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Abstract

Aiming at analysing multimodal or non-convexly supported distributions

through data depth, we introduce a local extension of depth. Our construction

is obtained by conditioning the distribution to appropriate depth-based neigh-

borhoods, and has the advantages, among others, to maintain affine-invariance

and to apply to all depths in a generic way. Most importantly, unlike their com-

petitors, that (for extreme localization) rather measure probability mass, the

resulting local depths focus on centrality and remain of a genuine depth nature

at any locality level. We derive their main properties, establish consistency

of their sample versions, and study their behavior under extreme localization.

We present two applications of the proposed local depth (for classification and

for symmetry testing), and we extend our construction to the regression depth

context. Throughout, we illustrate the results on some, artificial and real,

univariate and multivariate data sets.
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1 INTRODUCTION

Data depth was originally introduced as a way to generalize the concept of median

to the multivariate setup but is also known to be a powerful data analytic tool able

to reveal diverse features of the underlying distribution. Indeed, not only does depth

provide a robust multivariate location functional (through the deepest point), it also

yields information about spread, shape, and symmetry (through depth regions, Ser-

fling (2004)), and even characterizes the underlying distribution under very mild

conditions (see Kong and Zuo, 2010 and the references therein). Celebrated instances

of such depths include Tukey’s halfspace depth (Tukey, 1975), Liu’s simplicial depth

(Liu, 1990), the projection depth (Zuo, 2003), or the Mahalanobis depth (see, e.g.,

Zuo and Serfling, 2000a). Depth methods allow to address several inference problems,

including, e.g., testing for location and scale differences based on the DD-plot (first

introduced as a graphical display for data exploration; Liu et al. (1999), Li and Liu

(2004)), diagnostics of non-normality (Liu et al., 1999), and outlier detection (Chen

et al., 2009), etc. More recently, depth was used extensively in a classification con-

text (see, among many others, Ghosh and Chaudhuri, 2005; Li et al., 2012; Dutta

and Ghosh, 2012; Paindaveine and Van Bever, 2012).

Depth deals with centrality. Its first purpose is to provide a center-outward or-

dering from the deepest point(s) towards less deep, exterior points. Classical depth

functions indeed associate with any center of symmetry (should it exist) a maximal

depth value. Together with the fact that depth decreases along any halfline originat-

ing from any deepest point, this leads to nested star-shaped (in most cases, convex)

depth regions, whatever the underlying distribution may be (depth/quantile regions

that may be non-convex are defined in Wei (2008)). That is the reason why it is often

reported that depth is suitable for unimodal convexly-supported distributions only;

see, e.g., Zuo and Serfling (2000a); Lok and Lee (2011); Izem et al. (2008); Hlubinka
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et al. (2010). Distributions that are multimodal or have a non-convex support, how-

ever, are met in many fields of applications, among which, obviously, those involving

mixture models or clustering problems (see, e.g., McLachlan and Basford (1988) or

McLachlan and Peel (2000)). This motivates extending the concept of depth to make

it flexible enough to deal with such distributions.

A few such extensions are available in the literature, under the name of local

depths. In particular, Agostinelli and Romanazzi (2011) introduced local versions

of the halfspace and simplicial depths. For halfspace depth, locality is achieved by

replacing halfspaces with finite-width slabs, while, for simplicial depth, it is obtained

by restricting to simplices with a volume smaller than some fixed threshold. These

local depths—after adequate standardization—provide a continuum between (global)

depths and the density of the underlying distribution. Density and depth, however,

are antinomic in spirit : for instance, the symmetry center of a centrally symmetric

bimodal distribution always assumes maximal depth while the density may very well

be zero there; also, uniform distributions have non-trivial depth contours but do not

show proper equidensity contours.

Similarly, other proposals for local depth—or, more generally, other extensions

of depth aiming at distributions with possibly non-convex supports—converge, as

locality becomes extreme, to either a density measure (Hlubinka et al. (2010)) or a

constant value (Chen et al. (2009)), hence lose their nature of a centrality measure.

The purpose of this paper is to introduce a new concept of local depth that, at any

locality level, remains of a genuine depth nature and provides a measure of local

centrality. Our construction will actually allow to turn, in a common generic way,

any (global) depth into a corresponding local depth. This is another advantage over

the competing local depths, that focus on a specific depth (Hlubinka et al. (2010);

Chen et al. (2009)) or require a specific definition for each global depth considered
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(Agostinelli and Romanazzi (2011)). The proposed local depth is defined as global

depth conditional on some neighborhood of the point of interest. To make this local

concept purely based on depth, we use the neighborhoods that were recently intro-

duced (for classification purposes) in Paindaveine and Van Bever (2012). As we will

show, the resulting local depths allow for interesting inferential applications.

The outline of the paper is as follows. In Section 2, we illustrate our local depth

concept on two real data sets, that highlight the need for this extension from global to

local centrality. In Section 3, we first review the basics of depth (Section 3.1). We then

describe the depth-based neighborhoods from Paindaveine and Van Bever (2012) and

show how they allow to define local depth (Section 3.2). We also establish consistency

of the corresponding sample local depth (Section 3.3). Section 4 is dedicated to the

limit behavior of the proposed local depth as locality becomes extreme. Section 5

illustrates the results of the previous sections on several univariate and multivariate

examples. Section 6 presents two inferential applications of the proposed local depth

concept. In Section 7, we show that our construction extends to regression depth.

Computational aspects are discussed in Section 8. Finally, the Appendix collects

technical proofs.

2 MOTIVATING EXAMPLES

As mentioned above, we introduce a concept of local depth that can cope with mul-

timodal and/or non-convexly supported distributions. Here we illustrate this on the

basis of two real data sets, that are freely available in the well-known R package

MASS (the first one provides a univariate bimodal example, whereas the second one

involves a bivariate distribution with a non-convex support).
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2.1 Geyser data

The Geyser data set is related to eruption data from the Old Faithful geyser in the

Yellowstone National Park, Wyoming, USA (see Härdle, 1991). It contains n = 299

measurements of two variables : “duration” (duration, in minutes, of the eruption)

and “waiting” (waiting time, still in minutes, between two eruptions). As we want to

start with a univariate data set, we focus here on the bimodal variable “waiting”.

Besides a histogram of the waiting times, Figure 1 reports the halfspace and

simplicial depths of 100 equispaced values in the range of interest, together with the

proposed local halfspace and simplicial depths at locality levels β = .7 (intermediate

localization) and .3 (more extreme localization) ; in the present univariate setup, we

simply define the local depth of a waiting time x, at locality level β, as the (global)

depth of x with respect to the dnβe observed waiting times that are closest to x.

For the sake of comparison, we also report the local halfspace and simplicial depths

from Agostinelli and Romanazzi (2011), at locality levels τ = 23 and 7 (for proper

comparison, these τ -values, as in Agostinelli and Romanazzi (2011), were selected as

the .7- and .3-quantiles of the
(
n
2

)
distances between observed waiting times ; in order

to avoid these local depth functions collapsing to zero as τ → 0, they were scaled so

that, for each depth and τ , the deepest waiting time receives depth 1/2).

With the exception of the Agostinelli and Romanazzi (2011) (τ = 23)-local half-

space depth, all local depths clearly show the obvious multimodality that is missed

by global depth. For more extreme localization, all local depths reveal both local

modes about 55 and 80. Unlike ours, that attribute comparable depth values to both

local modes, the Agostinelli and Romanazzi (2011) local depths, that, at such locality

levels, are not local centrality measures but rather density measures, clearly reflect

the heterogeneous probability masses around the two local modes.

For β = .3, the proposed local depths show a third local center (about x0 = 65
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minutes), which is in line with the fact that, at this locality level, the distribution is

nearly symmetric about x0, so that it should receive a large (local) centrality measure.

If needed, discriminating between the two “true” local modes and this “artificial”

mode about x0 may e.g. be based on the corresponding depth-based neighborhoods

involved (See Section 3.2 below), that are much wider at x0 than at both “true”

modes. Detecting modes, however, is not one of the primary applications of the

proposed local depth concept ; see Section 6 for such applications.
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Figure 1: (Upper left:) Histogram of the variable “Waiting” from the Geyser data set.

