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Abstract

We propose rank-based estimators of principal components, both in the one-

sample and, under the assumption of common principal components, in the m-

sample cases. Those estimators are obtained via a rank-based version of Le Cam’s

one-step method, combined with an estimation of cross-information quantities. Un-

der arbitrary elliptical distributions with, in the m-sample case, possibly heteroge-

neous radial densities, those R-estimators remain root-n consistent and asymptoti-

cally normal, while achieving asymptotic efficiency under correctly specified radial

densities. Contrary to their traditional counterparts computed from empirical co-

variances, they do not require any moment conditions. When based on Gaussian

score functions, in the one-sample case, they moreover uniformly dominate their

classical competitors in the Pitman sense. Their AREs with respect to other ro-

bust procedures are quite high—up to 30, in the Gaussian case, with respect to

minimum covariance determinant estimators. Their finite-sample performances are

investigated via a Monte-Carlo study.
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1 Introduction

Principal component analysis (PCA) arguably constitutes one of the most useful and pop-

ular techniques of multivariate analysis. Introduced by Pearson (1901) and rediscovered

by Hotelling (1933), PCA is a powerful dimension reduction tool, by which the k (k typi-

cally large) marginals of a random vector X = (X1, . . . , Xk)
′ get replaced with (typically,

a few) appropriately chosen mutually orthogonal random variables, called the principal

components (PCs), in such a way that most of the variability in X still is accounted for.

Assuming that the original random vector X has finite second-order moments, traditional

PCs are obtained by projecting X onto the eigenvectors of its covariance matrix; the

variances of those projections then are the corresponding eigenvalues.

The multisample version of principal components came much later, when Flury (1984)

introduced the Common Principal Components (CPC) model as a parcimonious way of

parametrizing an m-tuple of covariance matrices. CPC models since then have been used

in a variety of applications (see Flury and Riedwyl 1988). Under CPC, m ≥ 2 populations

of dimension k, with covariance matrices ΣΣΣCov

i , i = 1, . . . , m, share, with possibly different

eigenvalues, the same eigenvectors: namely, the m covariance matrices ΣΣΣCov

i factorize

into ΣΣΣCov

i = βββΛΛΛCov

i βββ′ for some m-tuple of positive diagonal matrices ΛΛΛCov

i , i = 1, . . . , m, and

some orthogonal matrix βββ—the matrix of common eigenvectors, which does not depend

on i and characterizes the common principal components.
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In his 1984 paper, Flury also deals, under the hypothesis of CPC, with the Gaussian

maximum likelihood estimators (MLEs) (β̂ββ
MLE

1 , . . . , β̂ββ
MLE

k ) =: β̂ββ
MLE

and λ̂MLE
ij , i = 1, . . . , m,

j = 1, . . . , k of the common eigenvectors (βββ1, . . . ,βββk) =: βββ and the corresponding eigen-

values λij , i = 1, . . . , m, j = 1, . . . , k of ΣΣΣCov

1 , . . . ,ΣΣΣCov

m . Denoting by X̄i and the empirical

mean and covariance matrix (unbiased versions) in sample i, i = 1, . . . , m, he shows that

those MLEs are solutions of the likelihood equations

βββ′
j

( m∑

i=1

ni
λij − λil

λijλil

Si

)
βββl = 0, j 6= l = 1, . . . , k,

(1.1)

βββ ′
jSiβββj = λij, i = 1, . . . , m, j = 1, . . . , k, βββ′

jβββl = δjl, j, l = 1, . . . , k,

where δjl stands for the usual Kronecker symbol. An explicit solution of equations (1.1)

does not exist, but an algorithm providing a numerical solution has been proposed by

Flury and Gautschi (1986).

