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Abstract In the multiple-output regression context, Hallin, Paivelae andSiman
(2010) introduced a powerful data-analytical tool basedemnession quantile re-
gions However, the computation of these regions, that are obdialry considering

in all directions an original concept of directional regries quantiles, is a very chal-
lenging problem. Paindaveine asiman (2010b) described a first elegant solution
relying on linear programming techniques. The presentipagvides another solu-
tion based on the fact that the quantile regions can also tgeted from a compet-
ing concept oprojectionregression quantiles, elaborated in Kong and Mizera (2008)
and Paindaveine animan (2010a). As a by-product, this alternative solution f
ther provides various characteristics useful for statistinference. We describe in
detail the algorithm solving the parametric programmingbpem involved, and il-
lustrate the resulting procedure on simulated data. We shimugh simulations that
the MATLAB implementation of the algorithm proposed in this paper sefathan
that from Paindaveine arfsiman (2010b) in various cases.
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1 Introduction

Due to the lack of a satisfactory concept of multivariatergile, Koenker and Bassett
(Econometrical978)’s celebrated theory of quantile regression has fog lbeen
restricted tosingle-outputregression problems. In a world where multivariate data
are the rule rather than the exception, this clearly has besewere limitation, which
explains why many works tried to extend quantile regresticthe multiple-output
context; see, e.g., Chaudhuri (1996), Koltchinskii (19%akraborty (2003), Wei
(2008), or Kong and Mizera (2008).

A new concept of multiple-output regression quantile, yaitlwerful data-analyti-
cal abilities, has recently been defined in Hallin, Paindev@ndSiman (2010)—
hereafter referred to as I$R0. In the empirical setup where timevariate responsé
is to be regressed on thevariate vector of regressodé = (1,W')’, this quantile
can be defined as follows. For a samptey;) € RP x R™, i = 1,...,n, the HFS10
regression(tu)-quantile—for fixedr € (0,1) andu € ™1 = {yc R™: |ly|| =

. . (N n .

1}—is defined as any element of the coIIectlﬂﬁgé;w of hyperplanesﬁgé;m =

{(W.Y) € RP1x R™: Bpg 1y — Byp (L W)’ = O}, with

(aHPé;ru

n ~ ~
) € argmin Zpr(b'yi —adx) subjectto Ub=1, (1)
l:"'HPé;ru i=

wherep;(x) = x(T — 1(x < 0)) is the well-knownr-quantile check function. In other
words, this regressiofru)-quantile simply is the traditional (single-output) Koemk
and Bassettegression quantile of orderobtained when considering, in th@¢ p—
1)-dimensional Euclidean space, the oriented vectorialliearing0,,_;,u')" as the
“vertical” axis (that is, as the axis of the univariate respe).

This quantile, which is clearly of a directional nature, geategegression quan-
tile regionswhen all directionsi are considered for a fixede (0,1). More precisely,
defining as

— -~ ~
Hime = {W,Y) € RP X R™: By — B psry, (L W) > 0}

the upper(tu)-quantile halfspace associated with the optimal soluﬁ%npé_w,
B/Hpé;m)/ to (T), one can consider threquantile region

Ris(™ = N N{He) 2)

ue.ym-1

foranyt € (0,1), whereN {Hgll?)’g'ru stands for the intersection over all optimal so-
lutions corresponding to fixedandu. In the location case = 1, these regions were
shown to coincide with the Tukey (1975) halfspace depthomeglisee Theorem 4.2
of HPS10. In the general regression cgse 1, they still form a family of polyhedral
regions nested up to the classical quantile crossings.léstrited in Section 7 of
HPS10, these regression quantile regions allow for a muclerigyression analysis

than any traditional multiple-output regression methaoul geovide.



Quite interestingly, these quantile regions can also beaioétl from a different
family of directional multiple-output regression quaes) elaborated in Kong and
Mizera (2008) and Paindaveine a8dnan (2010a). In the same empirical setup as
above, these alternative quantiles—referred foragction quantilesn the sequel—
can be defined as any element of the coIIecﬂlﬁj;ru of hyperplanesré ) =

roj;Tu
{(W,y) e RP1xR™ bprOJ wy — aprol 2u(L,w)" =0}, with

a. . n N -
(Epmj’w) € argmin Zpr(b'yi —adx) subjectto b=u. 3)
IC'proj;ru i=
In this context, we say thatis a r-critical direction if there exists m enm

roj;Tu proj;tu
that contains exactlyn+ p— 1 data pomts and we will denote the collection of

1-critical directions byK;. Setting HprOI L= {WLy) € RPPLXRM qumj wy -
apm],w( w)’ > 0}, it can then be shown that, under very mild conditions,

(D=R00:= N N{Hrmt (4)

ue .M 1nK,

for any 1 € (0,1), where( {Hpm] ) stands for the intersection over all optimal

solutions for which the correspondirigu)-quantile hyperplanqgm] L, contains ex-

actlym+ p— 1 data points; see Theorem 4.4 in PaindaveineSinthn (2010a). This
shows that the H®10 quantile regions can indeed be often obtained from gtioje
guantiles. As an important by-product, we can get many charigtics useful for
statistical inference, including the hyperplane coeffits@poj;ru andbproj:ru, and the
Lagrange multiplier vectors corresponding to the equalitystraint in[(B).

In this paper, we develop an algorithm that solves the palrarrmogramming

problem [3) and allows to compute efficiently the quantllgzlmesRH ) through
(3)-@). The proposed procedure therefore appears as aetmmm?the one de-

scribed in Paindaveine arfsiman (20100) that computes the regio Iié(r) di-
rectly from [1)-[2). We shall see that the probldmh (3) fafitoithe category of linear
programs with parametric right hand side. They are quiternomin practice and
their theory is well developed. A WrLAB toolbox for them has also been written;
see Kvasnica, Grieder, and Baotict (2004). However, theiggproblem can be sim-
plified substantially in the special case considered hehéctwgives rise to the fast
and simple solver provided in this paper. Our work confirnesttiend that applica-
tions of parametric programming in computational geomstity grow in number;
see Rakovit, Grieder, and Jones (2004) for another papitopic.

The outline of the paper is as follows. In Secfidn 2, we déscin detail a proce-
dure that solves the parametric programming probldm (3)adlods for the compu-

tation of the quantile reglon%prOI ). In Sectior B, we present a step-by-step descrip-
tion of the corresponding algorittfmin Sectior %, we provide some illustrations of

L The present paper somewhat mimics the structure and woodiRgindaveine an8iman (2010b) to
highlight their mutual similarities and differences.

