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1 Introduction

Due to the lack of a satisfactory concept of multivariate quantile, Koenker and Bassett
(Econometrica1978)’s celebrated theory of quantile regression has for long been
restricted tosingle-outputregression problems. In a world where multivariate data
are the rule rather than the exception, this clearly has beena severe limitation, which
explains why many works tried to extend quantile regressionto the multiple-output
context; see, e.g., Chaudhuri (1996), Koltchinskii (1997), Chakraborty (2003), Wei
(2008), or Kong and Mizera (2008).

A new concept of multiple-output regression quantile, withpowerful data-analyti-
cal abilities, has recently been defined in Hallin, Paindaveine andŠiman (2010)—
hereafter referred to as HPŠ10. In the empirical setup where them-variate responseY
is to be regressed on thep-variate vector of regressorsX = (1,W′)′, this quantile
can be defined as follows. For a sample(xi ,yi) ∈ Rp×Rm, i = 1, . . . ,n, the HP̌S10
regression(τu)-quantile—for fixedτ ∈ (0,1) and u ∈ S m−1 := {y ∈ Rm : ‖y‖ =

1}—is defined as any element of the collectionΠ (n)
HPŠ;τu

of hyperplanesπ (n)
HPŠ;τu

:=

{(w′,y′)′ ∈ Rp−1×Rm : b̂
′
HPŠ;τuy− â′HPŠ;τu(1,w

′)′ = 0}, with

(
âHPŠ;τu

b̂HPŠ;τu

)
∈ argmin

n

∑
i=1

ρτ(b̃
′
yi − ã′xi) subject to u′b̃= 1, (1)

whereρτ(x) = x(τ − I(x< 0)) is the well-knownτ-quantile check function. In other
words, this regression(τu)-quantile simply is the traditional (single-output) Koenker
and Bassettregression quantile of orderτ obtained when considering, in the (m+ p−
1)-dimensional Euclidean space, the oriented vectorial line bearing(0′p−1,u

′)′ as the
“vertical” axis (that is, as the axis of the univariate response).

This quantile, which is clearly of a directional nature, generatesregression quan-
tile regionswhen all directionsu are considered for a fixedτ ∈ (0,1). More precisely,
defining as

H(n)+
HPŠ;τu

:= {(w′,y′)′ ∈ R
p−1×R

m : b̂
′
HPŠ;τuy− â′HPŠ;τu(1,w

′)′ ≥ 0}

the upper(τu)-quantile halfspace associated with the optimal solution(â′HPŠ;τu,

b̂
′
HPŠ;τu)

′ to (1), one can consider theτ-quantile region

R(n)
HPŠ

(τ) :=
⋂

u∈S m−1

⋂{
H(n)+

HPŠ;τu

}
(2)

for anyτ ∈ (0,1), where
⋂{

H(n)+
HPŠ;τu

}
stands for the intersection over all optimal so-

lutions corresponding to fixedτ andu. In the location casep= 1, these regions were
shown to coincide with the Tukey (1975) halfspace depth regions; see Theorem 4.2
of HPŠ10. In the general regression casep> 1, they still form a family of polyhedral
regions nested up to the classical quantile crossings. As illustrated in Section 7 of
HPŠ10, these regression quantile regions allow for a much richer regression analysis
than any traditional multiple-output regression method can provide.
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Quite interestingly, these quantile regions can also be obtained from a different
family of directional multiple-output regression quantiles, elaborated in Kong and
Mizera (2008) and Paindaveine andŠiman (2010a). In the same empirical setup as
above, these alternative quantiles—referred to asprojection quantilesin the sequel—
can be defined as any element of the collectionΠ (n)

proj;τu of hyperplanesπ (n)
proj;τu :=

{(w′,y′)′ ∈ Rp−1×Rm : b̂
′
proj;τuy− â′proj;τu(1,w

′)′ = 0}, with

(
âproj;τu

b̂proj;τu

)
∈ argmin

n

∑
i=1

ρτ(b̃
′
yi − ã′xi) subject to b̃= u. (3)

In this context, we say thatu is aτ-critical direction if there exists aπ (n)
proj;τu ∈ Π (n)

proj;τu
that contains exactlym+ p− 1 data points, and we will denote the collection of
τ-critical directions byKτ . SettingH(n)+

proj;τu := {(w′,y′)′ ∈ Rp−1 ×Rm : b̂
′
proj;τuy−

â′proj;τu(1,w
′)′ ≥ 0}, it can then be shown that, under very mild conditions,

R(n)
HPŠ

(τ) = R(n)
proj(τ) :=

⋂

u∈S m−1∩Kτ

⋂{
H(n)+

proj;τu

}
(4)

for any τ ∈ (0,1), where
⋂{

H(n)+
proj;τu

}
stands for the intersection over all optimal

solutions for which the corresponding(τu)-quantile hyperplaneπ (n)
proj;τu contains ex-

actlym+ p−1 data points; see Theorem 4.4 in Paindaveine andŠiman (2010a). This
shows that the HP̌S10 quantile regions can indeed be often obtained from projection
quantiles. As an important by-product, we can get many characteristics useful for
statistical inference, including the hyperplane coefficientsâproj;τu andb̂proj;τu, and the
Lagrange multiplier vectors corresponding to the equalityconstraint in (3).

In this paper, we develop an algorithm that solves the parametric programming

problem (3) and allows to compute efficiently the quantile regionsR(n)
HPŠ

(τ) through
(3)-(4). The proposed procedure therefore appears as a competitor of the one de-

scribed in Paindaveine anďSiman (2010b)1 that computes the regionsR(n)
HPŠ

(τ) di-
rectly from (1)-(2). We shall see that the problem (3) falls into the category of linear
programs with parametric right hand side. They are quite common in practice and
their theory is well developed. A MATLAB toolbox for them has also been written;
see Kvasnica, Grieder, and Baotić (2004). However, the general problem can be sim-
plified substantially in the special case considered here, which gives rise to the fast
and simple solver provided in this paper. Our work confirms the trend that applica-
tions of parametric programming in computational geometrystill grow in number;
see Raković, Grieder, and Jones (2004) for another paper onthis topic.

The outline of the paper is as follows. In Section 2, we describe in detail a proce-
dure that solves the parametric programming problem (3) andallows for the compu-

tation of the quantile regionsR(n)
proj(τ). In Section 3, we present a step-by-step descrip-

tion of the corresponding algorithm2. In Section 4, we provide some illustrations of

1 The present paper somewhat mimics the structure and wordingof Paindaveine anďSiman (2010b) to
highlight their mutual similarities and differences.

2 Our MATLAB implementation of this algorithm can be freely downloaded from the web page
http://homepages.ulb.ac.be/~dpaindav

http://homepages.ulb.ac.be/~dpaindav
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these quantile regions and compare them with the quantile regionsR(n)
HPŠ

(τ) computed
from (1)-(2). In Section 5, we conduct some simulations to evaluate the efficiency of
our implementation of the algorithm and to compare it with the procedure described
in Paindaveine anďSiman (2010b). Finally, some technical matters related to the pro-
posed algorithm are discussed in Section 6.

