0′n

0n PR

)
bP and AN =

(
1 0′n

0n PR

)
APPC ,

where PR and PC are the row and column permutation matrices (so that
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P′R = P−1
R and P′C = P−1

C ). One can easily check that

cN = (0′p′ , 0′m′ , τ1
′
π, (1− τ)1′ν ,

0′p′ , 0′m′ , 0′2(p−p′), 0′2(m−m′), τ1
′
ζ , (1− τ)1′ζ , (1− τ)1′π, τ1

′
ν)
′

=: (c′0, c
′
1, c

′
2, c

′
3,

c̃′0, c̃
′
1, c̃

′
2, c̃

′
3, c̃

′
4, c̃

′
5, c̃

′
6, c̃

′
7)
′

=: (c′(n+1)×1, c̃
′
(2p+2m+n−1)×1)

′

and that AN is of the form AN =
(
B(n+1)×(n+1)

... B̃(n+1)×(2p+2m+n−1)

)
, with

B =


0′p′ x′m′ 0′π 0′ν

E1
ζ×p′ F1

ζ×m′ Oζ×π Oζ×ν

E2
π×p′ F2

π×m′ −Iπ×π Oπ×ν

E3
ν×p′ F3

ν×m′ Oν×π Iν×ν


and

B̃ =


0′p′ −x′m′ 02(p−p′) x̄2(m−m′) 0′ζ 0′ζ 0′π 0′ν

−E1
ζ×p′ −F1

ζ×m′ −Ē1
ζ×2(p−p′) −F̄1

ζ×2(m−m′) −Iζ×ζ Iζ×ζ Oζ×π Oζ×ν

−E2
π×p′ −F2

π×m′ −Ē2
π×2(p−p′) −F̄2

π×2(m−m′) Oπ×ζ Oπ×ζ Iπ×π Oπ×ν

−E3
ν×p′ −F3

ν×m′ −Ē3
ν×2(p−p′) −F̄3

ν×2(m−m′) Oν×ζ Oν×ζ Oν×π −Iν×ν

 ,

where xm′ and x̄2(m−m′) are two disjoint subvectors of ω2m and Ei, Fi, Ēi,

and F̄i, i = 1, 2, 3, are some known data-dependent matrices related to Uy

or Vx.

The columns of B correspond to the optimal basic variables of (N) so that

ẑN(n + 2 : 2p + 2m + 2n) is zero and ẑN(1 : n + 1) = B−1bN = B−1(:, 1),

where B−1 can be easily computed thanks to the special blockwise structure
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of B:

B−1 =


C−1

1 O(ζ+1)×π O(ζ+1)×ν

C2C−1
1 −Iπ×π Oπ×ν

−C3C−1
1 Oν×π Iν×ν

 ,

where

C1 =

 0′p′ x′m′

E1
ζ×p′ F1

ζ×m′

 , C2 =
(
E2
π×p′

... F2
π×m′

)
, and C3 =

(
E3
ν×p′

... F3
ν×m′

)
.

Under the assumption that the data points (xi,yi) ∈ Rp ×Rm, i = 1, . . . , n,

deprived of their first coordinate, come from a continuous distribution over

Rm+p−1, all matrix inverses considered in the paper do exist—and, more

generally, the proposed algorithm applies—with probability one.

Focus now on the standard case for which m = m′ and p = p′. There

AN =


0′p x′m 0′π 0′ν 0′p −x′m 0′ζ 0′ζ 0′π 0′ν

E1
ζ×p F1

ζ×m Oζ×π Oζ×ν −E1
ζ×p −F1

ζ×m −Iζ×ζ Iζ×ζ Oζ×π Oζ×ν

E2
π×p F2

π×m −Iπ×π Oπ×ν −E2
π×p −F2

π×m Oπ×ζ Oπ×ζ Iπ×π Oπ×ν

E3
ν×p F3

ν×m Oν×π Iν×ν −E3
ν×p −F3

ν×m Oν×ζ Oν×ζ Oν×π −Iν×ν

 ,

where ζ = p+m− 1, and one can write

C1 =

 0 (0′p−1,x
′
m)

E1(:, 1) Dζ×ζ

 .

Writing x for xm, blockwise inversion of C1 leads to

C−1
1 =

1

t(x)

(
G0 +

m∑
i=1

xiGi

)
with t(x) = x′s(p : ζ), s = −D−1E1(:, 1),

G0 =

1 0′ζ

s Oζ×ζ

 and Gi =

 0 −D−1(p− 1 + i, :)

0ζ s(p− 1 + i)D−1 − sD−1(p− 1 + i, :)

 ,
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i = 1, . . . ,m; note that Gi(p+ i, :) = 0′m+p, i = 1, . . . ,m. Here, it should be

stressed that

ẑN(1 : p+m) =
1

t(x)

( 1

s

)
depends on x (or u) only through t(x) and B, which ensures that all non-

zero u’s associated with the same optimal basis B lead to a common upper

halfspace H
(n)+
τu .

2.2. Towards the cones associated with the optimal bases

Of course, the question is when B = B(u) ceases to be optimal. According

to the theory of linear programming, B is optimal if and only if x (or u)

satisfies both primal and dual feasibility conditions (PF) and (DF):

z = B−1(:, 1) =
1

t(x)


G0(:, 1)

C2G0(:, 1)

−C3G0(:, 1)

 ≥ 0n+1, (PF)

d′ := c′B−1B̃− c̃′ ≤ 0′2p+2m+n−1. (DF)

Fortunately, as is shown below, the (2p + 2m + 2n) conditions in (PF)

and (DF) may be reduced dramatically in the special context considered

here.

First, (PF) is equivalent to the scalar inequality

t(x) ≥ 0

(t(x) > 0 almost surely) since (PF) must be satisfied at least for u0 by

assumption, z(1) = 1/t(x) and z changes with x only through t(x) (with

the same constant matrix B).
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Then, focus on d and partition it according to c̃ into

d = (d′0,d
′
1,d

′
2,d

′
3,d

′
4,d

′
5,d

′
6,d

′
7)
′.