Traditional PCA and CPC methods are based on Gaussian assumptions, and their

implementation is based on empirical covariance matrices (as in (1.1) above). This Gaus-

sian approach puts regrettable limitations on the applicability of the method. Principal

components, indeed, intuitively only depend on the elliptical geometry of the underlying

distributions, irrespective of any moment conditions. And covariance-based methods are

known to be poorly robust. More resistant PCA and CPC methods, remaining valid un-

der arbitrary elliptical densities, are thus highly desirable. This is the motivation behind

the projection-poursuit techniques developed by Croux and Ruiz-Gazen (2005), which are

based on robust scale functionals. Under elliptical symmetry with scatter matrix ΣΣΣ (re-

ducing to a covariance matrix only under finite moments of order two), all “reasonable”
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(we refer to Croux and Ruiz-Gazen 2005 for a precise statement) equivariant scale func-

tionals lead to the same concept of principal components, namely the one associated with

the eigenvectors of ΣΣΣ. The PC estimators obtained by Croux and Ruiz-Gazen have high

finite-sample breakdown points. Delvin et al. (1981), Croux and Haesbroeck (2000) and

Taskinen et al. (2012) also consider PCA techniques based on robust estimators of the

covariance matrix. In the CPC context, Boente et al. (2001, 2002) similarly proposed

to replace the empirical covariances Si in (1.1) with more robust estimators. Projection

pursuit techniques for CPC also have been considered by Boente et al. (2006).

Robust methods, as a rule, suffer from a loss of efficiency, and those robust PCA and

CPC methods are no exceptions to that rule. To improve on this, Hallin et al. (2010b

and 2013) recently provided locally asymptotically optimal (in the Le Cam sense) rank

tests for PCA and CPC, respectively. A major advantage of these tests is that they are

not only validity-robust, in the sense of surviving arbitrary (possibly very heavy-tailed)

elliptical densities: unlike their pseudo-Gaussian and robust competitors, they also are

efficiency-robust, in the sense that their local powers do not deteriorate away from the

reference density at which they are optimal. Their normal-score versions, moreover, uni-

formly dominate, in the Pitman sense, the (pseudo-)Gaussian methods, based on sample

covariance matrices.

Daily practice in PCA and CPC, however, is about estimation rather than hypothesis

testing, which raises a natural question: do the rank tests in Hallin et al. (2010b and 2013)

have any estimation counterparts? That is, can we construct rank-based estimators for

the (common) eigenvectors that match the performances of those rank-based tests?
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In this paper, we provide a positive answer to that question by constructing rank-based

estimators (R-estimators) that (i) are root-n consistent and asymptotically normal under

any elliptical density (for CPC, any m-tuple of elliptical densities), irrespective of any

moment assumptions; (ii) are efficient at some prespecified elliptical density (for CPC,

some prespecified m-tuple of them); (iii) exhibit the same asymptotic relative efficiencies

as the rank tests from Hallin et al. (2010b and 2013) with respect to classical Gaussian

procedures; as a corollary, the Gaussian-score rank-based estimators will uniformly dom-

inate, in the one-sample case and in terms of Pitman efficiencies, the classical estimators

based on sample covariance matrices.

Traditional R-estimators in principle are obtained via the minimization of some rank-

based objective function. From a practical point of view, this is known to be numerically

costly, or even infeasible, especially in the multiparameter case, hence in the present

context of (common) principal components: rank-based objective functions indeed are

piecewise constant, hence discontinuous and non-convex. Instead, we use a rank-based

version of Le Cam’s one-step methodology. Letting β̂ββ stand for a preliminary root-n con-

sistent estimator, our estimators are of the form vec(βββ
˜

) = vec(β̂ββ) + n−1/2ΓΓΓ
˜
−∆∆∆
˜

, where ∆∆∆
˜

is a rank-based central sequence and ΓΓΓ
˜
− the Moore-Penrose inverse of some estimated

cross-information matrix.

The outline of the paper is as follows. In Section 2, we introduce the notation needed in

the sequel. In Section 3.1, we describe the proposed estimators for the common eigenvec-

tors under CPC. We then study their asymptotic properties in Section 3.2. In Section 4,

we consider estimation of eigenvectors in the one-sample case, that is, for PCA. A Monte-
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Carlo simulation is performed in Section 5 to investigate the finite-sample behavior of our

estimators. Finally, an appendix collects the technical proofs.