2 Description of the procedure

In this section, we describe how the problem (3) with given fixed τ ∈ (0,1) can be
solved for allu’s fromS m−1 by means of parametric programming, with the focus on
τ-critical directions (since these are the only directions to be considered to compute

the quantile regionsR(n)
proj(τ) from (3)-(4)). We assume throughout that, when de-

prived of their first coordinate, the data points(xi ,yi) ∈ Rp×Rm, i = 1, . . . ,n, come
from a continuous distribution overRm+p−1. Under this assumption, the algorithm we
describe below applies with probability one—problems can be expected only from
very exceptional data configurations, typically leading todegeneracy, unwanted zero
coordinates or non-invertible matrices in the procedure.

In what follows, we rewrite the problem (3) as a linear program in a convenient
way and show that the assumptionu∈ S

m−1 can be relaxed without any harm into
u∈ Rm (or more precisely, intou∈ Rm\ {0}). We demonstrate that (i) the resulting
spaceRm of theu’s can be segmented into polyhedral cones, each corresponding to
the same optimal basisof the associated linear program, and that (ii)the edges (or
generating directions) of these cones must comprise all theτ-critical directions. Be-
sides, we describe the relation between any fixed (non-zero)u in each such cone and
the corresponding quantile hyperplane coefficientsâproj;τu and b̂proj;τu, and explain,
for any given non-zero vectoru0, how to get the cone containingu0. Finally, we de-
scribe the way how to find all neighboring cones adjacent to a given one by means
of simple dual simplex post-optimization, which paves the way for finding the whole
conic segmentation, hence for solving the problem completely.

First, let us introduce the following notation. Let 0ℓ be theℓ-dimensional zero
vector and 1ℓ be theℓ-dimensional vector of ones. Denote byIℓ×ℓ andOr×s the ℓ-
dimensional identity matrix and the zeror × s matrix, respectively. The positive and
negative parts of anℓ-vectorv = (v1, . . . ,vℓ)′ are defined asv+ := (max(v1,0), . . . ,
max(vℓ,0))′ andv− := (max(−v1,0), . . . ,max(−vℓ,0))′, respectively. We writer =
(r1, . . . , rn)

′ for the vector of residualsr i = r i(ã, b̃) := b̃
′
yi − ã′xi , i = 1, . . . ,n. From

then×m (response) matrix

Y := (y1, . . . ,yn)
′ =: (yc

1, . . . ,y
c
m)

and then× p (design) matrix

X := (x1, . . . ,xn)
′ =: (xc

1, . . . ,x
c
p),

we define

U
y =U

y
n×2m := (yc

1,−yc
1, . . . ,y

c
m,−yc

m) and V
x =V

x
n×2p := (xc

1,−xc
1, . . . ,x

c
p,−xc

p),
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respectively. In the setup described in the Introduction,xc
1 = 1n. The general notation

is used here because sometimes it may be interesting to work with anotherxc
1 (for

example, when multiple identical observations occur in thesample, which may be
relevant for resampling procedures) and because our algorithm does not require any
special assumption onxc

1 at all. Finally, all vector inequalities are interpreted coordi-
natewise and some basic Matlab notation is used hereinafter, mainly for submatrices
and subvectors with possibly permuted rows or columns.

With this notation, the optimization problem (3), for anyu∈ S m−1, can be rep-
resented as the linear program

min
zP

c′PzP subject to APzP = bP, zP ≥ 0, (P)

with its dual twin brother

max
µP=(µb′,µr

P
′)′

u′µb subject to A
′
PµP ≤ cP, (D)

where, writingMm×2m for the Kronecker productIm×m⊗ (1,−1), we set

zP = (b′(b̃),a′(ã), r ′+, r
′
−)

′ ∈R
2m+2p+2n,

b= b(b̃) = (b̃1+, b̃1−, . . . , b̃m+, b̃m−)′ ∈ R
2m,

a= a(ã) = (ã1+, ã1−, . . . , ãp+, ãp−)′ ∈ R
2p,

cP = (0′2m+2p,τ1′n,(1− τ)1′n)
′ ∈R

2m+2p+2n,

bP = (u′m,0
′
n)

′ ∈ R
m+n,

AP =

(
A1

P(m×(2m+2p+2n))

A2
P(n×(2m+2p+2n))

)
=

(
Mm×2m Om×2p Om×n Om×n

U
y
n×2m −Vx

n×2p −In×n In×n

)
;

here,µP is the Lagrange multiplier vector corresponding to the equality constraint
from (P).

Consider now someu0 such that there exists a solution(â′proj;τu0
, b̂

′
proj;τu0

)′ to (3)
with only non-zero entries (which implies thatu0 itself has non-zero coordinates
only), and denote bŷzP the corresponding optimal solution to (P). We then define

– Ib (resp.,̃Ib) as the vector containing indices (sorted in ascending order) of pos-
itive coordinates inb(b̂proj;τu0) (resp., inb(−b̂proj;τu0)). Note thatIb and Ĩb have

common dimensionm. For instance, if̂bproj;τu0 =(2,−4)′, then one hasb(b̂proj;τu0)

= (2,0,0,4)′, Ib = (1,4)′, b(−b̂proj;τu0) = (0,2,4,0)′, andĨb = (2,3)′;
– Ia and Ĩa as the vectors obtained by adding 2m to each entry of the vectors

obtained analogously toIb and Ĩb, but froma(âproj;τu0) anda(−âproj;τu0). Note

thatIa andĨa have common dimensionp. With the samêbproj;τu0 as above (yield-
ing m= 2) andâproj;τu0 = (−1,2)′, one obtainsIa = (2,3)′+(4,4)′ = (6,7)′ and
Ĩa = (1,4)′+(4,4)′ = (5,8)′;

– IZ, Ie and Ĩe as the vectors containing indices (still sorted in ascending order)
of observations with zero, positive, and negative residuals, respectively. Their
dimensions—ζ , π , andν, say (satisfyingζ +π+ν = n)—of course are the num-
bers of zero, positive and negative residuals, respectively.
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We will consider only the caseπ 6= 0 andν 6= 0 below, but the other (simpler)
cases can be handled analogously. Finally, we put

IB = (I ′b, I
′
a,2(p+m)1′π + I ′e,(2p+2m+n)1′ν + Ĩ

′
e)

′, IR = (I ′Z, I
′
e, Ĩ

′
e)

′,

and

IC = (I ′B, Ĩ
′
b, Ĩ

′
a,2(p+m)1′ζ + I ′Z,(2p+2m+n)1′ζ + I ′Z,

(2p+2m+n)1′π + I ′e,2(p+m)1′ν + Ĩ
′
e)