Simple algebra leads to d0 = 0p′ , d1 = 0m′ , d6 = −τ1π − (1 − τ)1π = −1π,

and d7 = −(1 − τ)1ν − τ1ν = −1ν , so that the corresponding inequalities

in (DF) are always satisfied. If further p = p′ and m = m′, then moreover

d2 = d3 = ∅, and (DF) thus becomes equivalent to

(d′4,d
′
5)
′ ≤ 02ζ .

This last set of 2ζ inequalities can be rewritten as

Qxx ≤ 02ζ , (3)

where

Qx =


q′1
...

q′2ζ

 =

 −Vx − τ1ζs(p : ζ)′

Vx − (1− τ)1ζs(p : ζ)′

 =

 −Vmod

Vmod − 1ζs(p : ζ)′

 ,

Vmod = Vx + τ1ζs(p : ζ)′, Vx =
(
v1

... · · · ...vm
)
,

vi = Gi(:, 2 : m+ p)′h, i = 1, . . . ,m,

and

h = (h1, . . . , hm+p)
′ = τC′21π − (1− τ)C′31ν .

Most importantly, (3) (equivalent to (DF)) entails

0 ≤ min
i=1,...,ζ

{
Vmod(i, :)x

}
≤ max

i=1,...,ζ

{
Vmod(i, :)x

}
≤ s(p : ζ)′x = t(x), (4)
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hence implies (PF). Consequently, the whole set of (2m + 2p + 2n) primal

and dual feasibility conditions (PF) and (DF) is equivalent to (3).

Note that the vector µ′N := (λ,µr0ζ
′
,µr+π

′
,µr−ν

′
) = c′B−1 hidden in (DF)

solves the problem dual to (N) and contains the Lagrange multipliers corre-

sponding to the equality constraints in (N). Clearly,

λ =
1

t(x)

(
τ1′πC2G0(:, 1)− (1− τ)1′νC3G0(:, 1)

)
(= c′N ẑN = c′P ẑP ),

µr0 =
1

t(x)
Vxx, µr+ = −τ1π, and µr− = (1− τ)1ν ,

which, in view of (3), implies −τ1ζ ≤ µr0 ≤ (1− τ)1ζ .

The inequalities from (3), equivalent to the primal and dual feasibility

conditions (PF) and (DF), can be rewritten by means of u as

Quu ≤ 02ζ , (5)

where Qu is defined through Quu ≡ Qxx (actually, Qu := Qx diag(sign(b̂τu0)),

where diag(sign(b̂τu0)) stands for the diagonal matrix whose entry (i, i) is the

sign of (b̂τu0)i). If the assumption u ∈ Sm−1 is removed, then all u’s sat-

isfying (5) form a polyhedral cone, say Cu0 . Such cones (corresponding to

various u0’s) span the whole space Rm and the goal is to find them all,

together with the corresponding optimal bases and upper halfspaces.

2.3. Finding the conic segmentation

Assume that all non-redundant constraints in (5) and facets of Cu0 have

been identified. Each such facet must be shared with another (adjacent)

cone. That is why one may simply pass through all the cones Cu counter-

clockwise when m = 2. In general, it is possible to use the breadth-first
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search algorithm and always consider all such Cu’s that are adjacent to a

cone treated in the previous step and that have not been considered yet.

It remains to clarify the process leading to the adjacent cone from a

facet F of Cu0 . This facet corresponds to the j-th row of Qu, say, and has

an interior point uF (defined, e.g., as the average of all non-zero vertices

of F ∩ [−1, 1]m) that also identifies the facet F uniquely. This point is

still certain to meet the primal feasibility conditions (PF) and the strategy

therefore consists in using it as an input in the simplex post-optimization

algorithm (that preserves primal feasibility and looks for dual feasibility)

until the optimal basis of the adjacent cone is found.

This process can be described in more detail as follows. The IC(n+ 1 +

p′+m′+ j)-th original variable will be the first to enter the basis. Then one

should compute the auxiliary vector

% := B−1B̃(:, p′ +m′ + j),

find an index i satisfying

zi
%i

= min

{
zh
%h

: %h > 0, h = 1, . . . , n+ 1

}
, (6)

and displace the IC(i)-th original basic variable to get a new primal feasible

basis, say B1 (it may be noted that B̃(:,m′+p′+j) contains only one non-zero

coordinate if j > 2(p− p′) + 2(m−m′)). The basis B1 is optimal if and only

if

d2345 = (d′2,d
′
3,d

′
4,d

′
5)
′ ≤ 02(p+m−1), (7)

where d′ = d′B1
= c′B1

B−1
1 B̃1 − c̃′B1

. Although the blockwise structure of B−1
1

can be employed again, C−1
1 should be computed directly this time, with x

corresponding to uF .
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If B1 fails this optimality test or ζ 6= p + m− 1, then one has to find an

index j such that d2345(j) ≥ 0 and repeat the previous steps until the optimal

basis of the adjacent cone with ζ = p+m− 1 is found. Of course, the choice

of j must not lead to the situation for which the new original variable to

enter is the same as the one just removed.

3. Algorithm

The procedure described in the previous section leads quite straightfor-

wardly to the algorithm presented here. To sum up, the basic form of the

algorithm can always be performed in the following steps, where→ indicates

the flow of computation and the highlighted text refers to the topical sections

of the Appendix that discuss some issues in more detail.

1. Adjust the data and τ if necessary; see Input Data and Choice of τ ,

respectively.

2. For a given directional vector u0, consider (P) and find its optimal

solution ẑP and optimal basis B = B(u0); see Computing the first

directional quantile. (ẑP → âτu0 , b̂τu0 , r+, r− → Ia, Ĩa, Îa, Ib, Ĩb,

Îb, IZ , Ie, Ĩe → IB, IR, IC → AN , cN → B, B̃).

3. Set Bnew := {B(u0)} and T := {∅}.

4. Set Bold := Bnew, then Bnew := ∅.

5. For each B = B(u) in Bold,

(a) compute Qu that determines the inequalities (5) defining the cone

Cu of all directions leading to the same quantile hyperplane as u.