2 Notation and main assumptions

2.1 Elliptical densities

Throughout the paper, (Xi1, . . . ,Xini
), i = 1, . . . , m form a collection of m mutually

independent samples of i.i.d. k-dimensional random vectors with elliptically symmetric

densities. More precisely, we assume that Xij, j = 1, . . . , ni, i = 1, . . . , m are mutually

independent, with elliptical probability densities of the form

fi(x) = ck,fi
(det(ΣΣΣi))

−1/2 fi

(
((x − θθθi)

′ΣΣΣ−1
i (x − θθθi))

1/2
)

(2.1)

for some k-dimensional location parameter θθθi, some symmetric positive definite scatter

matrix ΣΣΣi and some radial density function fi : R
+
0 7→ R

+; ck,fi
is a normalization constant.

Note that the radial density fi is not a probability density since it does not integrate to

one; but the function f̃i := r 7→ µ−1
k−1;fi

rk−1fi(r) (for simplicity, we write f̃i instead of f̃ik),

where µℓ;f :=
∫∞

0
rℓf(r) dr, is. Define

F :=
{
f : f(r) > 0 a.e. and µk−1;f < ∞

}
and F1 :=

{
f ∈ F : µ−1

k−1;f

∫ 1

0

rk−1f(r) dr = 1/2
}
;

the family F1 is a class of nowhere vanishing standardized radial densities, in the sense that,

for any radial density f ∈ F1, the probability density f̃ := r 7→ µ−1
k−1;fr

k−1f(r) is a prop-

erly standardized probability density. By “standardized”, here, we mean that the corre-

sponding median is one; the median, for a nonvanishing density over R
+
0 , indeed, is a scale

6



parameter—the existence of which does not require any moment conditions. Classical ex-

amples of elliptical distributions are the k-variate multinormal distributions (N ), with

standardized radial densities fi(r) = φ(r) := exp(−akr
2/2), the k-variate Student distri-

butions (tν), with standardized radial densities fi(r) = f t
ν(r) := (1 + ak,νr

2/ν)−(k+ν)/2,

ν > 0, and the k-variate power-exponential distributions (Eη) with standardized radial

densities of the form fi(r) = f e
η (r) := exp(−bk,ηr

2η), η > 0; the positive constants ak,

ak,ν, and bk,η are such that fi ∈ F1. Summarizing this, we throughout assume that the

following assumption holds.

Assumption (A1). The observations Xij , j = 1, . . . , ni, i = 1, . . . , m are mutually

independent, with probability densities fi given in (2.1), for some m-tuple of (possibly

distinct) radial densities f := (f1, . . . , fm) such that fi ∈ F1, i = 1, . . . , m.

Under Assumption (A1), the distances dij(θθθi,ΣΣΣi) := ‖ΣΣΣ−1/2
i (Xij − θθθi)‖, j = 1, . . . , ni,

i = 1, . . . , m have probability density f̃i, with median one, which identifies the scatter ma-

trices ΣΣΣi, i = 1, . . . , m also in the absence of any moments (throughout, A1/2 stands for the

symmetric and positive definite root of the symmetric and positive definite matrix A). Un-

der finite second-order moments, however, ΣΣΣi is proportional to the covariance matrix ΣΣΣCov

i

of Xij. Note that the observations Xij then decompose into Xij = θθθi +dijΣΣΣ
1/2
i Uij, where,

under Assumption (A1), the multivariate signs Uij(θθθi,ΣΣΣi) := ΣΣΣ
−1/2
i (Xij − θθθi)/dij(θθθi,ΣΣΣi),

j = 1, . . . , ni, i = 1, . . . , m are i.i.d. uniform over the unit sphere of R
k and the standard-

ized radial distances dij(θθθi,ΣΣΣi) just defined are independent of the Uij’s, with standardized

probability density f̃i over R
+ and distribution function F̃i.