′;

the vectorIB then consists of all the indices of basic variables. Therefore, it seems
natural to permute rows and columns ofAP according toIR andIC (in the spirit of
Narula and Wellington (2002)), and to replace (P) with the strictly equivalent problem

min
zN

c′NzN subject to ANzN = bN, zN ≥ 0, (N)

where
zN = zP(IC), cN = cP(IC), bN = bP,

and

AN =

(
A1

N(m×(2m+2p+2n))

A2
N(n×(2m+2p+2n))

)
=

(
A1

P(IC)
A2

P(IR, IC)

)

(the vectorbP remains untouched by this change since itsn last components are
equal). Alternatively, we can write

zN = P
′
CzP, cN = P

′
CcP, bN =

(
Im×m Om×n

On×m PR

)
bP,

and

AN =

(
Im×m Om×n

On×m PR

)
APPC,

wherePR andPC are the row and column permutation matrices (so thatP′
R = P

−1
R

andP′
C = P

−1
C ). One can easily check that

cN = (0′m, 0′p, τ1′π , (1− τ)1′ν , 0′m, 0′p, τ1′p, (1− τ)1′p, (1− τ)1′π , τ1′ν)
′

=: (c′0, c′1, c′2, c′3, c̃′0, c̃′1, c̃′2, c̃′3, c̃′4, c̃′5)
′

=: (c′(m+n)×1, c̃
′
(m+2p+n)×1)

′

and thatAN is of the formAN =
(
B(m+n)×(m+n)

... B̃(m+n)×(m+2p+n)

)
, with

B=




Jm×m Om×p Om×π Om×ν
E1

p×m F1
p×p Op×π Op×ν

E2
π×m F2

π×p −Iπ×π Oπ×ν
E3

ν×m F3
ν×p Oν×π Iν×ν



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and

B̃=




−Jm×m Om×p Om×p Om×p Om×π Om×ν
−E1

p×m −F1
p×p −Ip×p Ip×p Op×π Op×ν

−E2
π×m −F2

π×p Oπ×p Oπ×p Iπ×π Oπ×ν
−E3

ν×m −F3
ν×p Oν×p Oν×p Oν×π −Iν×ν


 ,

whereJ stands for the invertiblem×m diagonal matrix withJℓℓ = sign((u0)ℓ), ℓ =
1, . . . ,m, and whereEi andFi , i = 1,2,3, are some known data-dependent matrices
related toUy orVx.

The columns ofB correspond to the optimal basic variables of (N) so thatẑN(m+
n+1 : 2m+2p+2n) is zero and̂zN(1 :m+n)=B−1bN =B−1(:,1 :m)u0. This readily
implies that̂zN(1 :m) = abs(u0) := u0++u0−, and that the norm ofu0 does not affect
the resulting quantile hyperplaneπ (n)

proj;τu0
but only the scale of its coefficients. Also

note thatB−1 can be easily computed thanks to the special blockwise structure ofB.
We simply have

B
−1 =




C
−1
1 O(m+p)×π O(m+p)×ν

C2C
−1
1 −Iπ×π Oπ×ν

−C3C
−1
1 Oν×π Iν×ν


 ,

where

C1 =

(
Jm×m Om×p

E1
p×m F1

p×p

)
, C2 =

(
E

2
π×m

... F2
π×p

)
, and C3 =

(
E

3
ν×m

... F3
ν×p

)
.

Blockwise inversion ofC1 analogously leads to

C
−1
1 =

(
J O

−(F1)−1E1J (F1)−1

)
=:

(
J O

K L

)
.

Now the question is whenB=B(u) ceases to be optimal. According to the theory
of linear programming,B is optimal if and only ifu satisfies both primal and dual
feasibility conditions (PF) and (DF):

z= B
−1bN ≥ 0m+n, (PF)

d′ := c′B−1
B̃− c̃′ ≤ 0′m+2p+n. (DF)

The vector̂µ ′
N := (µb

m
′
,µ r0

p
′
,µ r+

π
′
,µ r−

ν
′
) = c′B−1 hidden in (DF) solves the prob-

lem dual to (N) and contains the Lagrange multipliers corresponding to the equality
constraint in (N). Clearly,

µb′ = τ1′π(E
2
J+F

2
K)− (1− τ)1′ν(E

3
J+F

3
K),

µ r0′ = τ1′πF
2
L− (1− τ)1′νF3

L, µ r+′
=−τ1′π , and µ r−′

= (1− τ)1′ν

(note that ifp= 1 andxc
1 = 1n, thenµ r0 = τπ − (1− τ)ν). The Lagrange multiplier

vectorµ̂P from the original problem (P) can then be obtained from

µ̂N =

(
Im×m Om×n

On×m PR

)
µ̂P.
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Note thatµ̂P(1 : m) = µ̂N(1 : m).
Now, let us partitiond according tõc into

d = (d′
0,d

′
1,d

′
2,d

′
3,d

′
4,d

′
5)

′.

Then simple algebra leads to

z=




J

K

E2J+F2K

−(E3J+F3K)


u (5)

d0 = 0m, d1 = 0p, d2 =−µ r0−τ1p, d3 = µ r0− (1−τ)1p =−d2−1p, d4 =−τ1π −
(1− τ)1π =−1π , andd5 =−(1− τ)1ν − τ1ν =−1ν . Note that the matricesEi , i =
1,2,3, are used only in the product withJ that can be obtained fromEJ = Y(IR, :),
where we setE := (E1′ ... E2′ ... E3′)′.

Note as well that (DF) is equivalent to

(d′
2,d

′
3)

′ ≤ 02p,

which can be rewritten as

−τ1p ≤ µ r0 ≤ (1− τ)1p.

Most importantly, (DF) must be satisfied at least foru0 and does depend onu only
implicitly throughB. Consequently,B remains dual feasible whenever (PF) holds.

All u’s satisfying (PF) form a polyhedral cone, sayCu0. Such cones (correspond-
ing to variousu0’s) fill the whole spaceRm and our goal is to find them all, together
with the corresponding optimal bases. Note that allu’s in the interior of such cones
lead to the hyperplane solutions fitting exactlyp observations and that the solution
hyperplanes fittingm+ p−1 data points must be included among those correspond-
ing to the generating vectors of all these cones.

Let us assume that we have identified all non-redundant constraints in (PF) and
facets ofCu0. Each such facet must be shared with another (adjacent) cone. That is
why we may simply pass through all the conesCu counter-clockwise whenm= 2. In
general, it is possible to use the breadth-first search algorithm and always consider
all suchCu’s that are adjacent to a cone treated in the previous step andhave not been
considered yet.

It remains to clarify the process leading to the adjacent cone from a facet ofCu0.
This facet, say, corresponds to thei-th constraint in (PF) and has an interior pointuf .
This point is still certain to meet the dual feasibility conditions (DF) and therefore we
may further proceed with the dual simplex post-optimization until the optimal basis
of the adjacent cone is found.