2 Our MATLAB implementation of this algorithm can be freely downloadednf the web page
http://homepages.ulb.ac.be/~dpaindav


http://homepages.ulb.ac.be/~dpaindav

these quantile regions and compare them with the quangjlerleR(HnF),v (1) computed

from (@)-(2). In Sectiof]5, we conduct some simulations taleate the efficiency of
our implementation of the algorithm and to compare it with gfnocedure described
in Paindaveine anfiman (2010b). Finally, some technical matters relatedeqto-
posed algorithm are discussed in Secfibn 6.

2 Description of the procedure

In this section, we describe how the probldth (3) with giveedix € (0,1) can be
solved for allu's from ™1 by means of parametric programming, with the focus on
1-critical directions (since these are the only directianbé considered to compute
the quantile regioanj?z)j(r) from (3)-(4)). We assume throughout that, when de-
prived of their first coordinate, the data poirftg,y;) € RP x R™ i =1,...,n, come
from a continuous distribution ov&™P~1. Under this assumption, the algorithm we
describe below applies with probability one—problems carekpected only from
very exceptional data configurations, typically leadinglégeneracy, unwanted zero
coordinates or non-invertible matrices in the procedure.

In what follows, we rewrite the problerh](3) as a linear pragia a convenient
way and show that the assumptior .#™ ! can be relaxed without any harm into
u e R™ (or more precisely, inta € R™\ {0}). We demonstrate that (i) the resulting
spaceR™ of the u's can be segmented into polyhedral cones, each corresmptuli
the same optimal basif the associated linear program, and thatt{ig edges (or
generating directions) of these cones must comprise alt tbitical directions Be-
sides, we describe the relation between any fixed (non-zérmogach such cone and
the corresponding quantile hyperplane coeffici@pts;;;u andbprojru, and explain,
for any given non-zero vectag, how to get the cone containing. Finally, we de-
scribe the way how to find all neighboring cones adjacent tvengone by means
of simple dual simplex post-optimization, which paves tlayvior finding the whole
conic segmentation, hence for solving the problem comiglete

First, let us introduce the following notation. Let Be the/-dimensional zero
vector and 1 be the/-dimensional vector of ones. Denote by,, and Oy «s the ¢-
dimensional identity matrix and the zero s matrix, respectively. The positive and
negative parts of af-vectorv = (vi,...,v;)" are defined ag, := (max(v1,0),...,
max(v;,0)) andv_ := (max—vy,0),.. .,max(ivg,O)):,, respectively. We write =
(r,...,rn) for the vector of residualg = ri(a,b) := by, —a@x;, i = 1,...,n. From
then x m(response) matrix

Y= (Vg ¥) = 05, ., Y5)
and then x p (design) matrix

Xi=(Xg,.., %) =1 (X5, ..., X5),
we define

Uy:U%XZm::(y(lza_ﬁv"'ay(r;m_ycm) and V= )r(IXZp::(X(iv_th:a"'vx%a_X%)v



respectively. In the setup described in the Introducti§rs 1,. The general notation
is used here because sometimes it may be interesting to withkamotherx§ (for
example, when multiple identical observations occur indample, which may be
relevant for resampling procedures) and because our Higodoes not require any
special assumption o at all. Finally, all vector inequalities are interpreteoi-
natewise and some basic Matlab notation is used hereipadéenly for submatrices
and subvectors with possibly permuted rows or columns.

With this notation, the optimization problefd (3), for anyg .#™ 1, can be rep-
resented as the linear program

mZFi’nc’pz.: subject to Apzp = bp, zp >0, (P)

with its dual twin brother
max U uP subjectto Apup < cp, (D)

pp=(u"' kY

where, writingMim, om for the Kronecker produdtn.m® (1, —1), we set
(b/(b) a ( ) r+, ) c R2m+2p+2n
( ) (ler?bl 9 bm+,bm7) S Rzmv
( ) (al+7al 5 5p+7§p7)/ € Rzpa
Cp = (Ohm 2p T1n, (1— r)l’n)’ € R2m+2ptan
bp = (U:n, O;-,)/ S Rmn,

Ap = <A%’(mx(2m+2p+2n))> (mezm Omsx2p Omxn @mxr‘)-
P = AZ !

Y _yX _
P(nx (2m+2p+2n)) Un><2m Vn><2p Inxn Inxn

here,up is the Lagrange multiplier vector corresponding to the étyueonstraint
from (P).

Consider now somep such that there exists a soluti(ﬁ[jmj;wo,B;mj;wo)’ to (3)
with only non-zero entries (which implies thag itself has non-zero coordinates
only), and denote b¥p the corresponding optimal solution to (P). We then define

— 1y (resp.,Ip) as the vector containing indices (sorted in ascendingrpafepos-
itive coordinates |rb(bproj 1) (resp., mb( bpro] 7up))- Note thatly andl, have
common dimensiom. For instance, ibprojru, = (2, —4)’, then one hals(bprojirug)
=(2,0,0,4), 1, =(1,4), b(— bpmj;wo) =(0,2,4,0Y, andl}, = (2,3)";

— 1, and I, as the vectors obtained by addinm2o each entry of the vectors
obtained analogously th, andly, but from a(@proj:ruy) anda(—aprojiry,)- Note
thatl ; andl, have common dimensigm With the samdnpm, 1, s above (yield-
ing m= 2) andapojry, = (—1,2)’, one obtains, = (2,3)' + (4,4)' = (6,7)" and
Ta = (17 4), -+ (4a 4)/ = (57 8),;

— 1z, le andle as the vectors containing indices (still sorted in ascendirer)
of observations with zero, positive, and negative resgluaspectively. Their
dimensions—¢, 1, andv, say (satisfying + 1+ v = n)—of course are the num-
bers of zero, positive and negative residuals, respegtivel