(Upper right): Plots of halfspace (blue) and simplicial (orange-red) depths over 100

equispaced points. (Lower:) the proposed local halfspace (light blue) and simplicial

(orange) depths at locality levels β ∈ {.7, .3}, along with their halfspace (dark blue)

and simplicial (red) counterparts from Agostinelli and Romanazzi (2011).

2.2 Boston data

The Boston data set was first introduced in Harrison and Rubinfeld (1978). It con-

tains 506 observations related to housing and was first used to estimate the “need for

clean air” in the Boston area. The data set originally contains 14 different variables.

For the sake of illustration, we restrict here to two variables, namely “NOX” (annual

average of nitrogen oxide concentration, in parts per ten million) and “DIS” (the
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weighted mean of distances to five Boston employment centers, in miles). The left

panel of Figure 2 shows a scatter plot of the resulting 506 bivariate data points.

This scatter plot shows that the data set has a non-convex support ; this entails

that there may be points whose respective depth values do not reflect properly what

one would naturally consider the relative centrality of these points in the data set. To

illustrate this, we consider four particular locations, marked in orange, blue, red, and

green in the scatter plot. Both for halfspace and simplicial depths, the green location

is considered more central than the blue one, which is somehow paradoxical since

the green location is much closer to the boundary of the support. Similarly, the red

location—that actually is the halfspace deepest one—is about twice as (halfspace or

simplicial) deep as the blue location, while visual inspection suggests that the latter

is more central than the former (or at least is of comparable centrality).

Parallel to the univariate case, the β-local depth of a point x ∈ R2 is still obtained

as the global depth of x with respect to the data points sitting in a neighborhood

of x containing a proportion β of the observations (the exact definition of this neigh-

borhood, that is actually of a depth-based nature, will be provided in Section 3.2).

The right panel of Figure 2 shows the plots of the proposed local (halfspace and

simplicial) depths for the four locations above, as a function of the locality level β.

As β moves away from one (that still corresponds to going from global depth to more

and more local depth), the paradoxes above vanish : both the green location (that

is close to the boundary of the support) and the red location show decreasing local

depths that eventually fall below the local depth of the blue one. Note that, except

for small β-values (to which little attention should be paid, as local depth is then

evaluated on the basis of few observations in each neighborhood), the orange location

has uniformly low local depth, which is expected since it is close to the boundary

of the convex hull of the data (would this point be outside the convex hull, its local
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depth would be zero for any β).
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Figure 2: (Left:) Scatterplot of the NOX and DIS variables from the Boston data set,

with four particular locations. (Right:) Plots, as a function of the locality level β, of

the proposed local halfspace (solid curves) and simplicial (dashed curves) depths of

these locations.

A comparison with the local halfspace and simplicial depths from Agostinelli and

Romanazzi (2011) is provided in the Supplementary Materials ; in particular, it is

shown there that the lack of affine-invariance of their local halfspace depth makes the

results very sensitive to unit changes.

3 FROM GLOBAL TO LOCAL DEPTH

In this section, we first review the concept of depth (Section 3.1). We then explain

how it can be used to construct neighborhoods of any x ∈ Rd, and propose a local

version of any depth (Section 3.2). Finally, we define the sample local depths that

were already put at work in Section 2, and establish their consistency (Section 3.3).
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3.1 Depth functions

A depth function D( · , P ) associates with any x ∈ Rd a measure D(x, P )(≥ 0) of its

centrality with respect to the probability measure P over Rd (the more central x is,

the deeper it is). The two most celebrated depths are the following.

Definition 3.1 (Tukey, 1975) Denoting by Sd−1 the set of unit vectors in Rd, the

halfspace depth of x with respect to P is the “minimal” probability of all halfspaces

containing x, i.e., DH(x, P ) = infu∈Sd−1 P [u′(X− x) ≥ 0] , where X ∼ P .

Definition 3.2 (Liu, 1990) Letting S(x1, . . . ,xd+1) be the convex hull of x1, . . . ,xd+1,

the simplicial depth of x with respect to P is DS(x, P ) = P [x ∈ S(X1, . . . ,Xd+1)] ,

where X, . . . ,Xd+1 are i.i.d. from P .

There are numerous other depths, including the (standardized) spatial depth

(Chaudhuri, 1996; Serfling, 2010), the projection depth (Zuo, 2003), the simplicial vol-

ume and Mahalanobis depths (Zuo and Serfling, 2000a), the zonoid depth (Koshevoy

and Mosler (1997)), etc. The halfspace depth and—under absolute continuity—the

simplicial depth are statistical depth functions in the following sense.

Definition 3.3 (Zuo and Serfling, 2000a) A bounded mapping D( · , P ) from Rd

to R+ is a statistical depth function if it satisfies the four following properties :

(P1) affine-invariance: for any d × d invertible matrix A, any d-vector b, and any

distribution P on Rd, D(Ax + b, PA,b) = D(x, P ), where PA,b stands for the

distribution of AX + b when X has distribution P ;

(P2) maximality at center: if θθθ is a center of (central, angular or halfspace) symmetry

of P , then it holds that D(θθθ, P ) = supx∈Rd D(x, P );

(P3) monotonicity relative to deepest point: for any P having deepest point θθθ, D(x, P )

≤ D((1− λ)θθθ + λx) for any x in Rd and any λ ∈ [0, 1];
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(P4) vanishing at infinity: for any P , D(x, P )→ 0 as ||x|| → ∞.

For any depth function, the depth regions Rα(P ) = {x ∈ Rd |D(x, P ) ≥ α} (of

order α > 0) are of paramount importance as they reveal very diverse characteris-

tics from P : location, dispersion, dependence structure, etc. (see, e.g., Liu et al.,

1999). Clearly, these regions are nested, and inner regions contain points with larger

depth. When defining local depth below, it will be more appropriate to index the

family {Rα(P )} by means of probability contents : for any β ∈ [0, 1], we define

Rβ(P ) =
⋂

α∈A(β)

Rα(P ), with A(β) =
{
α ≥ 0 : P [Rα(P )] ≥ β

}
, (3.1)

the smallest depth region with P -probability larger than or equal to β ; we use sub-

scripts and superscripts to denote depth regions associated with some fixed order (α)

and some fixed probability content (β), respectively.

3.2 Depth-based neighborhoods and local depth

Unlike all local depth concepts available in the literature, the proposed local depth

will involve neighborhoods of any location x ∈ Rd. The depth regions Rα(P ) or Rβ(P )

provide neighborhoods of the deepest point(s) only, hence cannot be used for that

purpose. However, in view of (P2)-(P3) in Definition 3.3, neighborhoods of any x ∈ Rd

can be obtained (as in Paindaveine and Van Bever (2012)) by replacing P = PX with

its symmetrized version Px = 1
2
PX + 1

2
P 2x−X. In line with most depths, the resulting

(depth-based) neighborhoods Rα(Px) or Rβ(Px) are of a nonparametric nature. The

parameter α (resp., β) plays the role of the locality parameter, smaller neighborhoods

corresponding to larger values of α (resp., to smaller values of β).

Definition 3.4 The order-α (resp., probability-β) depth-based neighborhood of x with

respect to the distribution P is Rx,α(P ) = Rα(Px) (resp., Rβ
x(P ) = Rβ(Px)).
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Alternatively, one could (centro-)symmetrize P = PX about x by mapping it

to g1(PX) = 1
2
P x−X + 1

2
P x+X or to g2(PX) = 1

4
PX + 1

4
PRot

π/2
x (X) + 1

4
PRotπx(X) +

1
4
PRot

3π/2
x (X), where Rotωx stands for the rotation about x with angle ω (in radians).

However, g1 provides depth-based neighborhoods that fail to be spherically symmetric

about x in case PX itself is spherically symmetric about x( 6= 0), and g2 leads to

neighborhoods that are not affine-equivariant and require more computational efforts

in the sample case. This motivates using the symmetrization PX 7→ 1
2
PX + 1

2
P 2x−X.

Now, conditioning on the depth-based neighborhoods from Definition 3.4 provides

a local version of any depth D. More precisely, we adopt the following definition.

Definition 3.5 Let D( · , P ) be a depth function. The corresponding local depth func-

tion at locality level β(∈ (0, 1])—or simply, β-local depth function—is

LDβ( · , P ) : Rd → R+ : x 7→ LDβ(x, P ) = D(x, P β
x ),

where P β
x [ · ] = P [ · |Rβ

x(P )] is the conditional distribution of P , conditional on Rβ
x(P ).