The derivation of asymptotically efficient estimators at a given m-tuple
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f = (f1, . . . , fm) of radial densities will be based on the uniform local and asymptotic

normality (ULAN) of the CPC model; a precise statement, with explicit forms of the

central sequence ∆∆∆
(n)
ϑϑϑ;f and the information matrix ΓΓΓϑϑϑ;f , is provided in Proposition A.1.

That ULAN property holds under mild regularity conditions on the fi’s. More precisely,

it requires the fi’s to belong to the collection Fa of those radial densities f ∈ F1 that are

absolutely continuous, with almost everywhere derivative ḟ such that, letting ϕf := −ḟ/f

and denoting by F̃ the distribution function associated with f̃ , the integrals

Ik(f) :=

∫ 1

0

ϕ2
f(F̃

−1(u)) du and Jk(f) :=

∫ 1

0

ϕ2
f (F̃

−1(u))(F̃−1(u))2 du

are finite. The quantities Ik(fi) and Jk(fi) play the roles of radial Fisher information

for location and shape/scale, respectively, in population i, i = 1, . . . , m (see Hallin and

Paindaveine 2006).

2.2 Parametrization

Since the common eigenvectors βββ := (βββ1, . . . ,βββk) of ΣΣΣ1, . . . ,ΣΣΣm are scale-free functions of

the ΣΣΣi’s, it is appropriate to decompose each ΣΣΣi into a product ΣΣΣi = σ2
i Vi, where σi > 0

is a scale parameter and Vi is a shape matrix for population i (see Hallin and Paindav-

eine (2006) for details). Paindaveine (2008) shows the advantage of doing so by defining σ2
i

as (detΣΣΣi)
1/k. This definition, which is the one we are adopting here, implies that the

eigenvalues λV

ij of the shape matrices Vi are such that
∏k

j=1 λV

ij = 1 for all i = 1, . . . , m;

clearly, Vi and ΣΣΣi share the same eigenvectors. Obviously, the shape matrices in turn

factorize into Vi = βββΛΛΛV

i βββ′. In the CPC case, the following assumption moreover ensures

the identifiability of the common eigenvectors βββ:
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Assumption (A2). For any 1 ≤ j 6= j′ ≤ k, there exists i ∈ {1, . . . , m} such that

λV

ij 6= λV

ij′.

Under the hypothesis of CPC and Assumption (A2), the matrix βββ of common eigen-

vectors is identified up to an arbitrary permutation of its columns (we forget about the

irrelevant sign changes of the βββj’s). However, it is easy to fix an ordering, hence to make

the βββj ’s—hence also the corresponding λV

ij ’s—(individually) identifiable.

We then adopt the following parametrization. Denoting by dvec (A) the vector ob-

tained by stacking the diagonal elements of a square matrix A, and by dv
◦

ecA the same

vector deprived of its first element A11 so that dvec (A) = (A11, (dv
◦

ecA)′)′, our parameter

is the vector

ϑϑϑ := (ϑϑϑ′
I
,ϑϑϑ′

II
,ϑϑϑ′

III
,ϑϑϑ′

IV
)′ := (θθθ′1, . . . , θθθ

′
m, σ2

1, . . . , σ
2
m, (dv

◦

ecΛΛΛV

1 )′, . . . , (dv
◦

ecΛΛΛV

m)′, (vecβββ)′)′,

where θθθi and σ2
i are the location and scale parameters, ΛΛΛV

i := diag(λV

i1, . . . , λ
V

ik), the

diagonal matrix of eigenvalues in population i, i = 1, . . . , m, and βββ the matrix of common

eigenvectors. The reason why the λV

i1’s are omitted in the parametrization is that, Vi

being a shape matrix, we have λV

i1 = 1/
∏k

j=2 λV

ij . The parameter space is thus ΘΘΘ :=

R
mk × (R+

0 )m × (Ck−1)m × (vecSOk), where Ck−1 is the open positive orthant of R
k−1

and SOk stands for the class of k × k real orthogonal matrices with determinant one.