Let us describe this process in detail. TheIC(i)-th original variable will be the
first to leave the basis. Then we should compute the auxiliaryvector

t = (t′0, t
′
1, t

′
2, t

′
3, t

′
4, t

′
5)

′ = B
−1(i, :)B̃
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(partitioned according tod) and find an indexj satisfying

d j

t j
= min

{dh

th
: th < 0,h= 1, . . . ,m+2p+n

}
.

The IC(n+m+ j)-th original variable should then replace the removed one. We get
a new dual feasible basis, sayB1.

Note that

i ≤ m m+1≤ i ≤ m+ p m+ p+1≤ i ≤ m+ p+π m+ p+π+1≤ i
t ′0 = −Im×m(i, :) 0′m 0′m 0′m
t ′1 = 0′p −Ip×p(i −m, :) 0′p 0′p
t ′2 = 0′p −L(i −m, :) −F2(i −m− p, :)L F3(i −m− p−π , :)L
t ′3 = 0′p L(i −m, :) F2(i −m− p, :)L −F3(i −m− p−π , :)L
t ′4 = 0′π 0′π −Iπ×π(i −m− p, :) 0′π
t ′5 = 0′ν 0′ν 0′ν −Iν×ν(i −m− p−π , :)

Consequently, we may consider only certain subvectors oft andd without any loss
of generality.

If i ≤ m+ p, then we can always choosej = i, which only changes the sign of a
regression coefficient. Ifi > m+ p, then the optimalj results from

d j

t j
= min

{dh

th
: th < 0,h= m+ p+1, . . .,m+3p

}

if this fraction is less than or equal to 1; otherwise we can set j = 2p+ i. If moreover
p = 1 and the only regressor is the unit vector, then(t ′2, t

′
3)

′ equals(−1,1)′ for i ≤
m+ p+π and(1,−1)′ otherwise.

The resulting basisB1 is optimal if and only if

z1 = B
−1
1 (:,1 : m)uf ≥ 0m+n, (6)

which appears to hold with probability one (otherwise, we would have to repeat the
previous steps until the optimal basis of the adjacent cone is found, which is not
supported by the accompanying MATLAB code).

3 Algorithm

To sum up, the basic form of the algorithm can always be performed in the following
steps where the highlighted text refers to the topical subsections of Section 6 that
discuss some issues in more detail:

1. Adjust the data andτ if necessary; seeInput DataandChoice ofτ, respectively.
2. Consider (P) and find its optimal basisB=B(u0) for a given directional vectoru0,

seeComputing the first directional quantile.
3. SetBnew := {B(u0)}.
4. SetBold := Bnew, thenBnew := /0.
5. For eachB= B(u) in Bold,
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(a) computez= z(u) from (5) that determines the inequalities in (PF) defining
the coneCu of all directions leading to the same optimal basisB asu

(b) find facets and vertices ofCu; seeFinding non-redundant constraints, facets
and interior points

(c) drop all facets ofCu whose adjacent cones have already been investigated; see
Realization of the breadth-first search algorithm

(d) for each remaining facet ofCu, find its interior pointuf and use it in the
simplex post-optimization step to determine the optimal basisBnew(uf ) of the
adjacent cone sharing that facet withCu (as described at the end of Section
2), and addBnew(uf ) to Bnew;

6. If Bnew is non-empty, go to Step 4.

If Bnew is empty, then the algorithm terminates successfully (all conesC have been
found and there is no new cone facet to investigate).

4 Illustrations

This section presents some illustrative examples of the quantile regionsR(n)
proj(τ) ob-

tained from our MATLAB implementation of the procedure described above. What
we plot for each region is actually the corresponding quantile contour, namely its

boundary∂R(n)
proj(τ). In each case, we compare the results with the contours∂R(n)

HPŠ
(τ)

computed from (1)-(2), as described in Paindaveine andŠiman (2010b).

Bivariate location case.We start with the bivariate location case obtained withm= 2
and p = 1. We independently generated data pointsyi , i = 1, . . . ,n = 2499, from
the uniform distribution over the unit square[0,1]2. Figure 1(a) plots the resulting

quantile contours∂R(n)
proj(τ) for τ = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35,

0.40, and 0.45. These contours match very well their population versions—namely
the population halfspace depth contours (see Rousseeuw andRuts 1999)—and seem

to coincide, as expected, with the contours∂R(n)
HPŠ

(τ) plotted in Figure 1(c)—that
are computed from (1)-(2). Our code can deal with weighted observations (which in
particular allows for multiple observations): if weightsωi > 0, i = 1, . . . ,n (summing
up to one or not) are given, the resulting “weighted” optimization problem is obtained
by substitutingyω i := ωiyi andxω i := ωixi , i = 1, . . . ,n, for theyi ’s andxi ’s in (3).

Figure 1(b) reports, for the sameτ ’s as in Figure 1(a), the quantile contours∂R(n)
proj(τ)

associated with weighted data pointsyω i := ωiyi , i = 1, . . . ,n, where the weights are
given by

ωi =

{
2499
20 for i = 1, . . . ,10

1 for i = 11, . . . ,n= 2499

and the original data pointsyi are the same as in Figure 1(a). The ten points plotted in
Figure 1(b) are the original data pointsyi , i = 1, . . . ,10, that receive the larger weight.

The corresponding contours∂R(n)
HPŠ

(τ), which are reported in Figure 1(d), still appear
to be equal to the contours computed from projection quantiles.
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Trivariate location case.Figure 2 illustrates the trivariate location case withm= 3
and p = 1. The sample considered there consists ofn = 249 data points obtained
independently from the uniform distribution over the unit cube [0,1]3. Figure 2(a)

reports the quantile contours∂R(n)
proj(τ) computed from projection quantiles forτ =

0.05, 0.15, and 0.25. The only other method available for computing halfspace depth
regions beyond dimension two is the one from Paindaveine andŠiman (2010b) that

is based on (1)-(2); the corresponding contours∂R(n)
HPŠ

(τ) are plotted in Figure 2(b).
As expected, both methods seem to lead to the same contours.

Regression setup with two responses and one random covariate. We consider the
simple heteroscedastic regression model

Y = (W,W)′+
√

Wε,

where the random covariateW is uniformly distributed over[0,1] and the random vec-
tor ε (which is independent ofW) is uniformly distributed over the unit square[0,1]2.
From this model, we independently generated data points(x′i ,y

′
i)
′ = (1,wi ,y′i)

′ ∈
Rp ×Rm = R2 ×R2, i = 1, . . . ,n = 249. Figure 3(a) displays the resulting (trivari-

ate, since they are objects of the(w,y)-space) regression quantile contours∂R(n)
proj(τ)

for τ = 0.05, 0.15, 0.30, and 0.45. Figure 3(b) provides the corresponding regression

quantile contours∂R(n)
HPŠ

(τ) computed from (1)-(2) as described in Paindaveine and

Šiman (2010b).