(B → C1, C2, C3 → D, s, h → Vx → Qx → Qu)
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(b) find all facets and vertices of the polytope Pu := Cu ∩ [−1, 1]m,

drop the facets not belonging to Cu and compute uF for each

remaining facet; see Finding non-redundant constraints, facets and

interior points

(c) for each such uF , check whether uF belongs to T or not. If it

does (equivalently, if the corresponding facet has already been

considered), then do nothing. If it does not, then find Bnew(uF)

from B by means of the simplex post-optimization described at

the end of Subsection 2.3 and add uF to T and Bnew to Bnew; see

Realization of the breadth-first search algorithm.

6. If Bnew is non-empty, go back to Step 4. Otherwise, the algorithm

terminates successfully (all cones C have been found and there is no

new cone facet to investigate).

This algorithm can be implemented with computational complexity at

worst Oi +O(nΣn), where Oi denotes the computational complexity of solv-

ing the linear programming problem (P) from scratch in Step 2 and Σn stands

for the total number of different quantile hyperplanes for given τ . Both Oi

and Σn, however, depend on the specific data configuration. On average, Oi

can be made quite low by choosing a suitable solver for (P); see Section 6.4.4

in Koenker (2005). As for Σn, it can be as low as O(1) and is never higher

than O(nm). In most cases, it seems reasonable to assume it O(nm−1) on

average for a random τ ∈ (0, 0.5). This would be compatible with the em-

pirical results of Section 5 that also indicate that the average computational

complexity is not worse than O(nm).

17



4. Illustrations

This section presents some illustrative examples of quantile regions ob-

tained from a Matlab implementation of the algorithm described above.

What is plotted for each quantile region is its boundary, called the quantile

contour. Both simulated and real data are considered.

4.1. Simulated data

Bivariate location case. Starting with the bivariate location case (m = 2

and p = 1), data points yi, i = 1, . . . , n = 2499, were generated indepen-

dently from the uniform distribution over the unit square [0, 1]2. Figure 1(a)

plots the resulting quantile contours for τ = 0.01, 0.05, 0.10, 0.15, 0.20,

0.25, 0.30, 0.35, 0.40, and 0.45. These contours match very well their pop-

ulation counterparts, namely the population halfspace depth contours; see

Rousseeuw and Ruts (1999). The code can also deal with weighted observa-

tions (which in particular allows for multiple observations): if weights ωi > 0,

i = 1, . . . , n (summing up to one or not) are given, the resulting “weighted”

optimization problem is obtained by substituting yωi := ωiyi and xωi :=

ωixi, i = 1, . . . , n, for the yi’s and xi’s in (1). Figure 1(b) reports, for the

same τ ’s as in Figure 1(a), the quantile contours associated with weighted

data points yωi := ωiyi, i = 1, . . . , n, where the weights are given by

ωi =

{
2499
20

for i = 1, . . . , 10

1 for i = 11, . . . , n = 2499,

and the original data points yi are the same as in Figure 1(a). The ten red

points are the original data points yi, i = 1, . . . , 10, that receive the larger

weight.
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(a) (b)

Figure 1: In Subfigure (a), quantile contours of order τ = 0.01, 0.05, 0.10, 0.15, 0.20,

0.25, 0.30, 0.35, 0.40, and 0.45 are plotted from a sample of n = 2499 observations drawn

independently from the uniform distribution over [0, 1]2. Subfigure (b) reports the cor-

responding contours after the weights of the first ten data points (plotted in red) were

changed from 1 to 2499/20.

Trivariate location case. Figure 2(a) illustrates the trivariate location case

with m = 3 and p = 1. The sample considered there consists of n = 249 data

points obtained independently from the uniform distribution over the unit

cube [0, 1]3. The figure reports the resulting quantile contours—that is, the

sample halfspace depth contours—for τ = 0.05, 0.15, and 0.25. This paper

therefore brings a practical solution to the notoriously difficult problem of

computing halfspace depth regions beyond dimension two.

Regression setup with two responses and one random covariate. The third
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(a) (b)

Figure 2: In Subfigure (a), quantile contours of order τ = 0.05, 0.15, and 0.25 are

plotted from a sample of n = 249 observations drawn independently from the uniform

distribution over [0, 1]3. Subfigure (b) reports the quantile regions of order τ = 0.05, 0.15,

0.30, and 0.45 for n = 249 observations drawn independently from the regression model

described in Section 4.1.

setup considered is the simple heteroscedastic regression model

Y = (W,W )′ +
√
W εεε,

where the random covariate W is uniformly distributed over [0, 1] and the

random vector εεε (which is independent of W ) is uniformly distributed over

the unit square [0, 1]2. Here, n = 249 data points (x′i,y
′
i)
′ = (1, wi,y

′
i)
′ ∈

Rp × Rm = R2 × R2, i = 1, . . . , n, were obtained independently. Figure 2(b)

displays the resulting (trivariate, since they are objects of the (w,y)-space)

regression quantile contours for τ = 0.05, 0.15, 0.30, and 0.45. Of course,

such regression contours are often hard to plot and to interpret, so that
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it is usually better to consider (a finite collection of) cuts obtained as the

intersections of the regression contours under study with hyperplanes of the

form w = w0, where w0 is some fixed value of the random covariate; see

Section 7 of HPŠ10 for an illustration. A similar strategy is also adopted

here for the real data considered in Section 4.2 below.

4.2. Real data

A real dataset of Rouncefield (1995) is now considered. The dataset con-

tains some development and demographic characteristics for different coun-

tries, and it may be interesting to study the dependence of both male life

expectancy at birth (Y1) and death rate (Y2) on the various covariates avail-

able. Actually, the goal here is not to perform a thorough regression analysis

for the bivariate response (Y1, Y2)
′ involving the complete collection of covari-

ates, but rather to show in a simple model how quantile regression contours

might look like in practice. Therefore, only an exploratory analysis of the

dependence of (Y1, Y2)
′ on GNP per capita (Z) is performed, with regres-

sors X1 = 1, X2 = logZ and X3 = (logZ)2 (which yields m = 2 and p = 3).