As announced, we favor the β-parametrization over the α-parametrization when

defining local depth. The reason is twofold. First, the maximal depth order α∗(P ) =

maxx∈Rd D(x, P ), hence also the range of relevant α-values, depends on P . Second,

and more importantly, the neighborhood Rx,α(P ) may have P -probability zero for α

close to α∗(P ) (an example is obtained for x = 0 ∈ Rd and P being the distribution

of X conditional on [‖X‖ > 1], where X is standard d-variate normal), in which case

LDα(x, P ) = D(x, P [ · |Rx,α(P )]) would not be properly defined. In contrast, β-local

depth is always well-defined, and the range of β-values does not depend on P , nor

on D : β always goes from 0 (extreme localization) to 1 (no localization).

Unlike its competitors, this construction of local depth applies in a generic way

to any depth D, and it ensures affine-invariance at any locality level β (which fol-

lows from Property (P1)). For β = 1, the local depth reduces to its global an-
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tecedent D, which shows that our concept extends usual (global) depth. The proper-

ties of LDβ( · , P ) for extreme locality (i.e., as β → 0) will be considered in Section 4.

3.3 Sample local depth and consistency

We now turn to the sample case. To do so, consider d-variate mutually independent

observations X1, . . . ,Xn with common distribution P , and denote by P (n) the corre-

sponding empirical distribution. Classically, sample (global) depths are obtained by

substituting P (n) for P in D( · , P ), which leads, e.g., to the sample halfspace depth

DH(x, P (n)) = 1
n

infu∈Sd−1 #
{
i = 1, . . . , n : u′(Xi−x) ≥ 0

}
, and the sample simplicial

depth DS(x, P (n)) =
(
n
d+1

)−1∑
1≤i1<i2<...<id+1≤n I

[
x ∈ S(Xi1 , . . . ,Xid+1

)
]
, where I[B]

stands for the indicator function of B. Sample depth regions are defined accordingly :

Rα(P (n)) is defined as the collection of x’s with D(x, P (n)) larger than or equal to α,

and Rβ(P (n)) as the intersection of all Rα(P (n)) with P (n)-probability larger than or

equal to β. We refer to He and Wang (1997) and Zuo and Serfling (2000c) for results

on sample depth regions.

As in the population case, our sample local depth concept will require considering,

for any x ∈ Rd, the symmetrized distribution P
(n)
x , that is the empirical distribution

associated with X1, . . . ,Xn, 2x−X1, . . . , 2x−Xn. We adopt the following definition.

Definition 3.6 Let D( · , P ) be a depth function. The corresponding sample local

depth function at locality level β(∈ (0, 1]) is LDβ( · , P (n)) : Rd → R+ : x 7→

LDβ(x, P (n)) = D(x, P
β,(n)
x ), where P

β,(n)
x denotes the empirical measure associated

with those data points among Xi, i = 1, . . . , n that sit in Rβ
x(P (n))(= Rβ(P

(n)
x )).

By definition, Rβ
x(P (n)) is the smallest sample depth region that contains at

least a proportion β of the 2n random vectors X1, . . . ,Xn, 2x − X1, . . . , 2x − Xn,

or equivalently (symmetrization indeed implies that these depth regions are centro-

12



symmetric about x), a proportion β of the n original data points Xi. Note that, for

k ∈ {1, 2, . . . , n−1}, ties may imply that R
k/n
x (P (n)) contains more than k of the Xi’s.

Some applications of local depth may require selecting one or a few β-values.

This choice crucially depends on the application at hand, so that no universal β-

selection strategy exists. Therefore it is desirable, in every specific application, to

define appropriate such strategies, at least whenever the results strongly depend on β.

This will be illustrated in Section 6.

Theorem 3.1 below provides consistency of sample local depth under absolute

continuity assumptions. Of course, we need assuming consistency for the original

global depth D( · , P ) : for any absolutely continuous P and any x ∈ Rd, |D(x, P (n))−

D(x, P )| a.s.→ 0 as n→∞. Actually, we will need the following reinforcement.

(Q1) weak continuity : for any absolutely continuous P , any sequence of probability

measures (Pn) that converges weakly to P as n→∞, and any x ∈ Rd, we have that

|D(x, Pn)−D(x, P )| → 0 as n→∞.

This reinforcement is needed to cope with the complex dependence of the sample

local depth LDβ(x, P (n)) = D(x, P
β,(n)
x ) on P (n). Note indeed that the dependence

of P
β,(n)
x [ · ] = P (n)[ · |Rβ(P

(n)
x )] on empirical measures is twofold.

Theorem 3.1 (Consistency) Fix x ∈ Rd and let D( · , P ) satisfy Property (P2),

(P3), and (Q1). Then, for any absolutely continuous P and any sequence βn → β,

we have that LDβn(x, P (n))
a.s.→ LDβ(x, P ) as n→∞.

Property (Q1) actually holds for many depths. In particular, Proposition 1 of

Mizera and Volauf (2002) and Theorem 2.2 (ii) of Zuo (2003) establish (Q1) for the

halfspace and projection depths, respectively. For simplicial depth, Dümbgen (1992)

proved the stronger property supx∈Rd |DS(x, Pn)−DS(x, P )| → 0 as Pn → P weakly.
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4 EXTREME LOCALIZATION

As locality becomes extreme, all available extensions of depth converge to either a

density measure or to a constant value, hence lose their nature of a centrality measure.

We now show that the proposed local depths improve on this.

4.1 Assumptions and extreme local regions

For the sake of convenience, we list here the assumptions—all on the original depthD—

we will need in this section.

(Q1+) uniform weak continuity : for any two sequences (Pn) and (P ′n) of absolutely

continuous distributions for which |Pn[B]− P ′n[B]| → 0 as n→∞ for any Borel set B,

|D(x, Pn)−D(x, P ′n)| → 0 as n→∞ for any x ∈ Rd;

(Q2) unique maximization at the symmetry center : if P is absolutely continuous

(with density f , say) and is centrally symmetric about θθθ in the closure Supp(f) of

Supp+(f) = {x ∈ Rd | f(x) > 0}, then D(θθθ, P ) > D(x, P ) for all x;

(Q3) P -independent depth at the symmetry center : if P is absolutely continuous

and centrally symmetric about θθθ, then cD = D(θθθ, P ) (that, under (P2), is equal to

maxx∈Rd D(x, P )) is independent of P (which justifies the notation cD).

Recalling that LDβ(x, P ) = D(x, P β
x ), where P β

x is obtained from P by condition-

ing it on Rβ
x(P ), it seems natural to expect that, under Property (Q1),

lim
β→0

LDβ(x, P ) = D(x, P 0
x), (4.1)

where P 0
x denotes the possible weak limit of P β

x . Unfortunately, the situation is not

so simple, as we show below. We start with a result on R0
x(P ) :=

⋂
β>0R

β
x(P ) of P 0

x .

Lemma 4.1 Let D( · , P ) satisfy (P2), (P3), (Q1), and (Q2). Fix an absolutely

continuous P (with density f , say). Then, (i) for any x ∈ Supp(f), for all ε > 0,
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there exists β > 0 such that Rβ
x(P ) ⊂ Bx(ε) := {y ∈ Rd : ‖y − x‖ ≤ ε}, so

that R0
x(P ) = {x}; (ii) if one further assumes that (Q2) also holds for symmetry

centers θθθ /∈ Supp(f), then, for any x /∈ Supp(f), x belongs to the interior of R0
x(P ).

This result leads to treating separately the cases x ∈ Supp(f) and x /∈ Supp(f).

4.2 Extreme behavior in the support of the distribution

For x ∈ Supp(f), (4.1) cannot hold because, as we show in the Supplementary Ma-

terials, P 0
x does not exist. This explains why we have to reinforce (Q1) into (Q1+),

under which the following result holds (see the Appendix for the proof).

Theorem 4.1 Let D( · , P ) satisfy (P2), (P3), (Q1+), (Q2), and (Q3). Fix an ab-

solutely continuous P (with density f , say). Let x ∈ Supp+(f) be a continuity point

of f . Then LDβ(x, P )→ cD as β → 0, where cD is the constant in (Q3).