We will consider only the casa £ 0 andv # 0 below, but the other (simpler)
cases can be handled analogously. Finally, we put
= (Ip 1 2(p+ M1+ 1, (2p+2m+ )1, +To),  Tr=(1%,1¢.Te),

and

I = (1. TpsTa, 2(p+ M)y + 15, (2p+2m+ n)2 + 15,
(2p+2m+n) 2+ 15 2(p+ m)L, +Ta);

the vectorl g then consists of all the indices of basic variables. Theefib seems
natural to permute rows and columns/of according tolg andl¢ (in the spirit of
Narula and Wellington (2002)), and to replace (P) with thiely equivalent problem

n;Nincﬁ\,zN subjectto Anzy = by, zn > 0, (N)

where
v =120(Ic), on=ce(lc), bn=Dbp,

1
Ay = Ag(mx(zmzmzn)) _ < 12%1:('(:) )
AN(nx(2m+2p+2n)) As(Ir,Ic)
(the vectorbp remains untouched by this change sincenitst components are
equal). Alternatively, we can write

and

I @)
:]P)I C :]P)I C b — mxm mxn b
N CZP; N cLP, N <@n><m PR P,

and

~{ Ixm Omxn
AN = <@nxm P )AP]P’C,

wherePr andP¢ are the row and column permutation matrices (so Hiat= Pt
andP; = ]P’El). One can easily check that

CN = (O:Tn Olpa Tl/r[v (1_‘[)1(/; dmv Olpv Tl/pa (1_ T)llpv (1_T)1/717 Tl(/)/
= (Cé)a C/lv C/27 C/3a 6/07 Eg_a ElZa 6%7 Eila 6:5)/

= (C/(m+n)><1’E,(m+2p+n)><1>/

and thatAN is of the fOfmAN = (B(mn)x(mn) . B(m+n)><(m+2p+n))1 with

JTxm@Txp Omxr Omxy
B | Zpem Fpcp Oper Oprv
IETr><m Fr[xp_]lnxn ©T[><V
E%xm ngp Ovxr Tyxv



and
*mem @mxp @mxp @mxp @mxrr @mxv
B *Eg)xm *Fg)xp —Ipxp Tpxp Qpxrr Opxy
~E2,m—F2p Onxp Omup Inxm Orcy
7E3><m 7F§><p @pr @pr @vxrr *Hvxv
where]J stands for the invertiblen x m diagonal matrix withl,, = sign((up),), £ =
1,...,m, and wheret' andF', i = 1,2,3, are some known data-dependent matrices
related toUY or VX,

The columns oB correspond to the optimal basic variables of (N) so théamn-+
n+1:2m+2p+2n)is zero andy(1:m+n) =B~ 1by =B~1(:,1:m)uo. This readily
implies thaizy (1 : m) = abgug) := Ug+ +Uo—, and that the norm afp does not affect
the resulting quantile hyperpla ?gj;TUO but only the scale of its coefficients. Also
note thaf3 1 can be easily computed thanks to the special blockwisetateiof B.

We simply have
. C1 ™ Omepycr O pyxv
187 = CZCIl *]Irrxr[ @TI'XV ’

—(C3(CI1 Ovxn Ty

Tmsm O . .
cl:( e Fg;) Co= (B2 F2,,), and Ca= (B3, F3, ).
X

Blockwise inversion ofC; analogously leads to

Cit= ((IFl)JlElJ] (F%1> B <ﬁt]é g) '

Now the question is whelh = B(u) ceases to be optimal. According to the theory
of linear programmingB is optimal if and only ifu satisfies both primal and dual
feasibility conditions (PF) and (DF):

z=B""bn > Omyn, (PF)
d' =B BT < Opyyapn (DF)

m oy

lem dual to (N) and contains the Lagrange multipliers cqroesling to the equality
constraintin (N). Clearly,

The vectortly := (8, i, w7, u;~") = ¢B~* hidden in (DF) solves the prob-

p® = 11/ (E2J 4+ F2K) — (1— 1)1, (E3J + F°K),
p® =t FL— (1-D)LF3L, 't =—t11, andu" = (1-1)1,

(note that ifp = 1 andx§ = 1, thenu'® = tr1— (1— 1)v). The Lagrange multiplier
vectorfip from the original problem (P) can then be obtained from

~ _ { Imxm Omxn) ~
Hn = <@n><m Pr >IJP
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Note thatlip(1: m) = [y (1 :m).
Now, let us partitiord according taC into
d = (dp,d o, d, . )
Then simple algebra leads to
J
K

E2J] + F2K
—(E3J + F°K)

u (5)

do =0, dy=0p,dp=—pO—1lp, dz3=p0— (1-1)1p=—dp— 1p,ds = —Tly—
(1-1)1p= -1y andds = —(1—1)1, — 71y, = —1,. Note that the matriceg', i =
1,2,3, are used only in the product withthat can be obtained frofl] = Y(Ig,:),
where we seE := (EV : E? : E¥)’.

Note as well that (DF) is equivalent to

( IZadé), S 02pa
which can be rewritten as
—T1, < pP < (1-1)1p.

Most importantly, (DF) must be satisfied at least figrand does depend anonly
implicitly throughB. Consequently} remains dual feasible whenever (PF) holds.

All u's satisfying (PF) form a polyhedral cone, s&ly,. Such cones (correspond-
ing to variousug’s) fill the whole spacé™ and our goal is to find them all, together
with the corresponding optimal bases. Note thausllin the interior of such cones
lead to the hyperplane solutions fitting exagblypbservations and that the solution
hyperplanes fittingn+ p — 1 data points must be included among those correspond-
ing to the generating vectors of all these cones.

Let us assume that we have identified all non-redundanti@ntt in (PF) and
facets of¢y,. Each such facet must be shared with another (adjacent) Thatis
why we may simply pass through all the corgscounter-clockwise whem = 2. In
general, it is possible to use the breadth-first search ithgorand always consider
all suchéy’s that are adjacent to a cone treated in the previous steparmnot been
considered yet.

It remains to clarify the process leading to the adjacenedoom a facet oféy,.
This facet, say, corresponds to fkih constraint in (PF) and has an interior paint
This point is still certain to meet the dual feasibility catiwhs (DF) and therefore we
may further proceed with the dual simplex post-optimizatiotil the optimal basis
of the adjacent cone is found.

Let us describe this process in detail. Tlia€i)-th original variable will be the
first to leave the basis. Then we should compute the auxiiecjor

t = (to,th,th,thth,ts) =B1(i,))B



(partitioned according td) and find an inde) satisfying

dj . (On
— = —th<0,h=1,... 2 .
? mm{ G h <0, b, M p+n}

Thelc(n+ m+ j)-th original variable should then replace the removed ore gét
a new dual feasible basis, sBy.