Various regression quantile contours (for the 91 countries whose records

do not contain any missing value) were computed. These contours are objects

in R4, hence cannot be plotted. However, parallel to the artificial regression

illustration in Section 4.1, cuts of these contours associated with various fixed

values of the covariate Z can be considered here. In the present setup, cuts

are not obtained by intersecting the quantile contours with some hyperplanes,

but rather with some vectorial spaces of dimension two in R4; fixing the value

of Z to some z0, say, indeed fixes the value of X2 and X3. The resulting cuts
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live in R2 and can be plotted easily.

Figure 3(a) reports, in a single two-dimensional picture, the 300 cuts of

the (τ = 0.10)-quantile regression contour that are associated with z0 = 100,

200, 300, . . . , 29 900, and 30 000. Figures 3(b)-(f) show the corresponding cuts

computed from the quantile regions with order τ = 0.15, 0.20, 0.25, 0.30, and

0.35, respectively. Clearly, these cuts provide interesting information about

the trend (for high values of τ) and about the shape (for low values of τ).

5. Simulations

This section presents empirical results that quantify the speed (and show

the possibilities) of the Matlab implementation of the algorithm proposed

in this paper. An Apple computer with Intel Core Duo 1.83GHz, 512MB

RAM only, Win XP SP2 and Matlab 7.3.0.267 was used. Of course, other

hardware or initial settings (see the Appendix) may lead to different results.

5.1. Speed comparison

In the location case (p = 1), the quantile regions provided coincide with

the halfspace depth contours. As already mentioned, there is no exact im-

plementable algorithm that could be used as a competitor to the proposed

Matlab code for m > 2. For the bivariate case (m = 2), however, this

Matlab code can be compared to that coauthored and kindly provided to

the authors by Ivan Mizera, chosen as a benchmark here.

In order to do so, n i.i.d. bivariate observations were generated (i) from

the bivariate standard normal distribution N(0, 1)2 (S = 1) and (ii) from the

centered bivariate uniform distribution over the unit square U([−0.5, 0.5])2

(S = 2). For any combination of τ = {0.010, 0.025, 0.050, 0.100, 0.200,
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Subfigure (a) reports, for the real dataset considered in Section 4.2, 300 two-

dimensional cuts (each associated with one fixed value of GNP per capita) of the (four-

dimensional) quantile regions of order τ = 0.10. Subfigures (b)-(f) show the corresponding

plots for τ = 0.15, 0.20, 0.25, 0.30, and 0.35, respectively; see Section 4.2 for details.
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0.400} and n ∈ {50, 100, 150, 200, 300, 500, 1000, 2000, 5000, 10 000, 20 000},

the computation was run ten times for each scenario—actually, with the fol-

lowing changes to the default settings of the Matlab code: CTechST.InCheckI

= 0, CTechST.ReportI = 0, CTechST.TestModeI = 0, and CTechST.OutSaveI

= 0 (this suppresses checking the input for correctness, detailed output on

the screen, computing some auxiliary technical statistics and storing the out-

put on the disk, all that to make the Matlab code faster and possible to use

in an extensive simulation). Note that the output for m = 2 and n ≤ 10 000

is usually small enough to be kept in the internal memory; so the last option

does not affect the results too much here. Average execution times in seconds

are reported in Table 1 and show that the computation hardly takes more

than 2 minutes even for n = 10 000.

Of course, the comparison with the benchmark should be interpreted with

care as each program leads to different output. The proposed Matlab code

produces halfspaces whose intersection equals the sample halfspace depth

region. Therefore they can be used straightforwardly for identifying points

inside, on, or outside the contours. On the other hand, the benchmark leads

to the vertices of the halfspace depth region and identifies its inner points

(details were not available to the authors). Both representations may be

useful but a vertex-facet or facet-vertex enumeration method has to be used

for converting one into the other. Besides, it should be kept in mind that the

proposed Matlab code provides enough material for computing two neigh-

boring contours at once (see the comments below the proof of Theorem 4.2

in HPŠ10) while the benchmark does not.

It should also be noted that the present study does not compare the
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algorithms but only their implementations. The benchmark has originally

been developed only for auxiliary validation, with no speed optimization in

mind. On the other hand, the search for the first optimal solution in the

Matlab code is not likely to be the fastest possible as well.

Despite the limitations of this comparison, the results seem to demon-

strate high stability and superiority of the proposed code because it was

always observed faster than the benchmark, sometimes even more than 16

times. It excels especially when applied to medium-sized datasets and not

too extreme values of τ .

The decrease of relative efficiency of the proposed code for very small

values of τ or n can be explained by the fact that it is the slow finding of

the initial solution that contributes the most to the overall execution time

in these cases. Indeed, profiling of the code in Matlab shows that this

contribution is usually higher than 30% even for n = 5000 if τ = 0.01 (and

exceeds 75% for n = 50 and the same τ). On the other hand, if τ = 0.3, then

this contribution is still often larger than 30% for n = 50 but usually drops

below 5% for n = 5000. Different memory space requirements may also play

some role, especially if n is set very high.

5.2. General regression case

Next, the general regression case is considered through the simple model

Y p×1 = Bp×mXm×1 + εεεp×1,

where X1 = 1, (X2, . . . , Xp)
′ has i.i.d. marginals that are uniformly dis-

tributed over (0, 1), εεε is p-variate standard normal, and B can be obtained

from the p×m matrix of ones by replacing the elements in the first column
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with zeros. Average execution times in seconds (still with the same change

to the default settings as in Section 5.1), for a total of r replications, are

recorded for many combinations of n, p and τ in Table 2 (for m = 2 with

r = 10), in Table 3 (for m = 3 with r = 5, and for m ∈ {4, 5} with r = 3),

and in Table 4 that focuses on outlier detection (for m = 3 with r = 3 and

with very low values of τ).

These results can be used by the reader for estimating the time require-

ments of his/her own computation with the proposed code. It appears that

the computation can hardly take more than some 18 minutes on average in

the case of two-dimensional responses (m = 2), n ≤ 10 000 and p ≤ 12.

Unfortunately (but not surprisingly), the time requirements and the size of

output grow with increasing dimension of the response. If m = 3, then the

computation appears advantageous for 500 observations at most, perhaps

except for some very low τ ’s and p’s. If m > 3, then it is hard to evaluate

the correctness of the results. But it appears that all the halfspaces can still

be computed in a reasonable time for a few hundreds of observations and

extreme τ ’s even in four and five dimensions, which might be employed for

outlier identification.