Write P
(n)
ϑϑϑ;f for the joint distribution of the n observations under parameter value ϑϑϑ and

standardized radial densities f = (f1, . . . , fm); note that Assumption (A2) is explicitly

incorporated in the definition of ΘΘΘ.
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2.3 Asymptotic behavior of sample sizes and score functions

Asymptotics in this paper are considered for triangular arrays of observations of the form

(X
(n)
11 , . . . ,X

(n)

1n
(n)
1

,X
(n)
21 , . . . ,X

(n)

2n
(n)
2

, . . . ,X
(n)
m1, . . . ,X

(n)

mn
(n)
m

),

indexed by the total sample size n :=
∑m

i=1 n
(n)
i , where the sequences n

(n)
i of sizes in each

sample satisfy the following assumption.

Assumption (A3). For all i = 1, . . . , m, r
(n)
i := n

(n)
i /n → ri ∈ (0, 1) as n → ∞.

Letting r(n) := diag((r
(n)
1 )−1/2, . . . , (r

(n)
m )−1/2), define

ςςς(n) := diag
(
ςςς
(n)
I , ςςς

(n)
II , ςςς

(n)
III , ςςς

(n)
IV

)
:= diag

(
r(n) ⊗ Ik, r

(n), r(n) ⊗ Ik−1, Ik2

)
. (2.2)

The consistency (contiguity) rates for ϑϑϑ throughout then will be of the form n1/2(ςςς(n))−1.

Finally, the R-estimators considered in Section 3.1 are based on m-tuples K = (K1, . . . , Km)

of score functions, that are assumed to satisfy the following regularity conditions.

Assumption (A4). For any i = 1, . . . , m, the mapping (from (0, 1) to R) u 7→ Ki(u) (i) is

continuous and square-integrable, (ii) can be expressed as the difference of two monotone

increasing functions, and (iii) satisfies
∫ 1

0
Ki(u) du = k.

Assumption (A4)(iii) is a normalization constraint that is automatically satisfied by the

score functions Ki(u) = Kfi
(u) := ϕfi

(F̃−1
i (u))F̃−1

i (u) leading to asymptotic efficiency at

m-tuples of radial densities f = (f1, . . . , fm) for which ULAN holds; see Section 3.2.

For score functions K, K1, K2 satisfying Assumption (A4), let (throughout, U stands

for a random variable uniformly distributed over (0, 1)), Jk(K1, K2) := E[K1(U)K2(U)].

For simplicity, we write Jk(K) for Jk(K, K), Jk(K, f) for E[K(U)Kf (U)], etc.

Among the possible score functions (Laplace, Wilcoxon, etc) satisfying Assumption (A4),

an important particular case of score functions of the form Kfi
is that of van der Waerden
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or normal scores, obtained for fi = φ. Denoting by Ψk the chi-square distribution function

with k degrees of freedom, we have Kφ(u) = Ψ−1
k (u), and Jk(φ) = k(k + 2). Similarly,

Student densities fi = f t
ν yield

Kft
ν
(u)= k(k + ν)G−1

k,ν(u)/(ν + kG−1
k,ν(u)) and Jk(f

t
ν)= k(k + 2)(k + ν)/(k + ν + 2),

where Gk,ν stands for the Fisher-Snedecor distribution function with k and ν degrees of

freedom.

3 R-estimation of common principal components (CPC)

3.1 One-step R-estimators

As explained in the introduction, our R-estimators βββ
˜

are (after vectorization) of the

one-step form

vec(βββ
˜

) = vec(β̂ββ) + n−1/2ΓΓΓ
˜

−∆∆∆
˜

,

where β̂ββ is part of a preliminary estimator

ϑ̂ϑϑ =
(
θ̂θθ
′

1, . . . , θ̂θθ
′

m, σ̂2
1, . . . , σ̂

2
m, (dv

◦

ec Λ̂ΛΛV

1 )′, . . . , (dv
◦

ec Λ̂ΛΛV

m)′, (vec β̂ββ)′
)′

, (3.1)

∆∆∆
˜

is some rank-based form of central sequence, and ΓΓΓ
˜
− is the Moore-Penrose inverse

of some estimated cross-information matrix, both involving the preliminary ϑ̂ϑϑ. Here, we

describe their construction, deferring technical details and justifications to the Appendix.