Note that
i<m m+l<i<m4+pmt+p+l<i<m+p+m m+p+mr+1<i
6: ~Imxm(i,?) 0Im O;n OIm
t) = 0, —Ipxp(i—m,:) 0, 0,
b= 0, —L(i—m,:) —F?(i—m—p,:)L Fé(i—m—p—m,:)L
5= 0 L(i—m,:) F2(i—m—p,:)L —F3(i—m—p—r,:)L
tit = O/rr O/rr —ann(i —m-p, :) Oln
t'5: O'V 0(, O/V —Hvxv(i_m_p_m:)

Consequently, we may consider only certain subvectotsaofld without any loss
of generality.

If i < m+ p, then we can always chooge- i, which only changes the sign of a
regression coefficient. If> m+ p, then the optima] results from

d . (d
t—J = mm{t—h th < 0,h=m+ p+1,...,m+3p}
j h
if this fraction is less than or equal to 1; otherwise we cdn se2p+i. If moreover
p =1 and the only regressor is the unit vector, tignt3)’ equals(—1,1)’ for i <
m+ p+ mand(1, —1)' otherwise.

The resulting basiB; is optimal if and only if

zy =B, 1 :mus > Omyn, (6)

which appears to hold with probability one (otherwise, wauldchave to repeat the
previous steps until the optimal basis of the adjacent cerfeund, which is not
supported by the accompanyingAvLAB code).

3 Algorithm

To sum up, the basic form of the algorithm can always be peréorin the following
steps where the highlighted text refers to the topical suthm®s of Sectiof]6 that
discuss some issues in more detail:

1. Adjust the data and if necessary; selmput DataandChoice oft, respectively.

2. Consider (P) and find its optimal baBis= B(up) for a given directional vectar,
seeComputing the first directional quantile

3. Set%new:= {B(w)}.

4. Set%Bold ;= Bhnew, thenBnew .= 0.

5. For eactB = B(u) in Aold,
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(a) computez = z(u) from (8) that determines the inequalities in (PF) defining
the conegy, of all directions leading to the same optimal bd3iasu

(b) find facets and vertices &,; seeFinding non-redundant constraints, facets
and interior points

(c) drop all facets 0%, whose adjacent cones have already been investigated; see
Realization of the breadth-first search algorithm

(d) for each remaining facet of;, find its interior pointu; and use it in the
simplex post-optimization step to determine the optimaldia,ew(us) of the
adjacent cone sharing that facet with (as described at the end of Section
), and adBpew(Us) 10 Bnew;

6. If Bnewis non-empty, go to Step 4.

If Bnew is empty, then the algorithm terminates successfully @tles% have been
found and there is no new cone facet to investigate).

4 [llustrations

This section presents some illustrative examples of thetﬂiaaegiond?é?gj(r) ob-
tained from our MATLAB implementation of the procedure described above. What
we plot for each region is actually the corresponding qlemrntour, namely its
boundary?Rfj?f)j(r). In each case, we compare the results with the contﬂag%é(r)

computed from[{L)E(R), as described in PaindaveineSinthn (2010b).

Bivariate location caseWe start with the bivariate location case obtained with 2
and p = 1. We independently generated data poptd = 1,...,n = 2499, from
the uniform distribution over the unit squaj@ 1]2. Figure 1(a) plots the resulting
quantile contourR") (1) for T = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35,
0.40, and 045. These contours match very well their population veisienamely
the population halfspace depth contours (see RousseeuRad 999)—and seem
to coincide, as expected, with the contoﬂrﬁggé(r) plotted in Figure 1(c)—that
are computed fronL{1](2). Our code can deal with weightezbolations (which in
particular allows for multiple observations): if weighits> 0,i =1,...,n (summing
up to one or not) are given, the resulting “weighted” optiatian problem is obtained
by substitutingy,,; := wy; andxei := wx, i =1,...,n, for they’'s andx’s in @).
Figure 1(b) reports, for the sami&s as in Figure 1(a), the quantile contomﬁé?z)j(r)
associated with weighted data poigts := wy;, i = 1,...,n, where the weights are
given by

299 fori=1,...,10
W = .
1 fori=11,....n=2499

and the original data poinys are the same as in Figure 1(a). The ten points plotted in
Figure 1(b) are the original data poirytsi = 1,...,10, that receive the larger weight.
The corresponding contowﬁff;vs(r), which are reported in Figure 1(d), still appear
to be equal to the contours computed from projection quesatil
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Trivariate location caseFigure 2 illustrates the trivariate location case with= 3
and p = 1. The sample considered there consists ef 249 data points obtained
independently from the uniform distribution over the unibe [0,1]3. Figure 2(a)

reports the quantile contouﬂéRpro ) computed from projection quantiles for=
0.05, 0.15, and 0.25. The only other method available for cdingihalfspace depth
regions beyond dimension two is the one from PaindaveineSamen (2010b) that
is based on{1):{2); the corresponding contcﬁ@; (1) are plotted in Figure 2(b).
As expected, both methods seem to lead to the same contours.

Regression setup with two responses and one random covavi consider the
simple heteroscedastic regression model

Y = (W,W) +vWe,

where the random covariafé is uniformly distributed ovej0, 1] and the random vec-
tor £ (which is independent &) is uniformly distributed over the unit squal@ 1]2.
From this model, we independently generated data pdiity;)’ = (1,w;,y|) €
RP x R™=R? x R?, i = 1,...,n = 249. Figure 3(a) displays the resulting (trivari-
ate, since they are objects of the y)-space) regression quantile contodF§erJ

for 1 = 0.05, 0.15, 0.30, and 0.45. Figure 3(b) provides the corrarhpgrregressmn

guantile contourﬁRggé(r) computed from[{1)E[2) as described in Paindaveine and
Siman (2010b).

5 Simulations

We now present some empirical results that quantify thedsaed show the pos-
sibilities) of our MATLAB implementation of the procedure described in this paper.
We used an Apple computer with Intel Core Duo 1.83GHz, 512MB/RWIN XP
SP2 and MTLAB 7.3.0.267. Of course, other hardware or initial settingy head

to different results.