Virtually the same regression quantile regions can also be obtained from

a competing directional (projectional) quantile concept; see Kong and Miz-

era (2008) and Theorem 4.3 in Paindaveine and Šiman (2010a). Therefore,

it makes sense to use as a competitor here the Matlab implementation for

this competing concept; see Paindaveine and Šiman (2010b).
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Absolute and relative execution times

S n\τ 0.010 0.025 0.050 0.100 0.200 0.400

1 : 50 0.08 (1.6) 0.09 (2.2) 0.10 (2.8) 0.12 (3.7) 0.14 (5.2) 0.17 (5.6)

2 : 50 0.08 (2.1) 0.10 (2.4) 0.11 (2.9) 0.13 (3.8) 0.15 (4.7) 0.16 (5.5)

1 : 100 0.09 (3.8) 0.10 (4.2) 0.13 (5.8) 0.16 (6.9) 0.22 (8.3) 0.27 (9.6)

2 : 100 0.10 (3.8) 0.12 (4.5) 0.15 (5.5) 0.18 (7.2) 0.23 (8.4) 0.26 (9.5)

1 : 150 0.10 (4.2) 0.13 (5.5) 0.16 (7.3) 0.23 (8.6) 0.31 (10.8) 0.38 (12.1)

2 : 150 0.11 (4.5) 0.15 (5.7) 0.19 (7.1) 0.24 (9.1) 0.32 (10.5) 0.37 (11.8)

1 : 200 0.12 (5.5) 0.16 (6.9) 0.20 (8.7) 0.28 (10.4) 0.39 (12.2) 0.51 (13.3)

2 : 200 0.15 (5.5) 0.19 (6.9) 0.24 (8.5) 0.31 (10.3) 0.40 (12.1) 0.49 (13.1)

1 : 300 0.18 (5.9) 0.23 (7.4) 0.32 (9.3) 0.42 (12.1) 0.60 (14.0) 0.78 (15.6)

2 : 300 0.21 (5.9) 0.29 (6.9) 0.36 (9.3) 0.48 (11.7) 0.61 (13.6) 0.75 (15.1)

1 : 500 0.23 (7.7) 0.33 (9.5) 0.47 (11.6) 0.68 (14.0) 1.00 (15.9) 1.33 (16.9)

2 : 500 0.31 (7.0) 0.42 (8.9) 0.56 (11.4) 0.77 (13.6) 1.03 (15.7) 1.29 (16.8)

1 : 1000 0.51 (8.0) 0.78 (9.9) 1.24 (10.9) 1.95 (12.1) 3.13 (12.5) 4.07 (14.0)

2 : 1000 0.68 (7.4) 1.08 (9.1) 1.53 (10.4) 2.15 (12.2) 2.72 (14.9) 3.41 (15.6)

1 : 2000 1.06 (8.8) 1.85 (10.2) 3.03 (11.0) 5.14 (11.4) 7.85 (12.3) 10.82 (12.8)

2 : 2000 1.57 (7.6) 2.49 (9.2) 3.67 (10.4) 5.75 (11.2) 8.05 (12.3) 10.32 (12.7)

1 : 5000 3.22 (9.1) 6.33 (9.7) 10.36 (10.5) 17.39 (11.1) 26.82 (12.0) 39.19 (11.7)

2 : 5000 5.31 (7.2) 7.92 (9.6) 13.12 (9.8) 19.85 (10.8) 28.93 (11.4) 37.97 (11.6)

1 : 10 000 9.99 (7.2) 19.33 (7.9) 33.45 (8.2) 56.07 (8.7) 90.05 (9.1) 121.30 (9.7)

2 : 10 000 14.93 (6.4) 25.42 (7.7) 40.35 (8.2) 64.04 (8.5) 92.03 (9.1) 115.09 (9.6)

1 : 20 000 34.62 (7.2) 71.35 (7.3) 126.92 (7.5) 205.54 (8.1) 316.75 (8.7) 432.15 (9.0)

2 : 20 000 51.21 (6.3) 91.65 (7.1) 151.56 (7.0) 229.96 (7.9) 327.60 (8.5) 411.33 (8.8)

Table 1: (2D location settings: m = 2 and p = 1) Average execution time (in seconds)

of our code is provided for given scenario S, number of observations n, and order τ in

the bivariate location context. The numbers in parentheses indicate how many times it is

faster than the benchmark.
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Absolute and relative execution times

p n\τ 0.010 0.025 0.050 0.100 0.200 0.400
1 : 100 0.09 (0.7) 0.10 (0.5) 0.13 (0.7) 0.16 (0.6) 0.22 (0.6) 0.27 (0.6)
2 : 100 0.09 (0.9) 0.11 (0.9) 0.15 (0.8) 0.19 (0.7) 0.24 (0.7) 0.31 (0.7)
3 : 100 0.10 (0.9) 0.12 (0.9) 0.15 (0.9) 0.20 (0.8) 0.28 (0.8) 0.35 (0.7)
6 : 100 0.14 (0.9) 0.15 (0.9) 0.20 (0.8) 0.25 (0.8) 0.34 (0.7) 0.46 (0.7)
1 : 200 0.12 (0.7) 0.16 (0.6) 0.20 (0.7) 0.28 (0.6) 0.39 (0.6) 0.51 (0.6)
2 : 200 0.13 (0.8) 0.17 (0.8) 0.23 (0.8) 0.32 (0.7) 0.44 (0.7) 0.58 (0.7)
3 : 200 0.14 (0.9) 0.18 (0.9) 0.24 (0.8) 0.35 (0.8) 0.51 (0.7) 0.66 (0.7)
6 : 200 0.18 (0.8) 0.23 (0.8) 0.30 (0.8) 0.45 (0.8) 0.67 (0.7) 0.87 (0.7)
1 : 300 0.16 (0.6) 0.20 (0.6) 0.29 (0.7) 0.41 (0.6) 0.59 (0.6) 0.77 (0.6)
2 : 300 0.17 (0.9) 0.23 (0.8) 0.32 (0.8) 0.46 (0.7) 0.66 (0.7) 0.88 (0.7)
3 : 300 0.18 (0.9) 0.25 (0.8) 0.35 (0.8) 0.53 (0.8) 0.76 (0.7) 1.03 (0.7)
6 : 300 0.23 (0.8) 0.33 (0.8) 0.46 (0.8) 0.71 (0.7) 0.99 (0.7) 1.36 (0.7)