Therefore, unlike most of its competitors, our local depth concept is not of a den-

sity nature under extreme localization ; irrespective of the density at x ∈ Supp+(f),

the limiting local depth at x takes the constant (maximal) value cD, supporting the

intuition that, for extreme locality, points inside the support get arbitrarily central.

More precise results can be derived for univariate halfspace and simplicial depths

(see the Supplementary Materials for a proof).

Theorem 4.2 Fix x ∈ Supp+(f). Then, (i) provided that f admits a continuous

derivative f ′ in a neighborhood of x, we have that, as β → 0, LDβ
H(x, P ) = 1

2
−

|f ′(x)|
8f2(x)

β + o(β); (ii) provided that f admits a continuous second derivative f ′′ in a

neighborhood of x, we have that, as β → 0, LDβ
S(x, P ) = 1

2
− (f ′(x))2

16f4(x)
β2 + o(β2).

This shows that, for small β-values, local depth is not characterized by f(x), but

rather by |f ′(x)|/f 2(x), that measures local asymmetry at x. This further indicates
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that our local depth provides a centrality measure for x, and not a density measure

at x. From Theorem 4.2, LDβ
S is seen to converge to 1/2(= cDS = cDH for d = 1)

faster than LDβ
H does. As a consequence, one may expect having to consider larger

values for simplicial depth than for halfspace depth to find out about the above local

asymmetry features ; this may actually be seen in Figure 3 below.

We point out that, in contrast with Theorem 4.1, a point x at the boundary of the

support may assume, as β → 0, any limiting local depth value between the minimal

possible value 0 and the maximal possible value cD. This is shown on a bivariate

example in the Supplementary Materials.

4.3 Extreme behavior outside the support of the distribution

For x /∈ Supp(f), the weak limit P 0
x = limβ→0 P

β
x , when it does exist, coincides

with the probability measure obtained by conditioning P on R0
x (which, according

to Lemma 4.1(ii), is a neighborhood of x). Since the interior of R0
x has zero P -

probability, the support of P 0
x is contained in the boundary ∂R0

x of R0
x, so that P 0

x

may not be absolutely continuous.

Quite fortunately, for the halfspace and simplicial depths, Property (Q1) extends

to P ’s that are not absolutely continuous ; see Remark 2.5 in Zuo (2003). For these

depths, we may therefore conclude that limβ→0 LD
β(x, P ) = D(x, P 0

x) as in (4.1). For

most x /∈ Supp(f), the support of P 0
x will be contained in an open halfspace having x

on its boundary hyperplane, in which case limβ→0 LD
β(x, P ) = D(x, P 0

x) = 0 for both

halfspace and simplicial depths. It is only in some very specific points x /∈ Supp(f),

that typically are symmetry centers of the corresponding limiting region R0
x, that

limβ→0 LD
β(x, P ) = D(x, P 0

x) will be non-zero. Quite interestingly, the resulting

value needs not be the maximal value cD, but is obtained from P 0
x in a natural way.

We illustrate this in the univariate case d = 1, where the limiting region R0
x is
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always an interval of the form [x − h0
x, x + h0

x]. From the general discussion above,

we know that the support of the limiting distribution P 0
x is included in ∂R0

x = {x−

h0
x, x+ h0

x}. Denoting by p−x and p+
x the respective probabilities P 0

x assigns to x− h0
x

and x+ h0
x, we obtain that

lim
β→0

LDβ
H(x, P ) = DH(x, P 0

x ) = min(p−x , p
+
x ), (4.2)

lim
β→0

LDβ
S(x, P ) = DS(x, P 0

x ) = 2p−x p
+
x . (4.3)

The probabilities (p−x , p
+
x ) can be computed from the identities

p−x + p+
x = 1 and

p+
x

p−x
= lim

ε
>→0

P [X ∈ (x+ h0
x, x+ h0

x + ε)]

P [X ∈ (x− h0
x − ε, x− h0

x)]
(∈ [0,∞]).

An explicit example is provided in Section 5.

5 Examples

We restrict our attention to local halfspace and simplicial depths, that, in the uni-

variate case, admit the following explicit expressions (resulting from the well-known

formulae DH(x, P ) = min(F (x), 1 − F (x)) and DS(x, P ) = 2F (x)(1 − F (x)), where

F (x) = P [(−∞, x]] is the cumulative distribution function associated with P ).

Proposition 5.1 Let xβ := x − inf{h > 0 : F (x + h) − F (x − h) ≥ β}, where F

denotes the cumulative distribution function associated with the absolutely continuous

distribution P . Then the local halfspace and simplicial depths of x with respect to P are

given by LDβ
H(x, P ) = 1

β
min [F (x)− F (xβ), F (2x− xβ)− F (x)] and LDβ

S(x, P ) =

2
β2 (F (x)− F (xβ)) (F (2x− xβ)− F (x)) , respectively.

We first considered univariate Gaussian and uniform mixtures, obtained with X ∼
1
2
N (µa =−2, 2) + 1

2
N (µb = 2, 1) and X ∼ 1

2
Unif(−5,−1) + 1

2
Unif(1, 3), respectively.

Figures 3 and 4 report the plots of the corresponding β-local halfspace and simplicial

depth functions for several β-values, along with the plot of the density f of X.
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For the Gaussian mixture, global depth functions are unimodal, while local depth

functions allow for local maxima. In line with the univariate example from Section 2,

small β-values give raise to three local maxima : two located about the modes µa

and µb, and a third one (also for simplicial depth, although it is less visible than for

halfspace depth) at µ ∈ (µa, µb), say. The large local centrality measure µ gets for

small β results from the approximate symmetry (about µ) of X in Rβ
µ(P ) ; however,

the large volume of Rβ
µ(P ), compared to Rβ

µa(P ) and Rβ
µb

(P ), allows to discriminate

between both types of local maxima. Finally, the plot associated with β = 0.01

illustrates Theorem 4.1.
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Figure 3: Plots of several β-local halfspace (blue) and simplicial (orange) depth func-

tions for a mixture of Gaussian distributions (X ∼ 1
2
N (−2, 2)+ 1

2
N (2, 1)), along with

a plot of the corresponding density.

Regarding the uniform mixture, the same comments can be repeated, and we

therefore focus on the specifics of this example. It holds limβ→0 LD
β
i (x, P ) = 1/2

(i = H,S) for all x ∈ Supp+(f) (Theorem 4.1) and limβ→0 LD
β
i (x, P ) = 0 (i =

H,S) for x ∈ Supp(f) \ Supp+(f) = {−5,−1, 1, 3}. For points x ∈ R \ Supp(f) =

(−∞,−5)∪(−1, 1)∪(3,∞), it is easy to check that (p−x , p
+
x ) = (0, 1) if x ∈ (−∞,−5)∪

(0, 1), (p−x , p
+
x ) = (1, 0) if x ∈ (−1, 0) ∪ (3,∞) and (p−x , p

+
x ) = (1/3, 2/3) if x = 0,

which according to (4.2)-(4.3), results into limβ→0 LD
β
i (x, P ) = 0 (i = H,S) for

18



-4 -2 0 2

0.
0

0.
2

0.
4

Lo
ca

l D
ep

th

β=1
-4 -2 0 2

0.
0

0.
2

0.
4

β=0.6
-4 -2 0 2

0.
0

0.
2

0.
4

β=0.3

-4 -2 0 2

0.
0

0.
2

0.
4

Lo
ca

l D
ep

th

β=0.05
-4 -2 0 2

0.
0

0.
2

0.
4

β=1e-04
-4 -2 0 2

0.
00

0.
10

0.
20 Halfspace

Simplicial

Density

Figure 4: Plots of several β-local halfspace (blue) and simplicial (orange) depth func-

tions for a mixture of uniform distributions (X ∼ 1
2
Unif(−5,−1)+ 1

2
Unif(1, 3)), along

with a plot of the corresponding density.

all non-zero such values of x, and into limβ→0 LD
β
H(x, P ) = DH(x, P 0

x ) = 1/3 and

limβ→0 LD
β
S(x, P ) = DS(x, P 0

x ) = 4/9 for x = 0. This thoroughly explains the plot

corresponding to β = 10−4 in Figure 4.