5.1 Location case

We first focus on the location casp € 1), hence on the computation of halfspace
depth contours. We considered only the bivariate case 2) so that we could com-
pare the MATLAB implementation of the method described in this paper witt th
coauthored and kindly provided to us by Ivan Mizera that wesetfor a benchmark
(in Sectio 5.2, we will use the code from Paindaveine Simdan (2010b), which is
the only competitor available in the general regressior)cas

We generated i.i.d. bivariate (n = 2) observations (i) from the bivariate stan-
dard normal distributioM(0, 1)2 (S = 1) and (i) from the centered bivariate uniform
distribution over the unit squaté([—0.5,0.5])? (S = 2). For any combination af =
{0.010, 0.025, 0.050, 0.100, 0.200, 0.4@mdn € {50,100,150,200,300,500,100Q
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2000 500Q 1000020000, we ran the computation ten times for each scenatio S
Average execution times in seconds are reported in Thblad[@ &or S=1 and S=2,
respectively) and show that the computation hardly takeserttan 1 minute and a
half even forn = 10000. As expected, they increase witland they are higher for
S=2 than for S=1 ifr is low while the reverse becomes true with growmngHow-

ever, their dependence orseems, on average, higher than linear and not worse than
quadratic in any case.

For the same reasons as those presented in Paindaveitsnaan (2010b), the
comparison with the benchmark is not free of limitationsll,.She results seem to
demonstrate high stability and superiority of the code psapgl in this paper over
the benchmark because it wakvaysobserved faster, sometimes even more than
27 times. It excels especially when applied to medium-sit&t@d sets and not too
extreme values of.

The decrease of relative efficiency of our code for very smallles oft or n
can be explained by the fact that it is the inefficient findifthe initial solution that
contributes the most to the overall execution time in theses. Indeed, profiling of
the code in M\TLAB shows that this contribution is usually higher than 30% even
for n=5000 if T = 0.01 (and exceeds 70% far= 50 and the same). On the other
hand, ift = 0.3, then this contribution is still often larger than 30% foe 50 but
usually drops below 5% far = 5000. Different memory space requirements can also
play some role, especiallyifis set very high.

5.2 General regression case

Next we consider the general regression context repredégtthe simple model
Ypx1 = BpxmXmx1 + Epx 1.

whereX; =1, (Xp,...,Xp)’ has i.i.d. marginals that are uniformly distributed over
(0,1), € is p-variate standard normal, afitlcan be obtained from thg x m matrix
of ones by replacing the elements in the first column with gefeerage execution
times' in seconds, for a total af replications, are recorded for many combinations
of n, pandt in Table[3 (form= 2 withr = 10) and in Tablgl4 (fom= 3 withr =5,
and forme {4,5} withr = 3).

Here, the only competitor is the code described in PaindaaidSiman (2010b).
The code presented in this paper seems to slightly outpeitftat of Paindaveine and
Siman (2010b) at least ifi= 2 or (in the location case) ih= 3.5

3 Actually, with the following changes to the default setSnof our code: CTechST.PFZ1Checkl = 0,
CTechST.InCheckl =0, CTechST.Reportl =0, CTechST.Ted#le 0, and CTechST.OutSavel = 0. This
suppresses some almost surely redundant testing, cheblkiiigput for correctness, detailed output on the
screen, computing some auxiliary technical statisticssaodng the output on the disk, all that to make our
code faster and possible to use in an extensive simulatiote that the output fom= 2 andn < 10000
is usually small enough to be kept in the internal memoryheddst option does not affect the results too
much here.

4 still with the same changes to the default settings as in@dBil.

5 Nevertheless, note that the accuracy of efficiency ratitimiged due to the rounding error of execu-
tion times and that the average execution times themselaggstightly) differ even for the same data set,
which follows from comparing corresponding values fromI&afd and(B.
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6 Technical Details

In this section, we are going to discuss in more detail somienieal matters related
to the algorithm described in Sectidds 2 &nhd 3.

Choice oft. If ntis an integer angh = 1, then linear programming problem (P) has
infinitely many solutions for each. In general, if such a complication occurs, we
solve it by a small perturbation af, which can hardly make any important differ-
ence in most applications. Besides, there is only a finiteberrof different quantile
regions anyway, so that such small perturbations obuld always be done without
loss of generality when the goal is only to compute the glerggions.

Input data. The code assumese {2,3,...,8} andn < 100000 and its output should
be quite reliable fome {2,3}, p < 10 andn < 10000 (ifm= 2) or 500 (ifm = 3) at
least. The program was heavily tested only on data from aoulsition study, with
all coordinates less than 5 or so. This is why we suggest talatdize the input ob-
servations in some way to a similar range whenever possilblieh should enhance
numerical stability of the algorithm. Besides, most redahdae discrete because they
are measured or recorded only with limited precision. Thakes some bad data
configurations more likely than almost impossible. Therefee also recommend to
perturb the input data points by some random noise of a reaépamall magnitude
to prevent their discreteness from causing any troubles.

When a few identical observations occur, we may either agdesthe same rows
of Ap into a single one or introduce (positive) weights imtoand proceed analo-
gously (the formulae would have to be changed a little buttioeial simplification
of (DF) would persist). We prefer the first approach that &g easier to implement
and still leads to the same quantile coefficients. Sinceltgerithm does not rely on
any special form ok$, the code can also handle such aggregated or weighted rows
(corresponding to weighted observations). Therefore tbgrnam can be used even
for bootstrap and subsampling methods quite easily. We tnaigh refer to Hlubinka,
Kotik, and Vencalek (2010) for another interesting ageto combine weights and
halfspace depth ideas.

Computing the first directional quantilaVe decided to solve (P) with the aid of free
MATLAB toolbox SEDUM| 1.1 (see Polik 2005 and Sturm 1999) that exploits spar-
sity and is very fast, flexible, and easy-to-use. Any fast imhidble solver designed
for univariate quantile regression might be substituta@ ha fact, only fast compu-
tation of ordinary quantiles is needed (but not implemenifed = 1.

As mentioned above, we can relax the assumptien.”™ 1 without any loss
of generality because all nonzero vectars the same direction lead to the same
upper halfspacblé?g;;rw. In general, we choosg as a normalized corner £1,1]™.
Large or high-dimensional problems can be solved more ®@fidg by segmenting
the whole space t@ regions of the form

Uy = {ue R™: sign(u) = sign(up) },
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and considering each of thes® different orthants separately. Note that the first
constraints in (PF) are trivially satisfied in ea&h.

If the starting direction leads to troubles, then other chsiare tried until the
optimal solution with the required number of non-zero caeates is found.

Finding non-redundant constraints, facets and interioimge. If m = 2, then the
problem of finding non-redundant constraints and facetseasolved by assigning
angles (say'’s) to all the constraints in a clever way. The interior paiah then be
found simply by means of the facet normal vector.