12 : 300 0.38 (0.8) 0.48 (0.8) 0.67 (0.7) 1.02 (0.7) 1.51 (0.7) 2.10 (0.7)
1 : 500 0.22 (0.7) 0.31 (0.6) 0.45 (0.7) 0.66 (0.7) 0.98 (0.6) 1.33 (0.6)
2 : 500 0.23 (0.9) 0.34 (0.8) 0.50 (0.8) 0.76 (0.7) 1.12 (0.7) 1.51 (0.7)
3 : 500 0.26 (0.9) 0.40 (0.8) 0.59 (0.8) 0.91 (0.7) 1.31 (0.7) 1.77 (0.7)
6 : 500 0.35 (0.9) 0.53 (0.8) 0.80 (0.8) 1.22 (0.7) 1.88 (0.7) 2.41 (0.7)

12 : 500 0.61 (0.7) 0.87 (0.7) 1.28 (0.7) 2.01 (0.7) 2.83 (0.7) 3.81 (0.7)
1 : 1000 0.41 (0.7) 0.61 (0.7) 0.94 (0.7) 1.46 (0.7) 2.24 (0.7) 3.03 (0.7)
2 : 1000 0.46 (0.8) 0.68 (0.8) 1.06 (0.8) 1.70 (0.8) 2.54 (0.8) 3.44 (0.8)
3 : 1000 0.50 (0.8) 0.79 (0.9) 1.22 (0.8) 1.92 (0.8) 2.96 (0.8) 4.00 (0.8)
6 : 1000 0.65 (0.9) 1.07 (0.9) 1.67 (0.8) 2.67 (0.8) 4.12 (0.8) 5.74 (0.8)

12 : 1000 1.05 (0.9) 1.67 (0.9) 2.66 (0.9) 4.30 (0.8) 7.26 (0.8) 9.04 (0.7)
1 : 2000 0.84 (0.9) 1.41 (0.7) 2.25 (0.7) 3.64 (0.7) 5.59 (0.7) 7.64 (0.7)
2 : 2000 0.97 (0.8) 1.60 (0.9) 2.60 (0.8) 4.21 (0.8) 6.44 (0.8) 8.80 (0.8)
3 : 2000 1.11 (0.9) 1.88 (0.9) 3.04 (0.8) 4.93 (0.8) 7.57 (0.8) 10.35 (0.8)
6 : 2000 1.50 (0.9) 2.65 (0.9) 4.37 (0.8) 7.07 (0.8) 11.00 (0.8) 15.02 (0.8)

12 : 2000 2.55 (0.9) 4.58 (0.8) 7.52 (0.8) 12.47 (0.8) 19.19 (0.8) 26.24 (0.8)
1 : 5000 3.19 (0.8) 6.15 (0.8) 9.83 (0.8) 15.47 (0.8) 23.95 (0.8) 34.75 (0.7)
2 : 5000 3.66 (0.9) 6.83 (0.9) 11.18 (0.9) 18.56 (0.8) 28.56 (0.9) 40.38 (0.8)
3 : 5000 4.48 (1.0) 8.35 (0.9) 14.10 (0.8) 24.34 (0.8) 34.78 (0.9) 63.73 (0.7)
6 : 5000 7.40 (0.9) 13.00 (0.9) 24.66 (0.8) 38.47 (0.8) 55.48 (0.8) 96.50 (0.7)

12 : 5000 18.16 (0.7) 37.23 (0.6) 63.93 (0.7) 86.76 (0.7) 126.10 (0.7) 217.51 (0.6)
1 : 10 000 11.91 (0.8) 22.49 (0.8) 37.23 (0.7) 56.15 (0.8) 98.82 (0.7) 138.13 (0.7)
2 : 10 000 13.36 (0.8) 25.13 (0.9) 43.38 (0.8) 68.45 (0.9) 112.20 (0.9) 161.86 (0.8)
3 : 10 000 16.04 (0.9) 32.49 (0.9) 54.25 (0.8) 85.09 (0.8) 143.79 (0.8) 201.51 (0.8)
6 : 10 000 32.09 (0.7) 66.57 (0.7) 110.53 (0.7) 177.90 (0.6) 262.00 (0.7) 386.81 (0.7)

12 : 10 000 74.71 (0.7) 156.73 (0.7) 274.30 (0.7) 456.35 (0.7) 733.66 (0.7) 1031.65 (0.6)

Table 2: (2D regression settings: m = 2) Average execution time (in seconds) of our code,

based on r = 10 replications, is provided for quantile order τ , p regressors (including the

intercept) and n observations. The numbers in parentheses indicate how many times it is

faster than the code from Paindaveine and Šiman (2010b).
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Absolute and relative execution times
m = 3 m = 4 m = 5