Consider the multivariate signs (U11, . . . ,Umnm) and the ranks (R11, . . . , Rmnm), where,

letting V̂i := β̂ββΛ̂ΛΛV

i β̂ββ
′
, Uij := Uij(θ̂θθi, V̂i), while Rij := Rij(θ̂θθi, V̂i) denotes the rank of

dij := dij(θ̂θθi, V̂i) among di1, . . . , dini
. Based on those signs and ranks and the m-tuple of
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score functions K := (K1, . . . , Km), we introduce the rank-based statistics

∆∆∆
˜ ϑ̂ϑϑ;K :=

1

2n1/2

m∑

i=1

Gβ̂ββ
kL

β̂ββ, Λ̂ΛΛV

i

k

(
V̂⊗2

i

)−1/2
ni∑

j=1

Ki

(
Rij

ni + 1

)
vec (UijU

′
ij), (3.2)

where A⊗2 stands for the Kronecker product A⊗A, and where the matrices Gβββ
k and Lβββ

k are

defined in Appendix A.1. When K := (K1, . . . , Km) denotes the m-tuple of score functions

associated with the densities f = (f1, . . . , fm), this vector ∆∆∆
˜

ϑϑϑ;K is a rank-based version,

computed at ϑ̂ϑϑ, of the βββ-part ∆∆∆IV

ϑϑϑ;f of the central sequence appearing in Proposition A.1.

Proposition A.2 (in Appendix A.2) summarizes its asymptotic properties.

The preliminary estimator ϑ̂ϑϑ, however, should satisfy the following assumption.

Assumption (A5). The estimator

ϑ̂ϑϑ =
(
θ̂θθ
′

1, . . . , θ̂θθ
′

m, σ̂2
1 , . . . , σ̂

2
m, (dv

◦

ec Λ̂ΛΛV

1 )′, . . . , (dv
◦

ec Λ̂ΛΛV

m)′, (vec β̂ββ)′
)′

is such that (i) ϑ̂ϑϑ − ϑϑϑ = OP(n−1/2ςςς(n)) under
⋃

g∈(Fa)m{P(n)
ϑϑϑ;g}, and (ii) ϑ̂ϑϑ is locally and

asymptotically discrete, that is, it only takes a bounded number of distinct values in balls

with O(n−1/2ςςς (n)) radius centered at ϑϑϑ.

Assumption (A5)(i) requires ϑ̂ϑϑ to be root-n consistent under the whole set (Fa)
m of

m-tuples g of standardized radial densities ensuring ULAN. As for Assumption (A5)(ii), it

is the traditional assumption of local asymptotic discreteness, which is easily enforced by

discretizing ϑ̂ϑϑ in an adequate way. Such discretization, however, is a purely technical re-

quirement, with no practical consequences, and is only required in asymptotic statements

(see, for instance, Hallin et al. 2006).

Estimators satisfying Assumption (A5) are easily obtained. The following one, based

on the Hettmansperger and Randles median and Tyler’s estimator of shape (see also, in a

slightly different context, Luo et al. 2009), has quite attractive properties. To start with,
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compute the Hettmansperger and Randles (2002) affine-equivariant medians θ̂θθ
HR