For m > 2, the problem is far more complicated. First, we make thélera
bounded by restricting to vectorsin [—1,1]™, which turns the cones into poly-
topes. Then we find all vertices and facets of such a polytgpenbans of the
dual relationship between vertex and facet enumeratia Bsemner, Fukuda, and
Marzetta (1998)) and prograghull (see Barber, Dobkin, and Huhdanpaa (1996))
for the latter one, fortunately accessible inaM AB (In fact, we only modify the
functioncon2vert.mby Michael Kleder from MiTLAB Central File Exchange.) This
enumeration procedure requires an interior point of theltieg polytope to start. We
search for it from the scaled center of the known (parengtfand in the direction of
its normal vector.

In principle,us might be found even without the artificial bounding with setbs
guent vertex enumeration and the zero vertex problem migladaressed as well;
see Chvatal (1983). However, we decided to tailor our cadehull, which is an
already developed and mature tool for solving similar peais that is quite stable,
fast and familiar with rounding errors.

Realization of the breadth-first search algorithiWhen this algorithm is employed,
then some identifiers (scaled facet centers or facet norewbxs) of all (or lastly)

used facets are stored in sorted archive(s) and a new faased for building the

adjacent cone only if its identifier differs from all thosehived, which is checked
by the binary search algorithm.

Plotting the contours.The program output provides upper halfspaces includinggho
whose intersection equals the quantile region of our istéieall of them are uniquely
defined). Vertices of these regions could be obtained byéhex enumeration men-
tioned above (and also used in our code in a different contéike quantile contour
with known vertices can be plotted easily as their conveX il example. This is
essentially the procedure we used to generate all figurégeqiresent paper.

Computing many (or all) contours at onc&he first (initial) solutions could be found
faster for all relevant’s at once than for each separately, by linear programming
parametric int. In the purely location case, it would be advantageous toprtethe
contours from the highest< 0.5 to the lowest and to reduce the data set in each step
(with adjustingr accordingly), since inner points are redundant for conmgutiuter
contours. If we were interested even in the individual gilahtyperplanes and their
coefficients, we could still replace all the surely inter@drservations with a single
aggregated pseudo-observation keeping the new resultbgyadient conditions the
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same as before (as Roger Koenker kindly suggested to us3eTreposals are not
implemented in our code as it is designed to compute a simgitoar only.
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Fig. 1 In Subfigure (a), quantile contou%?g;‘))j(r) of ordert = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40, and @5 are plotted, by using the method described in this papen & sample of = 2499
observations drawn independently from the uniform distiin over [0,1]2. Subfigure (b) reports the
corresponding contours after the weights of the first tea gatnts (plotted in red) were changed from 1
to 2499/20. Subfigures (c)-(d) provide the correspondirantile contours?lﬂ(:g,é(r) computed from the

method described in Paindaveine dichan (2010b).
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Fig. 2 In Subfigure (a), quantile contOLﬁRgR)j(r) of ordert = 0.05, 0.15, and 0.25 are plotted by using
the method described in this paper from a sample ©f249 observations drawn independently from the

uniform distribution over{0,1]3. Subfigure (b) provides the corresponding quantile costﬂﬁtg"))é(r)
computed as described in Paindaveine Simdan (2010b).

¥, Yy

15 16

1 1

0.5 0.5

0 0
g 0.5 1 15 ¥y 0 0.5 1 1.5 ¥,

Fig. 3 Subfigure (a) reports the quantile contogd (’;2)4(1) of ordert = 0.05, 0.15, 0.30, and 0.45 for
n = 249 observations drawn independently from the regressiodetrdescribed in Sectidd 4 (to which
we refer for details). Subfigure (b) provides the correspunduantile contours?RSF),é(r) computed as

described in Paindaveine afiiman (2010b).
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Average absolute and relative execution times

mt  0.010 0.025 0.050 0.100 0.200 0.400
50 0.03 (4.3] 0.04 (5.0] 0.04 (7.0] 007 (6.3] 0.09 (8.1] 0.10 (9.5)
100 0.06 (5.7} 0.05 (8.4 0.09 (8.4] 0.10 (11.1) 0.14 (13.0) 0.17 (15.2)
150 0.05 (8.4} 0.07 (10.1) 0.09 (12.9) 0.14 (14.1) 0.19 (17.6) 0.23 (20.0)
200 0.07 (9.4} 0.10 (11.0) 0.13 (13.4) 0.18 (16.1) 0.23 (20.6) 0.30 (22.6)
300 0.09 (11.8) 0.12 (14.2) 0.19 (15.6) 0.26 (19.6) 0.36 (23.3) 0.47 (25.9)
500 0.16 (11.1) 0.19 (16.6) 0.29 (18.8) 0.42 (22.6) 0.62 (25.6) 0.81 (27.7)
1000 0.27 (15.2) 0.44 (17.6) 0.65 (20.8) 0.99 (23.9) 1.51 (26.0) 2.05 (27.7)
2000 0.75 (12.4) 1.03 (18.2) 1.67 (19.9) 2.66 (22.0) 4.06 (23.8) 5.74 (24.2)
5000 2.20 (13.3) 4.33 (14.2) 6.96 (15.6) 11.44 (16.9) 18.27 (17.7) 26.20 (17.5)
10000 8.18 (8.8)14.34 (10.6)24.88 (11.0) 42.14 (11.6) 68.00 (12.0) 97.04 (12.1)
2000026.65 (9.4)56.10 (9.2)96.90 (9.8)168.34 (9.9)267.38 (10.3)373.98 (10.4)

Table 1 (2D location settingm= 2 andp = 1, scenario S=1) Average execution time (in seconds) of our
code is provided for scenario S=1, number of observatipasd orderr in the bivariate location context.
The numbers in parentheses indicate how many times it isrftgin the benchmark.