5 Simulations

We now present some empirical results that quantify the speed (and show the pos-
sibilities) of our MATLAB implementation of the procedure described in this paper.
We used an Apple computer with Intel Core Duo 1.83GHz, 512MB RAM, W IN XP
SP2 and MATLAB 7.3.0.267. Of course, other hardware or initial settings may lead
to different results.

5.1 Location case

We first focus on the location case (p = 1), hence on the computation of halfspace
depth contours. We considered only the bivariate case (m= 2) so that we could com-
pare the MATLAB implementation of the method described in this paper with that
coauthored and kindly provided to us by Ivan Mizera that we chose for a benchmark
(in Section 5.2, we will use the code from Paindaveine andŠiman (2010b), which is
the only competitor available in the general regression case).

We generatedn i.i.d. bivariate (m= 2) observations (i) from the bivariate stan-
dard normal distributionN(0,1)2 (S = 1) and (ii) from the centered bivariate uniform
distribution over the unit squareU([−0.5,0.5])2 (S = 2). For any combination ofτ =
{0.010, 0.025, 0.050, 0.100, 0.200, 0.400} andn∈ {50,100,150,200,300,500,1000,
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2000,5000,10000,20000}, we ran the computation ten times for each scenario S3.
Average execution times in seconds are reported in Tables 1 and 2 (for S=1 and S=2,
respectively) and show that the computation hardly takes more than 1 minute and a
half even forn = 10000. As expected, they increase withτ and they are higher for
S=2 than for S=1 ifτ is low while the reverse becomes true with growingτ. How-
ever, their dependence onn seems, on average, higher than linear and not worse than
quadratic in any case.

For the same reasons as those presented in Paindaveine andŠiman (2010b), the
comparison with the benchmark is not free of limitations. Still, the results seem to
demonstrate high stability and superiority of the code proposed in this paper over
the benchmark because it wasalwaysobserved faster, sometimes even more than
27 times. It excels especially when applied to medium-sizeddata sets and not too
extreme values ofτ.

The decrease of relative efficiency of our code for very smallvalues ofτ or n
can be explained by the fact that it is the inefficient finding of the initial solution that
contributes the most to the overall execution time in these cases. Indeed, profiling of
the code in MATLAB shows that this contribution is usually higher than 30% even
for n= 5000 if τ = 0.01 (and exceeds 70% forn= 50 and the sameτ). On the other
hand, ifτ = 0.3, then this contribution is still often larger than 30% forn= 50 but
usually drops below 5% forn= 5000. Different memory space requirements can also
play some role, especially ifn is set very high.

5.2 General regression case

Next we consider the general regression context represented by the simple model

Yp×1 = Bp×mXm×1+ ε p×1,

whereX1 = 1, (X2, . . . ,Xp)
′ has i.i.d. marginals that are uniformly distributed over

(0,1), ε is p-variate standard normal, andB can be obtained from thep×m matrix
of ones by replacing the elements in the first column with zeros. Average execution
times4 in seconds, for a total ofr replications, are recorded for many combinations
of n, p andτ in Table 3 (form= 2 with r = 10) and in Table 4 (form= 3 with r = 5,
and form∈ {4,5} with r = 3).

Here, the only competitor is the code described in Paindaveine anďSiman (2010b).
The code presented in this paper seems to slightly outperform that of Paindaveine and
Šiman (2010b) at least ifm= 2 or (in the location case) ifm= 3.5

3 Actually, with the following changes to the default settings of our code: CTechST.PFZ1CheckI = 0,
CTechST.InCheckI = 0, CTechST.ReportI = 0, CTechST.TestModeI = 0, and CTechST.OutSaveI = 0. This
suppresses some almost surely redundant testing, checkingthe input for correctness, detailed output on the
screen, computing some auxiliary technical statistics andstoring the output on the disk, all that to make our
code faster and possible to use in an extensive simulation. Note that the output form= 2 andn≤ 10000
is usually small enough to be kept in the internal memory; so the last option does not affect the results too
much here.

4 Still with the same changes to the default settings as in Section 5.1.
5 Nevertheless, note that the accuracy of efficiency ratios islimited due to the rounding error of execu-

tion times and that the average execution times themselves may (slightly) differ even for the same data set,
which follows from comparing corresponding values from Tables 1 and 3.
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6 Technical Details

In this section, we are going to discuss in more detail some technical matters related
to the algorithm described in Sections 2 and 3.

Choice ofτ. If nτ is an integer andp= 1, then linear programming problem (P) has
infinitely many solutions for eachu. In general, if such a complication occurs, we
solve it by a small perturbation ofτ, which can hardly make any important differ-
ence in most applications. Besides, there is only a finite number of different quantile
regions anyway, so that such small perturbations ofτ could always be done without
loss of generality when the goal is only to compute the quantile regions.

Input data. The code assumesm∈ {2,3, . . . ,8} andn≤ 100000 and its output should
be quite reliable form∈ {2,3}, p≤ 10 andn≤ 10000 (ifm= 2) or 500 (ifm= 3) at
least. The program was heavily tested only on data from our simulation study, with
all coordinates less than 5 or so. This is why we suggest to standardize the input ob-
servations in some way to a similar range whenever possible,which should enhance
numerical stability of the algorithm. Besides, most real data are discrete because they
are measured or recorded only with limited precision. This makes some bad data
configurations more likely than almost impossible. Therefore we also recommend to
perturb the input data points by some random noise of a reasonably small magnitude
to prevent their discreteness from causing any troubles.

When a few identical observations occur, we may either aggregate the same rows
of AP into a single one or introduce (positive) weights intocP and proceed analo-
gously (the formulae would have to be changed a little but thecrucial simplification
of (DF) would persist). We prefer the first approach that is faster, easier to implement
and still leads to the same quantile coefficients. Since the algorithm does not rely on
any special form ofxc

1, the code can also handle such aggregated or weighted rows
(corresponding to weighted observations). Therefore the program can be used even
for bootstrap and subsampling methods quite easily. We might also refer to Hlubinka,
Kotı́k, and Vencálek (2010) for another interesting attempt to combine weights and
halfspace depth ideas.

Computing the first directional quantile.We decided to solve (P) with the aid of free
MATLAB toolbox SEDUM I 1.1 (see Pólik 2005 and Sturm 1999) that exploits spar-
sity and is very fast, flexible, and easy-to-use. Any fast andreliable solver designed
for univariate quantile regression might be substituted here. In fact, only fast compu-
tation of ordinary quantiles is needed (but not implemented) if p= 1.

As mentioned above, we can relax the assumptionu ∈ S m−1 without any loss
of generality because all nonzero vectorsu in the same direction lead to the same
upper halfspaceH(n)+

proj;τu. In general, we chooseu0 as a normalized corner of[−1,1]m.
Large or high-dimensional problems can be solved more effectively by segmenting
the whole space toU0 regions of the form

U0 = {u∈ R
m : sign(u) = sign(u0)},
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and considering each of these 2m different orthants separately. Note that the firstm
constraints in (PF) are trivially satisfied in eachU0.