Turning to the multivariate case, the two following (simulated) examples involve

(i) a bimodal distribution—for which we generated n = 1, 000 independent observa-

tions Xi =
√

0.3h(Zi)Zi + Tiµµµa + (1 − Ti)µµµb, where µµµa =
(

0
0

)
, µµµb =

(
2
0

)
, the Zi’s are

i.i.d. standard bivariate normal, h(z) is the indicator that the Euclidean norm of z is

smaller than 0.6, and the Ti’s are i.i.d Bin(0, 1/2), independent from the Zi’s—and

(ii) a non-convexly supported distribution, based on n = 500 independent observa-

tions
(
Xi
Yi

)
, where Xi ∼ Unif(−1, 1) and Yi|[Xi = x] ∼ Unif(1.5(1 − x2), 2(1 − x2)).

Figures 5 and 6 show heatplots of the local halfspace depth functions at several lo-

cality levels β, along with observations in the upper left panels.

In Figure 5, one can see that, as β moves away from one, the multimodal nature

of the distribution is revealed (a task in which global halfspace depth clearly fails).

At any β, a third local maximum is present around µµµ = (µµµa + µµµb)/2, resulting from

the symmetry of the distribution about µµµ at any locality level β (i.e., P β
µµµ is centrally
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symmetric about µµµ for any β). Discriminating between the true modes around µµµa, µµµb,

and this “artificial” mode in µµµ may again be based on a comparison of the volumes

of the neighborhoods Rβ
x(P (n)), for x = µµµa,µµµb,µµµ. Incidentally, in some applications

(including, in particular, classification ; see Section 6.1), such artificial modes, due to

the zero (or small) probability mass there, will have no (or low) impact in practice.

Figure 5: Heatplots of local halfspace depth functions at locality levels β = 1 (global

halfspace depth), 0.7, 0.5, 0.3, 0.2, and 0.1, for n = 1, 000 independent observations

from the bivariate mixture distribution described in Section 5.

Parallel to the Boston example in Section 2, Figure 6 illustrates that global depth

cannot deal with non-convexly supported distributions, since in particular the global

deepest point is very close the boundary on the support. As β decreases, local depth

much better reflects centrality in the present setup. Small β-values illustrate Theo-

rem 4.1, since local depth is then almost constant in the support. We point out that

this would hold irrespective of the (non-vanishing) density over the same support.
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Figure 6: Heatplots of local halfspace depth functions at locality levels β = 1 (global

halfspace depth), 0.7, 0.5, 0.3, 0.2, and 0.1, for n = 500 independent observations from

the distribution with a non-convex (“moon-shaped”) support described in Section 5.

6 INFERENTIAL APPLICATIONS

In this section, we describe two applications of the proposed local depth concept. The

first one is related to classification, while the second one deals with symmetry testing.

6.1 Max-depth classification

Consider the classical problem in which a random d-vector is to be classified as arising

from any of two probability measures P0 or P1, on the basis of the value x it assumes.

This is to be achieved on the basis of a “training sample”, made of two mutually

independent random samples (X01, . . . ,X0n0) and (X11, . . . ,X1n1) from P0 and P1,
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respectively. Depth-based classifiers typically match x to the population with respect

to which it is most central : denoting by P
(n)
j , j = 0, 1, the empirical distribution

associated with (Xj1, . . . ,Xjnj), x is classified into Population 0 (resp., Population 1)

if D(x, P
(n)
0 ) > D(x, P

(n)
1 ) (resp., D(x, P

(n)
0 ) < D(x, P

(n)
1 )), while ties are decided at

random.

This max-depth approach was first proposed in Liu et al. (1999), and was then

investigated in Ghosh and Chaudhuri (2005). In the same vein, Li et al. (2012)

recently proposed the “Depth vs Depth” (DD) classifiers that improve on the max-

depth ones by constructing appropriate polynomial separating curves in the DD-plot,

that is, in the scatter plot of (D(Xi, P
(n)
0 ), D(Xi, P

(n)
1 )), i = 1, . . . , n (the original

max-depth classifiers simply use the main bisector as a separating curve).

As we showed in Section 2, global depth may fail to properly measure centrality for

non-convexly supported distributions. Consequently, max-depth classifiers may per-

form poorly when P0 and/or P1 have a non-convex support (which is confirmed in our

simulations below). Since the proposed local depths can deal with such non-convexity,

one may think of defining max-local -depth classifiers obtained by substituting, in max-

depth classifiers, β-local depth (for some β) for (global) depth. In practice, β may

be chosen through cross-validation, that is, by minimizing in β ∈ (0, 1], the resulting

empirical misclassification rate evaluated on the training sample.

We conducted the following simulation exercise both to show that max-depth

classifiers may indeed behave poorly under non-convexly supported distributions and

to investigate the performances of the proposed max-local-depth classifiers. Three

bivariate distributional setups were investigated :

Setup 1 (multinormality): Pj, j = 0, 1, is bivariate normal with mean vector µµµj and

covariance matrix ΣΣΣj, with µµµ0 =
(

0
0

)
, µµµ1 =

(
2
2

)
, ΣΣΣ0 =

(
1 0
0 1

)
, and ΣΣΣ1 =

(
2 1
1 1

)
;

Setup 2 (moon- and ball-supported distributions): P0 is the distribution of
(
X
Y

)
,

22



where X ∼ Unif(−1, 1) and Y |[X = x] ∼ Unif(1.5(1−x2), 2(1−x2)), whereas P1

is the uniform distribution on the ball with center
(

0
1.3

)
and radius 0.7;

Setup 3 (ring- and rectangle-supported distributions): P0 is the distribution of RU,

where R ∼ Unif(1,2) and U =
(

cos Θ
sin Θ

)
, with Θ ∼ Unif(0, 2π), are independent,

while P1 is the uniform distribution on the rectangle (−1.5, 1.5)× (−25, 25).

Exactly as in Li et al. (2012), we generated, for each setup, 100 training samples

of size n0 = n1 = 200, and recorded, on corresponding test samples of size ntest =

1, 000 (500 observations from each population), the misclassification frequencies of the

following classifiers (all depth-based classifiers below are based on halfspace depth) :

(i) the Linear and Quadratic Discriminant Analysis classifiers (LDA/QDA); (ii) the

standard kNN classifier, where k is chosen through cross-validation (kNN); (iii) the

max-depth classifier from Ghosh and Chaudhuri (2005) (max-D); (iv) its (exact) DD-

refinements from Li et al. (2012) based on linear and quadratic separating curves (DD1

and DD2); (v) our cross-validated max-local-depth classifier (max-LD (β = βCV));

(vi) various max-local-depth classifiers based on a fixed β (max-LD).

Figure 7 shows boxplots of the resulting misclassification frequencies, and reports,

in each setup, the median of the 100 β-values selected through cross-validation. Our

cross-validated max-local-depth classifier shows similar performances as its depth-

based competitors under ellipticity (Setup 1), but clearly outperforms these under

non-convex populations (Setups 2 and 3), with the only exception of the classifier DD2

in Setup 3 with whom it competes equally. The β-values selected through cross-

validation nicely reflect the non-convexity of the underlying setup, hence the need

to restrict to observations that are close to the point to be classified (β small) or

the allowance to base classification on all observations (β close to 1). This is seen in

the three setups, where the medians of the 100 selected β-values are, respectively, .9

(convex setup), .125 and .3 (non-convex setups).
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Figure 7: Boxplots of missclassification frequencies from 100 replications, in Setups 1

to 3 described in Section 6.1, with training sample sizes n0 = n1 = 200 and test sample

size ntest = 1, 000 (500 observations from each population), of the LDA/QDA classi-

fiers, the standard (cross-validated) kNN classifier (kNN), the exact linear (DD1) and

quadratic (DD2) DD-classifiers, the proposed cross-validated max-local-depth classi-

fiers (max-LD (β = βCV)), as well as some max-local-depth classifiers with fixed β,

for β = 1 (max-depth classifier) and β = 0.8, 0.6, 0.4, 0.2. Results are also provided,

under (kNNx) (resp., (kNNy)), for kNN classifiers applied to samples obtained by

multiplying by 10 the first (resp., second) coordinate of each observation.

Comparison with classical benchmarks is also of interest. As expected, our cross-

validated max-local-depth classifier dominates LDA/QDA classifiers under non-conve-

xity. On the contrary, the (universally consistent) kNN classifiers seem to dominate

the proposed classifiers, hence also our depth-based competitors from Li et al. (2012)

(which may seem unexpected in view of the Monte Carlo comparisons conducted

there). Unlike depth-based classifiers, however, kNN classifiers fail to be affine-

invariant, hence may show significantly poorer performances under unit changes. This
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is illustrated in our simulations where it is seen that, in all setups, misclassification

rates of kNN classifiers suffer from multiplying one of both coordinates by a factor 10.