Average absolute and relative execution times

nm\t  0.010 0.025 0.050 0.100 0.200 0.400
50] 0.04 (4.3] 0.05 (4.8] 005 (6.4] 0.07 (7.0] 009 (7.8] 0.10 (8.8)
100/ 0.06 (6.3} 0.07 (7.7} 0.09 (9.2] 0.11 (11.8) 0.13 (14.9) 0.16 (15.4)
150 0.06 (8.2) 0.11 (7.7] 0.10 (13.5) 0.15 (14.5) 0.19 (17.7) 0.22 (19.9)
200 0.09 (9.1} 0.12 (10.9) 0.15 (13.7) 0.19 (16.8) 0.24 (20.1) 0.29 (22.1)
300 0.12 (10.3) 0.14 (14.3) 0.22 (15.2) 0.28 (20.1) 0.35 (23.7) 0.44 (25.7)
500 0.18 (12.1) 0.22 (17.0) 0.34 (18.7) 0.46 (22.8) 0.63 (25.6) 0.78 (27.8)
1000 0.42 (12.0) 0.55 (17.9) 0.77 (20.7) 1.10 (23.8) 1.55 (26.1) 1.95 (27.2)
2000 0.90 (13.3) 1.30 (17.7) 1.96 (19.5) 2.92 (22.0) 4.14 (23.9) 5.50 (23.8)
5000 3.91 (9.7) 5.39 (14.2) 8.32 (15.5) 12.68 (16.9) 18.87 (17.5) 24.96 (17.6)
1000012.06 (7.9)19.13 (10.2) 30.35 (10.8) 47.91 (11.3) 70.27 (12.0) 91.92 (12.0)
2000037.87 (8.5)69.58 (9.4)117.69 (9.1)189.72 (9.5)276.51 (10.1)356.12 (10.2)

Table 2 (2D location settingsm= 2 andp = 1, scenario S=2) Average execution time (in seconds) of our
code is provided for scenario S=2, number of observatpmasd orderr in the bivariate location context.
The numbers in parentheses indicate how many times it isrfétsin the benchmark.
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Average absolute and relative execution times

p: m\t  0.010 0.025 0.050 0.100 0.200 0.400
1: 100 0.06 (1.5] 0.05 (2.0] 0.09 (1.4] 0.10 (1.6] 0.14 (1.6] 0.17 (1.6)
2: 100 0.08 (1.1} 0.10 (1.1) 0.12 (1.3] 0.14 (1.4) 0.17 (1.4] 0.21 (L.5)
3: 100 0.09 (1.1] 0.11 (1.1) 0.13 (1.2] 0.16 (1.3] 0.21 (1.3] 0.25 (1.4)
6: 100 0.12 (1.2) 0.13 (1.2] 0.15 (1.3] 0.20 (1.3] 0.25 (1.4] 0.32 (1.4)
1: 200 0.08 (1.5] 0.10 (1.6] 0.13 (1.5] 0.18 (1.6] 0.24 (1.6) 0.31 (1.6)
2: 200 0.1 (1.2] 0.14 (1.2) 0.18 (1.3] 0.23 (1.4) 0.31 (1.4] 0.40 (1.4)
3: 200 0.12 (1.2] 0.16 (1.1) 0.20 (1.2] 0.27 (1.3] 0.37 (1.4] 0.47 (1.4)
6: 200 0.15 (1.2) 0.19 (1.2] 0.25 (1.2] 0.34 (1.3] 0.48 (1.4] 0.61 (1.4)
1: 300 0.09 (1.8] 0.12 (1.7] 0.20 (1.4] 0.26 (1.6] 0.37 (1.6] 0.49 (1.6)
2: 300 0.15 (1.1) 0.19 (1.2] 0.25 (1.3] 0.34 (1.4] 0.47 (1.4] 0.62 (1.4)
3: 300 0.16 (1.1] 0.21 (1.2 0.28 (1.2] 0.40 (1.3] 0.56 (1.4] 0.72 (1.4)
6: 300 0.19 (1.2) 0.27 (1.2] 0.38 (1.2] 0.50 (1.4] 0.71 (1.4] 0.96 (1.4)
12: 30q 0.30 (1.3] 0.37 (1.3] 0.50 (1.3] 0.70 (1.5] 1.05 (1.4) 1.44 (1.5)
1: 500 0.16 (1.4] 0.19 (1.6] 0.30 (1.5] 0.44 (1.5] 0.63 (1.6) 0.85 (1.6)
2: 500 0.20 (1.2] 0.27 (1.3) 0.39 (1.3] 0.56 (1.4] 0.81 (1.4] 1.08 (1.4)
3: 500 0.24 (1.1) 0.32 (1.3] 0.46 (1.3] 0.66 (1.4] 0.96 (1.4 1.28 (1.4)
6: 500 0.30 (1.2) 0.43 (1.2] 0.61 (1.3] 0.87 (1.4] 1.30 (1.4] 1.74 (1.4)
12: 500 0.44 (1.4] 061 (1.4] 0.91 (1.4] 1.37 (1.5] 2.06 (1.4] 2.59 (1.5)
1: 1004 0.28 (1.5] 0.44 (1.4] 0.67 (1.4] 1.02 (1.4] 1.53 (1.5 2.10 (1.4)
2: 1000 0.37 (1.2) 057 (1.2] 0.84 (1.3] 1.33 (1.3] 1.97 (1.3] 2.70 (1.3)
3: 1009 0.42 (1.2) 0.68 (1.2] 1.01 (1.2) 1.54 (1.2 2.34 (1.3] 3.15 (1.3)
6: 1000 0.61 (1.1] 0.92 (1.2) 1.41 (1.2 2.14 (1.2) 3.26 (1.3] 4.34 (1.3)

12: 100Q 0.90 (1.2 1.45 (1.2) 2.35 (1.1] 3.42 (1.3] 5.70 (1.3] 6.71 (1.3)
1: 2004 0.74 (1.1] 1.01 (1.4] 1.64 (1.4] 2.65 (1.4] 3.94 (1.4] 5.45 (1.4)
2: 2000 0.82 (1.2) 1.41 (1.1 2.16 (1.2] 3.47 (1.2] 5.19 (1.2] 7.24 (1.2)
3: 2000 0.98 (1.1] 1.64 (1.1) 2.56 (1.2] 4.05 (1.2] 6.23 (1.2] 8.65 (1.2)
6: 2000 1.42 (1.1} 2.33 (1.1) 3.59 (1.2] 5.80 (1.2] 9.02 (1.2] 12.39 (1.2)
12: 2004 2.30 (1.1] 3.86 (1.2) 6.28 (1.2} 10.11 (1.2) 15.12 (1.3} 20.56 (1.3)
1: 5000 2.46 (1.3] 4.93 (1.2] 7.46 (1.3] 11.63 (1.3) 18.05 (1.3] 25.16 (1.4)
2: 5000 3.23 (1.1] 6.00 (1.1) 9.53 (1.2} 15.40 (1.2) 24.50 (1.2) 34.28 (1.2)
3: 5000 4.26 (1.1] 7.71 (1.1) 11.92 (1.2) 18.75 (1.3} 29.73 (1.2) 41.46 (1.5)
6: 5000 6.41 (1.2) 11.88 (1.1} 20.35 (1.2) 29.87 (1.3) 46.71 (1.2} 65.28 (1.5)
12: 500013.09 (1.4) 23.80 (1.6) 41.79 (1.5} 59.10 (1.5) 91.65 (1.4}124.02 (1.8)
1:1000q 9.61 (1.2] 17.75 (1.3) 26.22 (1.4} 42.36 (1.3) 71.10 (1.4]100.87 (1.4)
2:1000011.19 (1.2} 22.23 (1.1) 35.25 (1.2} 58.24 (1.2) 98.01 (1.1}134.76 (1.2)
3:1000014.84 (1.1) 28.01 (1.2} 44.54 (1.2) 71.65 (1.2)117.46 (1.2)170.83 (1.2)
6:1000021.66 (1.5) 43.72 (1.5) 71.85 (1.5)113.38 (1.6)186.31 (1.4)256.98 (1.5)
12:1000055.20 (1.4)111.74 (1.4)187.01 (1.5)309.01 (1.5)485.73 (1.5)667.55 (1.5)