1 , . . . , θ̂θθ
HR

m ,

and the (normalized; that is, with determinant one) shape estimators V̂Tyler

1 , . . . , V̂Tyler
m of

Tyler (1987) in each sample. Those estimators are implicitly defined by

1

ni

ni∑

j=1

Uij(θ̂θθ
HR

i , V̂Tyler

i ) = 0 and
1

ni

ni∑

j=1

Uij(θ̂θθ
HR

i , V̂Tyler

i )U′
ij(θ̂θθ

HR

i , V̂Tyler

i ) =
1

k
Ik,

i = 1, . . . , m, a system of equations for which good numerical solutions exist. The prelim-

inary estimators dv
◦

ec (Λ̂ΛΛV

1 ), . . . , dv
◦

ec (Λ̂ΛΛV

m), vec β̂ββ then are obtained by plugging the values

of θ̂θθ
HR

1 , . . . , θ̂θθ
HR

m , V̂Tyler

1 , . . . , V̂Tyler
m into Flury’s Gaussian likelihood equations (1.1). Denote

by ϑ̂ϑϑTyler the resulting estimator (note that the scales σ2
i , i = 1, . . . , m are not involved

in ∆∆∆
˜

ϑϑϑ;K, hence do not need be estimated). That preliminary estimator ϑ̂ϑϑTyler satisfies the

required consistency assumption: see Boente et al. (2002) for details.

Many other choices for ϑ̂ϑϑ are possible, though. In the Monte-Carlo study of Section 5

below, we also consider the preliminary estimator ϑ̂ϑϑMCD obtained from the robust Min-

imum Covariance Determinant (MCD) estimators of location/shape described, e.g., in

Rousseuw and Leroy (1987). Note, however, that, contrary to ϑ̂ϑϑTyler and ϑ̂ϑϑMCD (for the

asymptotic behavior of the latter, see Cantor and Lopuhaä (2010)), Flury’s covariance-

based estimator ϑ̂ϑϑMLE does not satisfy the consistency requirements, as it loses root-n

consistency under non-Gaussian densities. Asymptotically, the choice of ϑ̂ϑϑ does not affect

the asymptotic properties of our R-estimators; it seems, from the simulations in Section 5,

that the impact of that choice on their finite-sample behavior is quite limited as well.

It follows from Proposition A.2 in the Appendix that a natural estimator for βββ would

be the matrix β̃ββK;Jk(K,g) defined by

vec(β̃ββK;Jk(K,g)) := vec(β̂ββ) + n−1/2(ΓΓΓϑ̂ϑϑ;K,g)
−∆∆∆
˜ ϑ̂ϑϑ;K, (3.3)
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where A− stands for the Moore-Penrose inverse of A and (see Section 2.3 and Ap-

pendix A.1 for the definitions of Jk(Ki, gi) and ννν(i), respectively)

ΓΓΓϑϑϑ;K,g :=
1

4k(k + 2)
Gβββ

k

(
m∑

i=1

riJk(Ki, gi)(ννν
(i))−1

)
(
Gβββ

k

)′
. (3.4)

However, β̃ββK;Jk(K,g) still suffers two majors drawbacks: (i) it is not a genuine statistic,

since it still depends on the cross-information quantities Jk(K1, f1), . . . ,Jk(Km, fm), and

(ii) in general, it does not belong to SOk.

Point (i) is easily taken care of by plugging into ΓΓΓϑ̂ϑϑ;K,g the consistent estimators

Ĵk(K, g) := (Ĵk(K1, g1), . . . , Ĵk(Km, gm))

of Jk(K1, f1), . . . ,Jk(Km, fm) defined in Section 7 of Hallin et al. (2013), where we refer

to for details. The notation Ĵk(K, g) indicates an estimator of Jk(K, g), where g is the

actual, unspecified, m-tuple of radial densities—not a dependence on the unspecified g.

As for point (ii), we propose to bring β̃ββK; bJk(K,g) back to SOk by means of the following

simple Gram-Schmidt orthogonalization procedure. First, standardize β̃ββK; bJk(K,g);1 into

βββ
˜K; bJk(K,g);1 := β̃ββK; bJk(K,g);1/‖β̃ββK; bJk(K,g);1‖; then, recursively, put

βββ
˜K; bJk(K,g);l :=

(
Ik −

∑l−1
j=1 βββ

˜K; bJk(K,g);j βββ
˜

′

K; bJk(K,g);j

)
β̃ββK; bJk(K,g);l

∥∥(Ik −
∑l−1

j=1 βββ
˜K; bJk(K,g);j βββ

˜
′

K; bJk(K,g);j

)
β̃ββK; bJk(K,g);l

∥∥ , l = 2, . . . , k.