6.2 Testing for central symmetry

There are many graphical methods based on depth—or on the companion concept

of multivariate quantiles—to assess departures from angular symmetry, central sym-

metry, or other types of multivariate symmetry ; see Liu et al. (1999) and Serfling

(2004). There are, however, few genuine tests of symmetry based on depth. To the

best of our knowledge, the only such tests, available in any dimension d, are

• the test from Rousseeuw and Struyf (2002), that is a test for angular symmetry

about a specified center x0 rejecting the null for large values of T
(n)
x0 , with T

(n)
x = 1

2
−

DH(x, P (n)). Quite remarkably, T
(n)
x0 is distribution-free under the null, which allows

to approximate arbitrary well the exact fixed-n critical values through simulations;

• the test from Dutta et al. (2011), that may be seen as the companion test for

the null of angular symmetry about an unspecified center, as it rejects this null for

large values of T (n) = T
(n)

θ̂θθ
, where θ̂θθ denotes the halfspace deepest point of P (n) (or,

if unicity fails, the barycenter of the collection of deepest points). Critical values are

obtained from bootstrap-type samples (as in Dutta et al. (2011), we will use the term

“bootstrap”, although the corresponding tests are rather of a permutation nature).

The motivation for both tests comes from the following characterization result :

for an absolutely continuous P , DH(x0, P ) ≤ 1/2, and equality holds iff P is angularly

symmetric about x0 ; see Zuo (1998), Zuo and Serfling (2000b), Rousseeuw and Struyf

(2004), and Dutta et al. (2011).

Since the null of central symmetry is at least as relevant for applications as the null

of angular symmetry, it is unfortunate that there is no depth-based tests of central

symmetry available in any dimension d. As we now show, the proposed local depth
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concept allows to define (universally consistent) tests of central symmetry. This relies

on the following result, that characterizes central symmetry through local depth (see

the Appendix for the proof).

Theorem 6.1 Let P be an absolutely continuous distribution over Rd. Then P is

centrally symmetric about x0(∈ Rd) if and only if LDβ
H(x0, P ) = 1/2 for all β ∈ (0, 1].

Testing central symmetry about x0 may then be based on the Cramèr-Von Mises

(CM) or Kolmogorov-Smirnov (KS) statistics

CM
(n)
x0;βn

=

∫ 1

βn

(
LDβ

H(x0, P
(n))− 1/2

)2
dβ (6.1)

KS
(n)
x0;βn

= sup
β∈[βn,1]

∣∣LDβ
H(x0, P

(n))− 1/2
∣∣, (6.2)

where the sequence (βn) is such that βn → 0 and nβn →∞ (such a sequence typically

allows to achieve universal consistency while discarding, at any given sample size n,

the levels at which local depth can only be poorly estimated, due to the small numbers

of observation in each neighborood). Critical values are obtained as in Dutta et al.

(2011). More precisely, one first generates “bootstrap” samples of the form X∗(m) =

(x0 + s(m)1(X1 − x0), . . . ,x0 + s(m)n(Xn − x0)), m = 1, . . . ,M , where (X1, . . . ,Xn)

denotes the original sample and the s(m)i’s are mutually independent variables taking

values ±1 with equal probability 1/2. The α-level critical value for CM
(n)
x0;βn

is then

simply the order-α quantile in the series CM
(n)
x0;βn

(X∗(m)), m = 1, . . . ,M (discreteness

may require randomization to achieve null size α). Critical values for KS
(n)
x0;βn

are

computed in the exact same way.

We conducted a simulation study in order to investigate the finite-sample behavior

of these tests. For any of the following setups and any corresponding value of a, we

generated 1, 000 independent random samples (X1, . . . ,Xn) of size n = 400 from the

same distribution as the generic random vector X :
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Setup 1: X = R
(

cos Θ
sin Θ

)
, where Θ ∼ Unif(0, 2π) and R|[Θ = θ] ∼ Unif(0, θa), for

a = 0 (central symmetry) and a = .125, .250, .375, .500 (angular symmetry);

Setup 2: X = R
(

cos Θ
sin Θ

)
, where R ∼ Unif(0, 1) and (Θ/2π)1/(1+a) ∼ Unif(0, 1), for

a = 0 (central symmetry) and a = .15, .30, .45, .60 (no angular symmetry);

Setup 3: X = R
(

cos Θ
sin Θ

)
+
(
a
a

)
, where R ∼ Unif(0, 1) and Θ ∼ Unif(0, 2π), for a = 0

(central symmetry) and a = .125, .250, .375, .500 (no angular symmetry).

Figure 8 plots the resulting rejection frequencies (at nominal level 5%) of the angu-

lar symmetry test based on T
(n)
x0 and of the central symmetry tests based on CM

(n)
x0;βn

and KS
(n)
x0;βn

, for βn = .15, .16, . . . , .30 ; exact critical values were used for T
(n)
x0

(see Rousseeuw and Struyf (2002)), while critical values for CM
(n)
x0;βn

, and KS
(n)
x0;βn

were obtained as described above from M = 1, 000 bootstrap samples.
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Figure 8: Rejection frequencies, in each of the three setups described in Section 6.2,

of the angular symmetry test from Rousseeuw and Struyf (2002), and of the pro-

posed Cramèr-Von Mises (CM) and Kolmogorov-Smirnov (KS) central symmetry

tests, for βn = .15, .16, . . . , .30 ; results are based on 1,000 replications and the sam-

ple size is n = 400.

The results show that the bootstrap procedure indeed leads to central symmetry

tests that have the correct size under the null. As expected, these tests succeed in
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detecting central asymmetry in all setups, while the angular symmetry test, of course,

shows no power in Setup 1 (which confirms that it is inappropriate as a test for central

symmetry). The angular symmetry test seems to dominate the central symmetry

ones in Setup 2, and the opposite holds in Setup 3. Most importantly, the proposed

Cramér Von Mises local-depth-based tests, that dominate their Kolmogorov-Smirnov

counterparts, show empirical powers that barely depend on βn ; consequently, in

contrast with classification in Section 6.1, it is not needed here to design a β-selection

procedure (one just needs using a βn-value that is small, but large enough to make it

so that the actual sample size (nβn) used in the most extreme local depth involved

(level βn) does not fall below 50, say).

Of course, tests for central symmetry about an unspecified center may be obtained,

as in Dutta et al. (2011), by rejecting the null for large values of CM
(n)

θ̂θθ;βn
and KS

(n)

θ̂θθ;βn
.

7 LOCAL REGRESSION DEPTH

Our construction extends to the regression depth context; see Rousseeuw and Hubert

(1999). Let us recall that regression depth measures how well a regression hyper-

plane y = θθθ′
(

1
x

)
in Rp—equivalently, the corresponding parameter value θθθ—fits the ob-

servations
(
Xi

Yi

)
, i = 1, . . . , n, taking values in Rp−1×R. Letting 0 = (0, . . . , 0)′ ∈ Rp,

regression depth can be defined as

RD(θθθ, P (n)) = DH(0, P
(n)
Regr;θθθ),

where P
(n)
Regr;θθθ denotes the empirical distribution of the collection of random p-vectors(

Yi−θθθ′
(

1
Xi

))(
1
Xi

)
, i = 1, . . . , n. Replacing global halfspace depth with its local version

proposed in this paper readily provides a local regression depth concept.

Definition 7.1 The local regression depth of θθθ with respect to P (n), at locality level β

(∈ (0, 1])—or simply, β-local regression depth—is LRDβ(θθθ, P (n)) = LDβ
H(0, P

(n)
Regr;θθθ).
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To illustrate this local concept, we generated n = 500 independent regression ob-

servations
(
Xi
Yi

)
from a balanced mixture of simple linear regression models, according

to Y = θ1 + θ2X + ε, where X ∼ Unif(0, 5), ε ∼ N (0, .1), and θθθ =
(
θ1
θ2

)
uniformly

distributed over {θθθa =
(
.75
0

)
, θθθb =

(−.25
1

)
}, are mutually independent. Figure 9 shows

the heatplots of the β-local regression depth for β = 1 (classical regression depth),

0.8, 0.6, 0.4 and 0.2, along with a scatter plot of the data.