p n\τ 0.010 0.025 0.100 0.200 0.010 0.025 0.010
1 : 100 1.31 (0.7) 2.03 (0.7) 12.29 (0.8) 28.00 (0.8) 6.40 (0.9) 18.56 (0.8) 47.52 (1.0)
2 : 100 1.18 (0.9) 2.42 (0.9) 13.13 (0.9) 32.22 (0.9) 7.14 (0.7) 25.47 (0.9) 68.71 (0.6)
3 : 100 1.59 (1.0) 2.74 (1.0) 16.09 (0.9) 40.21 (0.9) 11.95 (1.0) 31.56 (1.1) 141.44 (0.9)
4 : 100 2.11 (1.1) 3.18 (1.1) 18.61 (1.0) 48.30 (0.9) 20.82 (1.2) 41.35 (1.3) 278.46 (1.2)
6 : 100 3.69 (1.2) 4.32 (1.3) 23.61 (1.1) 62.26 (1.0) 56.74 (1.6) 70.54 (1.6) 870.27 (2.1)
1 : 200 2.50 (0.8) 6.67 (0.8) 45.69 (0.9) 119.01 (0.9) 22.95 (1.0) 141.65 (0.9) 250.36 (1.1)
2 : 200 2.27 (0.9) 6.77 (0.9) 53.65 (0.9) 147.98 (0.9) 21.65 (1.0) 147.92 (1.0) 278.24 (1.0)
3 : 200 2.66 (1.0) 7.95 (1.0) 68.20 (1.0) 188.83 (1.0) 31.96 (1.2) 197.96 (1.1) 456.35 (1.2)
4 : 200 3.34 (1.1) 9.59 (1.1) 84.39 (1.0) 229.96 (1.0) 42.98 (1.3) 254.30 (1.3) 722.96 (1.4)
6 : 200 5.37 (1.2) 12.81 (1.1) 113.01 (1.0) 311.21 (1.0) 96.51 (1.6) 390.32 (1.5) 2105.63 (1.9)
1 : 300 4.05 (0.8) 11.70 (0.9) 106.65 (0.9) 295.88 (1.0) 59.52 (1.0) 399.05 (1.0) 954.42 (1.1)
2 : 300 3.89 (1.0) 14.10 (1.0) 130.45 (1.0) 372.47 (1.0) 56.92 (1.1) 532.29 (1.1) 1043.26 (1.1)
3 : 300 4.78 (1.1) 17.45 (1.1) 167.02 (1.0) 488.94 (1.0) 81.45 (1.3) 745.07 (1.2) 1699.08 (1.3)
4 : 300 5.80 (1.1) 20.89 (1.1) 202.64 (1.0) 619.82 (1.0) 111.17 (1.4) 1011.19 (1.3) 2601.44 (1.6)
6 : 300 8.53 (1.2) 28.38 (1.1) 282.73 (1.0) 914.93 (1.0) 193.51 (1.7) 1645.31 (1.5) 6312.76 (2.7)

12 : 300 25.99 (1.4) 55.12 (1.3) 552.25 (1.1) 2049.57 (1.1)
1 : 400 6.40 (0.9) 23.34 (1.0) 200.31 (1.0) 619.14 (1.0) 126.85 (1.1) 1315.83 (1.1) 2893.89 (1.1)
2 : 400 6.59 (1.0) 25.98 (1.0) 249.81 (1.0) 802.98 (1.0) 134.28 (1.2) 1613.57 (1.1) 3378.44 (1.1)
3 : 400 8.16 (1.1) 33.05 (1.1) 321.81 (1.1) 1096.18 (1.0) 190.38 (1.3) 2345.77 (1.2) 5887.78 (1.5)
4 : 400 9.86 (1.2) 39.29 (1.1) 402.81 (1.1) 1412.22 (1.0) 260.52 (1.4) 3340.39 (1.3) 10795.80 (2.2)
6 : 400 13.09 (1.2) 53.08 (1.1) 580.36 (1.1) 2163.63 (1.0) 418.55 (1.6) 5824.98 (1.5) 49921.42

12 : 400 34.72 (1.4) 102.65 (1.2) 1261.70 (1.1) 4989.74 (1.1)
1 : 500 9.51 (1.0) 32.58 (1.0) 343.61 (1.0) 1153.78 (1.0) 239.93 (1.1) 2654.41 (1.1) 16261.68
2 : 500 9.72 (1.1) 39.45 (1.1) 436.31 (1.1) 1554.20 (1.1) 256.04 (1.2) 4007.90 (1.2) 21937.23
3 : 500 11.93 (1.1) 50.36 (1.1) 571.70 (1.1) 2169.23 (1.1) 368.81 (1.4) 6409.06 (1.3) 68397.79
4 : 500 14.64 (1.2) 61.26 (1.1) 729.85 (1.1) 2833.84 (1.0) 490.68 (1.5) 10260.22 (1.7)
6 : 500 20.31 (1.3) 85.52 (1.2) 1057.88 (1.1) 4438.13 (1.1) 817.93 (1.7) 30238.22 (2.2)

12 : 500 46.38 (1.4) 160.29 (1.2) 2286.70 (1.1) 10633.56 (1.1)

Table 3: (Multidimensional regression settings) Average execution time (in seconds) of

our code, based on r = 5 replications if m = 3 and on r = 3 replications otherwise, is

provided for quantile order τ , p regressors (including the intercept) and n m-dimensional

responses. The numbers in parentheses indicate how many times it is faster than the code

from Paindaveine and Šiman (2010b).
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Absolute and relative execution times

τ p\n 750 1000 1200 1500 2000

1 : 18.14 (1.1) 35.55 (1.2) 56.09 (1.3) 94.28 (1.4) 195.29 (1.5)

2 : 23.48 (1.2) 41.68 (1.3) 68.35 (1.3) 117.58 (1.4) 246.84 (1.5)

0.010 3 : 29.19 (1.2) 54.74 (1.3) 88.14 (1.3) 152.60 (1.4) 326.46 (1.5)

4 : 35.66 (1.2) 67.12 (1.3) 108.72 (1.3) 190.93 (1.4) 418.35 (1.4)

6 : 48.88 (1.3) 97.84 (1.3) 155.05 (1.2) 290.53 (1.3) 637.53 (1.4)

1 : 86.18 (1.1) 171.83 (1.2) 262.79 (1.3) 474.01 (1.4) 1058.50 (1.4)

2 : 109.89 (1.2) 210.19 (1.3) 328.72 (1.3) 623.02 (1.4) 1410.02 (1.4)

0.025 3 : 142.86 (1.2) 279.95 (1.2) 439.60 (1.3) 837.58 (1.3) 1913.23 (1.4)

4 : 174.72 (1.2) 344.79 (1.2) 561.45 (1.2) 1063.29 (1.3) 2519.76 (1.3)

6 : 249.20 (1.2) 512.89 (1.2) 836.57 (1.2) 1649.89 (1.2) 3914.40 (1.2)

1 : 294.01 (1.1) 593.70 (1.2) 1006.57 (1.2) 1968.37 (1.3) 4719.26 (1.3)

2 : 376.06 (1.2) 760.21 (1.2) 1328.50 (1.2) 2620.97 (1.3) 6531.65 (1.3)

0.050 3 : 496.03 (1.1) 1042.85 (1.2) 1834.28 (1.2) 3616.83 (1.3) 9239.28 (1.2)

4 : 619.62 (1.1) 1328.00 (1.2) 2400.54 (1.2) 4805.97 (1.2) 12477.26 (1.2)

6 : 924.38 (1.1) 2039.12 (1.1) 3700.73 (1.1) 7747.52 (1.2) 20362.39 (1.2)

Table 4: (3D outlier detection: m = 3) Average execution time (in seconds) of our code,

based on r = 3 replications, is provided for quantile order τ , p regressors (including the

intercept) and n three-dimensional responses. The numbers in parentheses indicate how

many times it is faster than the code from Paindaveine and Šiman (2010b).
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Appendix A. Technical Details

This section discusses some technical matters related to the algorithm

described in this paper.