If the starting direction leads to troubles, then other choices are tried until the
optimal solution with the required number of non-zero coordinates is found.

Finding non-redundant constraints, facets and interior points. If m= 2, then the
problem of finding non-redundant constraints and facets canbe solved by assigning
angles (sayθ ’s) to all the constraints in a clever way. The interior pointcan then be
found simply by means of the facet normal vector.

For m> 2, the problem is far more complicated. First, we make the problem
bounded by restricting to vectorsu in [−1,1]m, which turns the cones into poly-
topes. Then we find all vertices and facets of such a polytope by means of the
dual relationship between vertex and facet enumeration (see Bremner, Fukuda, and
Marzetta (1998)) and programqhull (see Barber, Dobkin, and Huhdanpaa (1996))
for the latter one, fortunately accessible in MATLAB (In fact, we only modify the
functioncon2vert.mby Michael Kleder from MATLAB Central File Exchange.) This
enumeration procedure requires an interior point of the resulting polytope to start. We
search for it from the scaled center of the known (parent) facet and in the direction of
its normal vector.

In principle,uf might be found even without the artificial bounding with subse-
quent vertex enumeration and the zero vertex problem might be addressed as well;
see Chvátal (1983). However, we decided to tailor our code for qhull, which is an
already developed and mature tool for solving similar problems that is quite stable,
fast and familiar with rounding errors.

Realization of the breadth-first search algorithm.When this algorithm is employed,
then some identifiers (scaled facet centers or facet normal vectors) of all (or lastly)
used facets are stored in sorted archive(s) and a new facet isused for building the
adjacent cone only if its identifier differs from all those archived, which is checked
by the binary search algorithm.

Plotting the contours.The program output provides upper halfspaces including those
whose intersection equals the quantile region of our interest (if all of them are uniquely
defined). Vertices of these regions could be obtained by the vertex enumeration men-
tioned above (and also used in our code in a different context). The quantile contour
with known vertices can be plotted easily as their convex hull, for example. This is
essentially the procedure we used to generate all figures of the present paper.

Computing many (or all) contours at once.The first (initial) solutions could be found
faster for all relevantτ ’s at once than for eachτ separately, by linear programming
parametric inτ. In the purely location case, it would be advantageous to compute the
contours from the highestτ < 0.5 to the lowest and to reduce the data set in each step
(with adjustingτ accordingly), since inner points are redundant for computing outer
contours. If we were interested even in the individual quantile hyperplanes and their
coefficients, we could still replace all the surely interiorobservations with a single
aggregated pseudo-observation keeping the new resulting subgradient conditions the
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same as before (as Roger Koenker kindly suggested to us). These proposals are not
implemented in our code as it is designed to compute a single contour only.
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(a) (b)

(c) (d)

Fig. 1 In Subfigure (a), quantile contours∂R(n)
proj(τ) of orderτ = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,

0.35, 0.40, and 0.45 are plotted, by using the method described in this paper, from a sample ofn= 2499
observations drawn independently from the uniform distribution over [0,1]2. Subfigure (b) reports the
corresponding contours after the weights of the first ten data points (plotted in red) were changed from 1

to 2499/20. Subfigures (c)-(d) provide the corresponding quantile contours∂R(n)
HPŠ

(τ) computed from the

method described in Paindaveine andŠiman (2010b).
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(a) (b)

Fig. 2 In Subfigure (a), quantile contours∂R(n)
proj(τ) of orderτ = 0.05, 0.15, and 0.25 are plotted by using

the method described in this paper from a sample ofn= 249 observations drawn independently from the

uniform distribution over[0,1]3. Subfigure (b) provides the corresponding quantile contours ∂R(n)
HPŠ

(τ)
computed as described in Paindaveine andŠiman (2010b).

(a) (b)

Fig. 3 Subfigure (a) reports the quantile contours∂R(n)
proj(τ) of orderτ = 0.05, 0.15, 0.30, and 0.45 for

n = 249 observations drawn independently from the regression model described in Section 4 (to which

we refer for details). Subfigure (b) provides the corresponding quantile contours∂R(n)
HPŠ

(τ) computed as

described in Paindaveine andŠiman (2010b).
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Average absolute and relative execution times

n\τ 0.010 0.025 0.050 0.100 0.200 0.400

50 0.03 (4.3) 0.04 (5.0) 0.04 (7.0) 0.07 (6.3) 0.09 (8.1) 0.10 (9.5)

100 0.06 (5.7) 0.05 (8.4) 0.09 (8.4) 0.10 (11.1) 0.14 (13.0) 0.17 (15.2)

150 0.05 (8.4) 0.07 (10.1) 0.09 (12.9) 0.14 (14.1) 0.19 (17.6) 0.23 (20.0)

200 0.07 (9.4) 0.10 (11.0) 0.13 (13.4) 0.18 (16.1) 0.23 (20.6) 0.30 (22.6)

300 0.09 (11.8) 0.12 (14.2) 0.19 (15.6) 0.26 (19.6) 0.36 (23.3) 0.47 (25.9)

500 0.16 (11.1) 0.19 (16.6) 0.29 (18.8) 0.42 (22.6) 0.62 (25.6) 0.81 (27.7)

1000 0.27 (15.2) 0.44 (17.6) 0.65 (20.8) 0.99 (23.9) 1.51 (26.0) 2.05 (27.7)

2000 0.75 (12.4) 1.03 (18.2) 1.67 (19.9) 2.66 (22.0) 4.06 (23.8) 5.74 (24.2)

5000 2.20 (13.3) 4.33 (14.2) 6.96 (15.6) 11.44 (16.9) 18.27 (17.7) 26.20 (17.5)

10000 8.18 (8.8)14.34 (10.6)24.88 (11.0) 42.14 (11.6) 68.00 (12.0) 97.04 (12.1)

2000026.65 (9.4)56.10 (9.2)96.90 (9.8)168.34 (9.9)267.38 (10.3)373.98 (10.4)

Table 1 (2D location setting:m= 2 andp= 1, scenario S=1) Average execution time (in seconds) of our
code is provided for scenario S=1, number of observationsn, and orderτ in the bivariate location context.
The numbers in parentheses indicate how many times it is faster than the benchmark.