Figure 9: (Upper center:) Scatter plot of the 500 data points generated from the mix-

ture of linear regression models described in Section 7. Maxima of global regression

depth (black lines) and local maxima of β = 0.4-local regression depth (brown, green,

and blue lines) are pictured. (Others:) Heatplots of local regression depth functions

at locality levels β = 1 (global regression depth), 0.8, 0.6, 0.4, and 0.2. Local maxima

are highlighted in the plot for β = 0.4.

All maximizers of global regression depth lie approximately on a segment in the

slope-intercept space, which corresponds to a collection of regression lines passing

through a fixed point
(
x
y

)
; we plotted in the observation space the regression lines as-

sociated with the maximizers with smallest and largest slopes (in solid lines). Clearly,
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this shows that, as in the location case, global regression depth misses the mixture

or “bimodal” structure of the model. In contrast, β-local regression depths clearly

show local maxima about θθθa and θθθb, and, parallel to the location examples from the

previous sections, also in a third intermediate parameter value θθθ, between θθθa and θθθb,

that corresponds to a symmetry center. The regression lines associated with θθθa, θθθb,

and θθθ are plotted in the observation space ; the corresponding parameter values are

reported in the heatplot for β = 0.4.

8 COMPUTATIONAL ASPECTS

In the location case, the evaluation of LDβ(x, P (n)) at a fixed point x ∈ Rd with

respect to the empirical distribution P (n) associated with observations X1, . . . ,Xn

proceeds along the following few simple steps :

1. Evaluate D(Xi, P
(n)
x ), i = 1, . . . , n, where P

(n)
x is the empirical distribution

associated with the symmetrized observations X1, . . . ,Xn, 2x−X1, . . . , 2x−Xn;

2. Rank the (original) observations according to D(X(1), P
(n)
x ) ≥ D(X(2), P

(n)
x ) ≥

. . . ≥ D(X(n), P
(n)
x ) (this ranking is not unique in case of ties, but this will not

affect the final value of local depth);

3. Determine nβ(P
(n)
x ) = max

{
` = dnβe, . . . , n : D(X(`), P

(n)
x ) = D(X(dnβe), P

(n)
x )
}

;

4. Compute LDβ(x, P (n)) = D(x, P
β,(n)
x ), where P

β,(n)
x is the empirical measure

associated with X(1), . . . ,X(nβ(P
(n)
x ))

.

The computation of local regression depth is obtained by substituting above, 0(∈ Rd)

for x and
(
Yi − θθθ′

(
1
Xi

))(
1
Xi

)
for Xi, i = 1, . . . , n, and by restricting to halfspace

depth D = DH .

The procedure in Steps 1-4 makes clear that the proposed sample local depths

can be computed from global depth routines only (all illustrations in this paper were
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simply obtained from the R package depth). This is another advantage over the

competing local depths, that do require developing specific routines or packages ; see,

e.g., the R package localdepth, from Agostinelli and Romanazzi (2011).

Note that the evaluation of LDβ(x, P (n)) may be time consuming since it requires

computing n + 1 depth values (n depth values, in a sample of 2n data points, in

Step 1, and one depth value, in a sample of nβ(P
(n)
x )(≤ n) data points, in Step 4).

Quite fortunately, there has been much progress in the computation of depth in the

recent years ; see in particular Hallin et al. (2010) for halfspace depth, and Liu and

Zuo (2011a,b) and Liu et al. (2011) for projection depth.

Of course, computing “the whole local depth field” {LDβ(x, P (n)) : x ∈ Rd} — in

practice, computing local depth on a fine grid in a compact set — may still be very

demanding. Generating the heat plots in Figures 5, 6, and 9 relied on a trivial method,

where evaluation of LDβ(x, P (n)) started from scratch at any newly considered x,

which, indeed, may be slow for moderate to large sample sizes n. However, the value

of LDβ(x + ∆∆∆, P (n)), with ∆∆∆ small, might be computed from the previous evaluation

of LDβ(x, P (n)), by exploiting the fact that the distributions P
(n)
x and P

(n)
x+∆∆∆, hence

also the empirical measures P
β,(n)
x and P

β,(n)
x+∆∆∆ (leading to the corresponding local depth

values in Step 4 above), are close to each other. How to turn this into a practical

algorithm allowing to compute efficiently the local depth field clearly remains a non-

trivial question, that is beyond the scope of this methodological paper.

Now, most importantly, practical applications of local depth typically do not

require evaluating the whole local depth field, but rather requires computing local

depth at one or a reasonably small number of locations x only. This is the case for

both applications considered in Section 6 : classification indeed requires evaluating

local depth only at points to be classified (and at data points if β is selected through

cross-validation), whereas symmetry testing only involves the local depth of the null
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symmetry center. Incidentally, we stress that, for symmetry testing, (i) the discrete

nature of halfspace depth implies that (6.1)-(6.2) can be obtained from a finite number

of β-values only; (ii) the bootstrap procedure there can be implemented in practice,

since the M bootstrap samples, by symmetry, lead to the same results in Steps 1-3,

that therefore need to be performed only once (only Step 4, in which a single depth

value is computed, needs to be performed for each bootstrap sample).

Finally, we point out that computing local depth of a fixed point for ` distinct

β-values typically requires much less time than computing ` times local depth for one

fixed β-value. One can indeed take advantage of the fact that Step 1 above is common

to the various computations of β-local depths (there is some analogy with quantile

regression, where the information used to compute a fixed regression quantile may be

exploited when computing regression quantiles at other quantile levels).
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A Appendix

This appendix collects proofs of technical results. We start with the proof of Theo-

rem 3.1, which requires the following preliminary result. Throughout this section, Rβ
x
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will denote Rβ
x(P ), when no ambiguity is possible.

Lemma A.1 Let D( · , P ) be a depth function satisfying Property (Q1). Then, for

any x ∈ Rd, any Borel set B ⊂ Rd, and any absolutely continuous distribution P , the

mapping β 7→ P [Rβ
x ∩B] is continuous over (0, 1].

Proof of Lemma A.1. Note first that Property (Q1) implies that, for any absolutely

continuous P , x 7→ D(x, P ) is a continuous function : indeed, if X is a random d-

vector with distribution P = PX, then Property (P1) entails that, for any sequence xn

converging to x, |D(xn, P )−D(x, P )| = |D(x, PX+(x−xn))−D(x, P )| → 0 as n→∞,

since PX+(x−xn) converges weakly to P . Together with the fact that P is absolutely

continuous, this implies that P [Rβ
x(P )] = β for any β ∈ (0, 1].

Now, fix β0 ∈ (0, 1] and a Borel set B. Consider a decreasing sequence (βn)

converging to β0. The numbers γn = P [Rβn
x ∩B] form a monotone decreasing sequence

that is lower bounded by γ0 = P [Rβ0
x ∩B]. Hence they admit a limit limn→∞ γn ≥ γ0.

Letting γ̄n = P [Rβn
x ∩ Bc], with Bc = Rd \ B, we similarly obtain that limn→∞ γ̄n ≥

γ̄0 = P [Rβ0
x ∩Bc]. If limn→∞ γn > γ0, then we have limn→∞ βn = limn→∞(γn + γ̄n) >

γ0 + γ̄0 = β0, a contradiction. Hence, we must have that limn→∞ γn = γ0, i.e.,

that β 7→ P [Rβ
x ∩ B] is right continuous at β0. The result then follows since left

continuity can be established along the same lines. �

Proof of Theorem 3.1. In view of (Q1), it is sufficient, in order to show that

∣∣LDβn(x, P (n))− LDβ(x, P )
∣∣ =

∣∣D(x, P βn,(n)
x )−D(x, P β

x )
∣∣ a.s.→ 0 as n→∞,

to prove that P
βn,(n)
x [B]

a.s.→ P β
x [B] for any Borel set B. Fix then such a B and ε > 0.