Choice of τ . If nτ is an integer, then the linear programming problem (P)

has infinitely many solutions for each u. If such a complication occurs, it is

solved by a small perturbation of τ , which can hardly make any important

difference in most applications. Besides, there is only a finite number of

different quantile regions anyway, so that such small perturbations of τ could

always be done without loss of generality when the goal is only to compute

the quantile regions.

Input data. The code assumes m ∈ {2, 3, . . . , 8} and n ≤ 100 000 and its

output should be quite reliable for m ∈ {2, 3}, p ≤ 10 and n ≤ 10 000 (if

m = 2) or 500 (if m = 3) at least. Now, the program was heavily tested only

on data from the simulation study of Section 5, with all coordinates less than

5 or so. This is why it is suggested to standardize the input observations

in some way to a similar range whenever possible, which should enhance

numerical stability of the algorithm. Besides, most real data are discrete

because they are measured or recorded only with limited precision. This

makes some bad data configurations more likely than almost impossible.

Therefore it is also recommended to perturb the input data points by some

random noise of a reasonably small magnitude to prevent their discreteness

from causing any trouble.

When a few identical observations occur, one may either aggregate the

same rows of AP into a single one or introduce (positive) weights into cP
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and proceed analogously (the formulae would have to be changed a little

but the crucial simplification of (DF) would persist). The first approach is

preferred as it is faster, easier to implement and still leads to the right quantile

coefficients. Since the algorithm does not rely on any special form of xc1, the

code can also handle such aggregated or weighted rows (corresponding to

weighted residuals). Therefore the program can be used even for bootstrap

and subsampling methods quite easily. We might also refer to Hlubinka et al.

(2010) for another interesting attempt to combine weights with halfspace

depth ideas.

Computing the first directional quantile. The problem (P) is solved with

the aid of the free Matlab toolbox SeDuMi 1.1 (see Pólik 2005 and Sturm

1999) that exploits sparsity and is very fast, flexible, and easy-to-use. Of

course, any fast and reliable solver designed for univariate quantile regression

might be substituted here.

As mentioned above, the assumption u ∈ Sm−1 can be relaxed without

any loss of generality because all non-zero vectors u in the same direction

lead to the same upper halfspace H
(n)+
τu . In general, the proposed Matlab

code chooses u0 as a normalized corner of the hypercube [−1, 1]m. Large or

high-dimensional problems can be solved more effectively by segmenting the

whole space to U0 regions of the form

U0 = {u ∈ Rm : sign(u) = sign(u0)}

and considering each of these 2m different orthants separately.

If the starting direction leads to troubles, then other choices are tried

until the optimal solution with the required number of non-zero coordinates
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is found.

Finding non-redundant constraints, facets and interior points. If m = 2,

then the problem of finding non-redundant constraints and facets can be

solved by assigning angles (say θ’s) to all the constraints in a clever way.

The interior point can then be found simply by means of the facet normal

vector.

For m > 2, the problem is far more complicated. First, the problem is

made bounded by restricting to vectors u in [−1, 1]m, which turns the cones

from (5) into polytopes. Then all vertices and facets of such a polytope are

found by means of the dual relationship between vertex and facet enumer-

ation (see Bremner et al. 1998) and program qhull (see Barber et al. 1996)

for the latter one, fortunately accessible in Matlab (in fact, it was sufficient

to modify the function con2vert.m by Michael Kleder from Matlab Central

File Exchange). This enumeration procedure requires an interior point of the

resulting polytope to start. It is searched for from the scaled center of the

known (parent) facet and in the direction of its normal vector.

In principle, uF might be found even without the artificial bounding

with subsequent vertex enumeration and the zero vertex problem might be

addressed as well; see Chvátal (1983). However, the proposed code is tailored

for qhull, which is an already developed and mature tool for solving similar

problems that is quite stable, fast and familiar with rounding errors.

Realization of the breadth-first search algorithm. When this algorithm is

employed, then some identifiers (scaled facet centers or facet normal vectors)

of all (or lastly) used facets are stored in sorted archive(s) and a new facet is
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used for building the adjacent cone only if its identifier differs from all those

archived, which is checked by the binary search algorithm.

Plotting the contours. The program output describes the upper halfspaces

whose intersection equals the quantile region of interest (if all of them are

uniquely defined). Vertices of these regions could be obtained by the vertex

enumeration mentioned above. The quantile contour with known vertices

can then be plotted as their convex hull, for example. Such a procedure was

also used to generate all figures of this paper.

Computing many (or all) contours at once. The first (initial) solutions

could be found faster for all relevant τ ’s at once than for each τ separately, by

linear programming parametric in τ . In the purely location case, it would be

advantageous to compute the contours from the highest τ < 0.5 to the lowest

and to reduce the dataset in each step (with adjusting τ accordingly), since

inner points are redundant for computing outer contours. If the interest is

even in the individual quantile hyperplanes and their coefficients in the gen-

eral regression case, one could still replace all the surely interior observations

with a single aggregated pseudo-observation keeping the new resulting sub-

gradient conditions the same as before (as Roger Koenker kindly suggested

to us). These proposals are not implemented in the proposed Matlab code

as it is designed to compute a single contour only.
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a chercheur postdoctoral temporaire contract of the Fonds National de la
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