Table 3 (2D regression settingam = 2) Average execution time (in seconds) of our code, based-0h0
replications, is provided for quantile orderp regressors (including the intercept) andbservations. The
numbers in parentheses indicate how many times it is falséer the code from Paindaveine aBnan
(2010b).
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Average absolute and relative execution times

m=3

m

=4

m=5

Tn\T

0.010

0.025

0.100

0.200

0.010

0.025

0.010

1 100
1 100
1 100
1 100
1 100

0.96 (1.4
1.04 (1.1
1.58 (1.0
2.29 (0.9
4.60 (0.8

1.42 (1.4
2.23 (1.1
2.79 (1.0
3.55 (0.9
5.40 (0.8

9.86 (1.2
11.74 (1.1
15.19 (1.1
18.23 (1.0
24.95 (0.9

22.73 (1.2
28.66 (1.1
37.12 (1.1
45.80 (1.1
61.84 (1.0

5.60 (1.1
5.17 (1.4
11.40 (1.0
25.18 (0.8
91.55 (0.6

13.99 (1.3
24.03 (1.1
34.14 (0.9
53.39 (0.8

116.28 (0.6

48.63 (1.0)
41.72 (1.6)
125.90 (1.1)
346.56 (0.8)
1801.58 (0.5)

1 200
1 200
1 200
1 200
1 200

1.96 (1.3
212 (1.1
2.77 (1.0
3.75 (0.9
6.47 (0.8

5.60 (1.2
6.38 (1.1
8.18 (1.0
10.26 (0.9
14.52 (0.9

40.07 (1.1
50.45 (1.1
67.16 (1.0
82.73 (1.0
113.09 (1.0

105.60 (1.1
139.77 (1.1
182.39 (1.0
225.80 (1.0
311.26 (1.0

21.87 (1.0
21.00 (1.0
36.80 (0.9
55.61 (0.8
153.91 (0.6

133.23 (1.1
151.40 (1.0
225.93 (0.9
325.67 (0.8
592.77 (0.7

274.27 (0.9)
265.30 (1.0)
552.52 (0.8)
999.58 (0.7)
3933.44 (0.5)

OB WNRFRPORAWNPRPOD™MWNDNR|o

=
N

1 300
1 300
1 300
1 300
1 300
: 300

3.40 (1.2
3.88 (1.0
5.19 (0.9
6.56 (0.9

10.49 (0.8

36.26 (0.7

10.43 (1.1
14.08 (1.0
18.53 (0.9
22.91 (0.9
3251 (0.9
69.33 (0.8

101.18 (1.1
130.36 (1.0
170.44 (1.0
208.12 (1.0
295.13 (1.0
593.24 (0.9

281.95 (1.0
371.95 (1.0
496.96 (1.0
636.60 (1.0
951.20 (1.0
2154.13 (1.0

60.46 (1.0
63.10 (0.9
104.67 (0.8
157.67 (0.7
321.32 (0.6

390.83 (1.0
587.82 (0.9
905.64 (0.8

1321.53 (0.8

2473.22 (0.7

1059.70 (0.9)
1124.81 (0.9)
2254.24 (0.8)
4050.45 (0.6)

116978.51 (0.4)

O~ WN P

1 400
1 400
1 400
1 400
1 400
: 40(Q

5.91 (1.1
6.85 (1.0
9.00 (0.9
11.36 (0.9
16.34 (0.8
4752 (0.7

22.44 (1.0
27.13 (1.0
35.72 (0.9
43.23 (0.9
60.29 (0.9
123.45 (0.8

198.14 (1.0
250.47 (1.0
339.13 (0.9
426.63 (0.9
609.63 (1.0
11375.59 (0.9

616.93 (1.0
832.20 (1.0
1138.06 (1.9
1461.29 (1.9
2248.87 (1.0
5411.35 (0.9

138.26 (0.9
155.62 (0.9
244.52 (0.8
363.51 (0.7
669.73 (0.6

1389.91 (0.9
1842.90 (0.9
2896.03 (0.8
4375.24 (0.8
8784.51 (0.7

3219.40 (0.9)
3742.53 (0.9)
8584.16 (0.7)

104130.39 (0.4)

o~ WN B

1 500
1 500
1 500
1 500
1 500

1 500

9.15 (1.0
10.40 (0.9
13.66 (0.9
17.39 (0.8
25.88 (0.8
64.65 (0.7

32.93 (1.0
43.17 (0.9
56.80 (0.9
70.29 (0.9
99.45 (0.9
198.35 (0.8

357.53 (1.0
470.28 (0.9
618.37 (0.9
788.91 (0.9
1142.40 (0.9

12557.46 (0.9

1186.97 (1.0
1634.72 (1.9
2285.95 (0.9
2969.72 (1.0
4665.41 (1.0

)11624.00 (0.9

274.41 (0.9
316.32 (0.8
504.06 (0.7
733.00 (0.7
11407.06 (0.6

2867.31 (0.9
4727.81 (0.8
8213.09 (0.8
117159.85 (0.
)67844.38 (0.4

)

Table 4 (Multidimensional regression settings) Average executime (in seconds) of our code, based
onr =5 replications ifm = 3 and onr = 3 replications otherwise, is provided for quantile ordemp

regressors (including the intercept) amandimensional responses. The numbers in parenthesestidica
how many times it is faster than the code from PaindaveineSamén (2010b).
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