Lemma A.1 implies that there exist δ, η > 0 such that

[P [Rβ−δ
x ∩B]− η, P [Rβ+δ

x ∩B] + η] ⊂ [P [Rβ
x ∩B]− βε, P [Rβ

x ∩B] + βε]. (A.1)
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Now, Theorem 3 in Zuo and Serfling (2000c) implies that there exists n0 such that

Rβ−δ
x ⊂ R

βn,(n)
x ⊂ Rβ+δ

x a.s. for all n ≥ n0 (throughout the proof, R
βn,(n)
x stands

for Rβn(P
(n)
x )), which of course yields that, a.s. for all n ≥ n0,

P (n)[Rβ−δ
x ∩B] ≤ P (n)[Rβn,(n)

x ∩B] ≤ P (n)[Rβ+δ
x ∩B], (A.2)

The SLLN entails that P (n)[Rβ±δ
x ∩ B]

a.s.→ P [Rβ±δ
x ∩ B] as n → ∞ ; consequently,

there exists n1 such that, a.s. for all n ≥ n1,

[
P (n)[Rβ−δ

x ∩B], P (n)[Rβ+δ
x ∩B]

]
⊂
[
P [Rβ−δ

x ∩B]− η, P [Rβ+δ
x ∩B] + η

]
. (A.3)

Combining (A.1)-(A.3), we proved that, a.s. for all n ≥ max(n0, n1),

P [Rβ
x ∩B]− βε ≤ P (n)[Rβn,(n)

x ∩B] ≤ P [Rβ
x ∩B] + βε,

or equivalently, P β
x [B]− ε ≤ 1

β
P (n)[R

βn,(n)
x ∩B] ≤ P β

x [B] + ε. In other words, we have

proved that, as n→∞,

1

β
P (n)[Rβn,(n)

x ∩B]
a.s.→ P β

x [B]. (A.4)

Taking B = Rd in (A.4) yields P (n)[R
βn,(n)
x ]

a.s.→ β, which, jointly with (A.4), establishes

that P
βn,(n)
x [B] = P (n)[B|Rβn,(n)

x ]
a.s.→ P β

x [B], as was to be proved. �

Proof of Lemma 4.1. (i) Fix x ∈ Supp(f) and ε > 0. By Lemma A.1

in Paindaveine and Van Bever (2012) (whose proof, under the properties (Q1)-(Q2)

introduced in the present paper, trivially extends to the case where the symme-

try center θθθ belongs to Supp(f) \ Supp+(f)), there exist δ > 0 and α < α∗x :=

maxy∈Rd D(y, Px) such that Bx(δ) ⊂ Rx,α ⊂ Bx(ε). Since x ∈ Supp(f), we then

have that β0 := P [Rx,α] ≥ P [Bx(δ)] > 0. From the definition of Rβ0
x , it follows that

Rβ0
x ⊂ Rx,α ⊂ Bx(ε).

(ii) Fix x /∈ Supp(f) and let ε > 0 be such that P [Bx(ε)] = 0. If one assumes that

(Q2) also holds for θθθ /∈ Supp(f), then it is easy to check that the proof of Lemma
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A.1(i) in Paindaveine and Van Bever (2012) further extends to the case where the

symmetry center does not belong to Supp(f). Therefore there still exist δ > 0 and

α < α∗x such that Bx(δ) ⊂ Rx,α ⊂ Bx(ε). The definition of Rβ
x implies that Rx,α ⊂ Rβ

x

for any β > 0. It follows that x ∈ Bx(δ) ⊂ Rx,α ⊂ R0
x = ∩β>0R

β
x, hence that x is an

interior point of R0
x. �

Lemma A.2 Under the assumptions of Theorem 4.1, β/Vol(Rβ
x)→ f(x) as β → 0.

Proof of Lemma A.2. Fix ε > 0 and let r = r(ε) be such that f(x)− ε ≤ f(y) ≤

f(x)+ε for any y ∈ Bx(r) = {z ∈ Rd : ‖z−x‖ < r}. Lemma A.1 in Paindaveine and

Van Bever (2012) ensures that there exists β0 > 0 such that Rβ0
x ⊂ Bx(r). Therefore,

for any β ∈ (0, β0), one has (f(x)−ε)Vol(Rβ
x) ≤ β =

∫
Rβx
f(y)dy ≤ (f(x)+ε)Vol(Rβ

x),

or equivalently f(x)− ε ≤ β/Vol(Rβ
x) ≤ f(x) + ε. The result follows. �

Proof of Theorem 4.1. Fix x ∈ Rd such that f is positive and continuous at x. For

any β, let B 7→ P sym,β
x [B] = Px[B|Rβ

x] be the symmetrized (about x) version of P ,

conditional to Rβ
x—recall that we let Px = 1

2
PX + 1

2
P 2x−X. We have

|LDβ(x, P )− cD| = |D(x, P β
x )− cD| = |D(x, P β

x )−D(x, P sym,β
x )|,

where we used the fact that D( · , P ) satisfies (Q3). In view of (Q1+), it is therefore

sufficient to prove that, for any Borel set B, P β
x [B]−P sym,β

x [B]→ 0 as β → 0. To do

so, fix such a B and, denoting by f sym
x the density of P sym

x , write

P β
x [B]− P sym,β

x [B] =
1

β

∫
Rβx∩B

(f(y)− fx(y)) dy =
1

2β

∫
Rβx∩B

(f(y)− f(2x− y)) dy.

If x lies in the interior of B, Lemma 4.1(i) shows that there exists β0 > 0 such that,

for all β ≤ β0, we have Rβ
x ∩ B = Rβ

x. Clearly, this implies that for all β ≤ β0, the

integral above, hence also P β
x [B] − P sym,β

x [B], is equal to zero. If x does not belong

to the closure of B, then the same lemma implies that Rβ
x ∩ B is empty for β small
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enough, which leads to the same conclusion. It remains to consider the case where x

belongs to the boundary of B. For such an x, we may write

P β
x [B]− P sym,β

x [B] =
Vol(Rβ

x ∩B)

2β
(Iβ − Irefl

β ), where

Iβ =
1

Vol(Rβ
x ∩B)

∫
Rβx∩B

f(y) dy and Irefl
β =

1

Vol(Rβ
x ∩Brefl)

∫
Rβx∩Brefl

f(y) dy,

and where Brefl = 2x − B denotes the reflection of B about x. The same reasoning

as in the proof of Lemma A.2 allows to show that both Iβ and Irefl
β converge to f(x)

as β → 0. The result then follows from the fact that Vol(Rβ
x ∩ B)/β ≤ Vol(Rβ

x)/β

remains bounded as β → 0 (Lemma A.2). �

Proof of Theorem 6.1. (Necessity:) For any β, the region Rβ
x0

(P ) is centrally

symmetric about x0 : Rβ
x0

(P ) = 2x0 − Rβ
x0

(P ). Hence the central symmetry of P

about x0 implies that P β
x0

[ · ] = P [ · |Rβ
x0

(P )] is also centrally symmetric about x0.

This implies that LDβ
H(x0, P ) = DH(x0, P

β
x0

) = 1/2 for any β.

(Sufficiency:) For any β, LDβ
H(x0, P ) = DH(x0, P

β
x0

) = 1/2 implies that P β
x0

is

angularly symmetric about x0. In other words, for any β, P β
x0

[C] = P β
x0

[2x0 −C], for

any C in the collection Cx0 of cones originating from x0. This of course rewrites P [C∩

Rβ
x0

(P )] = P [(2x0 − C) ∩ Rβ
x0

(P )], ∀C ∈ Cx0 , ∀β ∈ (0, 1]. Since the regions Rβ
x0

(P )

are symmetric with respect to x0, this implies that

P [C ∩ (Rβ2
x0

(P ) \Rβ1
x0

(P ))]

= P [2x0 − (C ∩ (Rβ2
x0

(P ) \Rβ1
x0

(P )))] ∀C ∈ Cx0 , ∀β1 < β2 ∈ (0, 1].

This proves the result since the sigma-algebra generated by the subsets C∩(Rβ2
x0
\Rβ1

x0
),

C ∈ Cx0 , 0 < β1 < β2 ≤ 1, coincides with the Borel sigma-algebra on Rd. �

Supplementary Materials

The Supplementary Materials report (i) a comparison with the local halfspace and

simplicial depths from Agostinelli and Romanazzi (2011) in the context of the Boston
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data set in Section 2.2, (ii) an argument proving that P 0
x (see (4.1)) does not exist for

x ∈ Supp(f), (iii) an example showing that a point x on the boundary of Supp(f)

can exhibit any limiting local depth as β → 0, and (iv) a proof of Theorem 4.2.
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