Average absolute and relative execution times

n\τ 0.010 0.025 0.050 0.100 0.200 0.400

50 0.04 (4.3) 0.05 (4.8) 0.05 (6.4) 0.07 (7.0) 0.09 (7.8) 0.10 (8.8)

100 0.06 (6.3) 0.07 (7.7) 0.09 (9.2) 0.11 (11.8) 0.13 (14.9) 0.16 (15.4)

150 0.06 (8.2) 0.11 (7.7) 0.10 (13.5) 0.15 (14.5) 0.19 (17.7) 0.22 (19.9)

200 0.09 (9.1) 0.12 (10.9) 0.15 (13.7) 0.19 (16.8) 0.24 (20.1) 0.29 (22.1)

300 0.12 (10.3) 0.14 (14.3) 0.22 (15.2) 0.28 (20.1) 0.35 (23.7) 0.44 (25.7)

500 0.18 (12.1) 0.22 (17.0) 0.34 (18.7) 0.46 (22.8) 0.63 (25.6) 0.78 (27.8)

1000 0.42 (12.0) 0.55 (17.9) 0.77 (20.7) 1.10 (23.8) 1.55 (26.1) 1.95 (27.2)

2000 0.90 (13.3) 1.30 (17.7) 1.96 (19.5) 2.92 (22.0) 4.14 (23.9) 5.50 (23.8)

5000 3.91 (9.7) 5.39 (14.2) 8.32 (15.5) 12.68 (16.9) 18.87 (17.5) 24.96 (17.6)

1000012.06 (7.9)19.13 (10.2) 30.35 (10.8) 47.91 (11.3) 70.27 (12.0) 91.92 (12.0)

2000037.87 (8.5)69.58 (9.4)117.69 (9.1)189.72 (9.5)276.51 (10.1)356.12 (10.2)

Table 2 (2D location settings:m= 2 andp= 1, scenario S=2) Average execution time (in seconds) of our
code is provided for scenario S=2, number of observationsn, and orderτ in the bivariate location context.
The numbers in parentheses indicate how many times it is faster than the benchmark.
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Average absolute and relative execution times

p : n\τ 0.010 0.025 0.050 0.100 0.200 0.400

1 : 100 0.06 (1.5) 0.05 (2.0) 0.09 (1.4) 0.10 (1.6) 0.14 (1.6) 0.17 (1.6)

2 : 100 0.08 (1.1) 0.10 (1.1) 0.12 (1.3) 0.14 (1.4) 0.17 (1.4) 0.21 (1.5)

3 : 100 0.09 (1.1) 0.11 (1.1) 0.13 (1.2) 0.16 (1.3) 0.21 (1.3) 0.25 (1.4)

6 : 100 0.12 (1.2) 0.13 (1.2) 0.15 (1.3) 0.20 (1.3) 0.25 (1.4) 0.32 (1.4)

1 : 200 0.08 (1.5) 0.10 (1.6) 0.13 (1.5) 0.18 (1.6) 0.24 (1.6) 0.31 (1.6)

2 : 200 0.11 (1.2) 0.14 (1.2) 0.18 (1.3) 0.23 (1.4) 0.31 (1.4) 0.40 (1.4)

3 : 200 0.12 (1.2) 0.16 (1.1) 0.20 (1.2) 0.27 (1.3) 0.37 (1.4) 0.47 (1.4)

6 : 200 0.15 (1.2) 0.19 (1.2) 0.25 (1.2) 0.34 (1.3) 0.48 (1.4) 0.61 (1.4)

1 : 300 0.09 (1.8) 0.12 (1.7) 0.20 (1.4) 0.26 (1.6) 0.37 (1.6) 0.49 (1.6)

2 : 300 0.15 (1.1) 0.19 (1.2) 0.25 (1.3) 0.34 (1.4) 0.47 (1.4) 0.62 (1.4)

3 : 300 0.16 (1.1) 0.21 (1.2) 0.28 (1.2) 0.40 (1.3) 0.56 (1.4) 0.72 (1.4)

6 : 300 0.19 (1.2) 0.27 (1.2) 0.38 (1.2) 0.50 (1.4) 0.71 (1.4) 0.96 (1.4)

12 : 300 0.30 (1.3) 0.37 (1.3) 0.50 (1.3) 0.70 (1.5) 1.05 (1.4) 1.44 (1.5)

1 : 500 0.16 (1.4) 0.19 (1.6) 0.30 (1.5) 0.44 (1.5) 0.63 (1.6) 0.85 (1.6)

2 : 500 0.20 (1.2) 0.27 (1.3) 0.39 (1.3) 0.56 (1.4) 0.81 (1.4) 1.08 (1.4)

3 : 500 0.24 (1.1) 0.32 (1.3) 0.46 (1.3) 0.66 (1.4) 0.96 (1.4) 1.28 (1.4)

6 : 500 0.30 (1.2) 0.43 (1.2) 0.61 (1.3) 0.87 (1.4) 1.30 (1.4) 1.74 (1.4)

12 : 500 0.44 (1.4) 0.61 (1.4) 0.91 (1.4) 1.37 (1.5) 2.06 (1.4) 2.59 (1.5)

1 : 1000 0.28 (1.5) 0.44 (1.4) 0.67 (1.4) 1.02 (1.4) 1.53 (1.5) 2.10 (1.4)

2 : 1000 0.37 (1.2) 0.57 (1.2) 0.84 (1.3) 1.33 (1.3) 1.97 (1.3) 2.70 (1.3)

3 : 1000 0.42 (1.2) 0.68 (1.2) 1.01 (1.2) 1.54 (1.2) 2.34 (1.3) 3.15 (1.3)

6 : 1000 0.61 (1.1) 0.92 (1.2) 1.41 (1.2) 2.14 (1.2) 3.26 (1.3) 4.34 (1.3)

12 : 1000 0.90 (1.2) 1.45 (1.2) 2.35 (1.1) 3.42 (1.3) 5.70 (1.3) 6.71 (1.3)

1 : 2000 0.74 (1.1) 1.01 (1.4) 1.64 (1.4) 2.65 (1.4) 3.94 (1.4) 5.45 (1.4)

2 : 2000 0.82 (1.2) 1.41 (1.1) 2.16 (1.2) 3.47 (1.2) 5.19 (1.2) 7.24 (1.2)

3 : 2000 0.98 (1.1) 1.64 (1.1) 2.56 (1.2) 4.05 (1.2) 6.23 (1.2) 8.65 (1.2)

6 : 2000 1.42 (1.1) 2.33 (1.1) 3.59 (1.2) 5.80 (1.2) 9.02 (1.2) 12.39 (1.2)

12 : 2000 2.30 (1.1) 3.86 (1.2) 6.28 (1.2) 10.11 (1.2) 15.12 (1.3) 20.56 (1.3)

1 : 5000 2.46 (1.3) 4.93 (1.2) 7.46 (1.3) 11.63 (1.3) 18.05 (1.3) 25.16 (1.4)

2 : 5000 3.23 (1.1) 6.00 (1.1) 9.53 (1.2) 15.40 (1.2) 24.50 (1.2) 34.28 (1.2)

3 : 5000 4.26 (1.1) 7.71 (1.1) 11.92 (1.2) 18.75 (1.3) 29.73 (1.2) 41.46 (1.5)

6 : 5000 6.41 (1.2) 11.88 (1.1) 20.35 (1.2) 29.87 (1.3) 46.71 (1.2) 65.28 (1.5)

12 : 500013.09 (1.4) 23.80 (1.6) 41.79 (1.5) 59.10 (1.5) 91.65 (1.4)124.02 (1.8)

1 : 10000 9.61 (1.2) 17.75 (1.3) 26.22 (1.4) 42.36 (1.3) 71.10 (1.4)100.87 (1.4)

2 : 1000011.19 (1.2) 22.23 (1.1) 35.25 (1.2) 58.24 (1.2) 98.01 (1.1)134.76 (1.2)

3 : 1000014.84 (1.1) 28.01 (1.2) 44.54 (1.2) 71.65 (1.2)117.46 (1.2)170.83 (1.2)

6 : 1000021.66 (1.5) 43.72 (1.5) 71.85 (1.5)113.38 (1.6)186.31 (1.4)256.98 (1.5)

12 : 1000055.20 (1.4)111.74 (1.4)187.01 (1.5)309.01 (1.5)485.73 (1.5)667.55 (1.5)

Table 3 (2D regression settings:m= 2) Average execution time (in seconds) of our code, based onr = 10
replications, is provided for quantile orderτ , p regressors (including the intercept) andn observations. The
numbers in parentheses indicate how many times it is faster than the code from Paindaveine andŠiman
(2010b).
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Average absolute and relative execution times

m= 3 m= 4 m= 5

p : n\τ 0.010 0.025 0.100 0.200 0.010 0.025 0.010

1 : 100 0.96 (1.4) 1.42 (1.4) 9.86 (1.2) 22.73 (1.2) 5.60 (1.1) 13.99 (1.3) 48.63 (1.0)

2 : 100 1.04 (1.1) 2.23 (1.1) 11.74 (1.1) 28.66 (1.1) 5.17 (1.4) 24.03 (1.1) 41.72 (1.6)

3 : 100 1.58 (1.0) 2.79 (1.0) 15.19 (1.1) 37.12 (1.1) 11.40 (1.0) 34.14 (0.9) 125.90 (1.1)

4 : 100 2.29 (0.9) 3.55 (0.9) 18.23 (1.0) 45.80 (1.1) 25.18 (0.8) 53.39 (0.8) 346.56 (0.8)

6 : 100 4.60 (0.8) 5.40 (0.8) 24.95 (0.9) 61.84 (1.0) 91.55 (0.6) 116.28 (0.6) 1801.58 (0.5)

1 : 200 1.96 (1.3) 5.60 (1.2) 40.07 (1.1) 105.60 (1.1) 21.87 (1.0) 133.23 (1.1) 274.27 (0.9)

2 : 200 2.12 (1.1) 6.38 (1.1) 50.45 (1.1) 139.77 (1.1) 21.00 (1.0) 151.40 (1.0) 265.30 (1.0)

3 : 200 2.77 (1.0) 8.18 (1.0) 67.16 (1.0) 182.39 (1.0) 36.80 (0.9) 225.93 (0.9) 552.52 (0.8)

4 : 200 3.75 (0.9) 10.26 (0.9) 82.73 (1.0) 225.80 (1.0) 55.61 (0.8) 325.67 (0.8) 999.58 (0.7)

6 : 200 6.47 (0.8) 14.52 (0.9) 113.09 (1.0) 311.26 (1.0) 153.91 (0.6) 592.77 (0.7) 3933.44 (0.5)

1 : 300 3.40 (1.2) 10.43 (1.1) 101.18 (1.1) 281.95 (1.0) 60.46 (1.0) 390.83 (1.0) 1059.70 (0.9)

2 : 300 3.88 (1.0) 14.08 (1.0) 130.36 (1.0) 371.95 (1.0) 63.10 (0.9) 587.82 (0.9) 1124.81 (0.9)

3 : 300 5.19 (0.9) 18.53 (0.9) 170.44 (1.0) 496.96 (1.0) 104.67 (0.8) 905.64 (0.8) 2254.24 (0.8)

4 : 300 6.56 (0.9) 22.91 (0.9) 208.12 (1.0) 636.60 (1.0) 157.67 (0.7) 1321.53 (0.8) 4050.45 (0.6)

6 : 30010.49 (0.8) 32.51 (0.9) 295.13 (1.0) 951.20 (1.0) 321.32 (0.6) 2473.22 (0.7)16978.51 (0.4)

12 : 30036.26 (0.7) 69.33 (0.8) 593.24 (0.9) 2154.13 (1.0)

1 : 400 5.91 (1.1) 22.44 (1.0) 198.14 (1.0) 616.93 (1.0) 138.26 (0.9) 1389.91 (0.9) 3219.40 (0.9)

2 : 400 6.85 (1.0) 27.13 (1.0) 259.47 (1.0) 832.20 (1.0) 155.62 (0.9) 1842.90 (0.9) 3742.53 (0.9)

3 : 400 9.00 (0.9) 35.72 (0.9) 339.13 (0.9) 1138.06 (1.0) 244.52 (0.8) 2896.03 (0.8) 8584.16 (0.7)

4 : 40011.36 (0.9) 43.23 (0.9) 426.63 (0.9) 1461.29 (1.0) 363.51 (0.7) 4375.24 (0.8)24130.39 (0.4)

6 : 40016.34 (0.8) 60.29 (0.9) 609.63 (1.0) 2248.87 (1.0) 669.73 (0.6) 8784.51 (0.7)

12 : 40047.52 (0.7)123.45 (0.8)1375.59 (0.9) 5411.35 (0.9)

1 : 500 9.15 (1.0) 32.93 (1.0) 357.53 (1.0) 1186.97 (1.0) 274.41 (0.9) 2867.31 (0.9)

2 : 50010.40 (0.9) 43.17 (0.9) 470.28 (0.9) 1634.72 (1.0) 316.32 (0.8) 4727.81 (0.8)

3 : 50013.66 (0.9) 56.80 (0.9) 618.37 (0.9) 2285.95 (0.9) 504.06 (0.7) 8213.09 (0.8)

4 : 50017.39 (0.8) 70.29 (0.9) 788.91 (0.9) 2969.72 (1.0) 733.00 (0.7)17159.85 (0.6)

6 : 50025.88 (0.8) 99.45 (0.9)1142.40 (0.9) 4665.41 (1.0)1407.06 (0.6)67844.38 (0.4)

12 : 50064.65 (0.7)198.35 (0.8)2557.46 (0.9)11624.00 (0.9)

Table 4 (Multidimensional regression settings) Average execution time (in seconds) of our code, based
on r = 5 replications ifm= 3 and onr = 3 replications otherwise, is provided for quantile orderτ , p
regressors (including the intercept) andn m-dimensional responses. The numbers in parentheses indicate
how many times it is faster than the code from Paindaveine andŠiman (2010b).
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