This eventually yields an R-estimator βββ
˜K; bJk(K,g) :=

(
βββ
˜K; bJk(K,g);1, . . . , βββ

˜K; bJk(K,g);k

)
that

belongs to SOk.

3.2 Asymptotic properties and AREs

It remains to justify the use of the estimators constructed in the previous section, by

showing that they do enjoy the appealing properties announced in the Introduction.
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In this section, we establish those properties. In particular, we prove that βββ
˜K; bJk(K,g)

is root-n consistent and asymptotically normal, and that, when based on the score func-

tions Kf = (Kf1 , . . . , Kfm) associated with the m-tuple of radial densities f = (f1, . . . , fm),

it is asymptotically efficient under P
(n)
ϑϑϑ;f .

Using the consistency of Ĵk(K, g), Proposition A.2(iii), and the fact that

(ΓΓΓϑϑϑ;K,g)
− = k(k + 2)Gβββ

k

( m∑

i=1

riJk(Ki, gi)(ννν
(i))−1

)−1

(Gβββ
k)′, (3.5)

we obtain (see (3.3) for the definition of β̃ββK; bJk(K,g)) that

T
e

(n) :=n1/2vec(β̃ββK; bJk(K,g) − βββ) = n1/2vec(β̂ββ − βββ) + (ΓΓΓϑ̂ϑϑ;K,g)
−∆∆∆
˜ ϑ̂ϑϑ;K

= n1/2vec(β̂ββ − βββ) + (ΓΓΓϑϑϑ;K,g)
−
(
∆∆∆
˜

ϑϑϑ;K −ΓΓΓϑϑϑ;K,gn
1/2vec(β̂ββ − βββ)

)
+ oP(1)

= n1/2vec(β̂ββ − βββ) + (ΓΓΓϑϑϑ;K,g)
−∆∆∆
˜

ϑϑϑ;K − 1

2
Gβββ

k(Gβββ
k)′n1/2vec(β̂ββ − βββ) + oP(1), (3.6)

under P
(n)
ϑϑϑ;g as n → ∞. The column vectors of the k2 × k(k− 1)/2 matrix Gβββ

k form a basis

of the tangent space to vec(SOk) at vec(βββ). Lemma A.1 in Appendix A.3, which is of

independent interest, shows that projecting n1/2vec(β̂ββ − βββ) onto this tangent space does

not modify its asymptotic behavior; applying this to (3.6) directly yields that

n1/2vec(β̃ββK; bJk(K,g) − βββ) = (ΓΓΓϑϑϑ;K,g)
−∆∆∆
˜

ϑϑϑ;K + oP(1), (3.7)

under P
(n)
ϑϑϑ;g as n → ∞. The asymptotic behavior of the proposed R-estimator βββ

˜K; bJk(K,g)

then easily follows from applying Lemma A.2 in Appendix A.3 to (3.7), yielding, in view

of (3.5), under P
(n)
ϑϑϑ;g as n → ∞,

n1/2vec(βββ
˜K; bJk(K,g) − βββ) = Jβββ

kn1/2vec(β̃ββK; bJk(K,g) − βββ) + oP(1)

= Jβββ
k(ΓΓΓϑϑϑ;K,g)

−∆∆∆
˜

ϑϑϑ;K + oP(1) = (ΓΓΓϑϑϑ;K,g)
−∆∆∆
˜

ϑϑϑ;K + oP(1). (3.8)
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The asymptotic properties of βββ
˜K; bJk(K,g), summarized in the following proposition, now fol-

low from those of ∆∆∆
˜

ϑϑϑ;K (Proposition A.2). Note that (3.8), by establishing the asymptotic

equivalence of n1/2vec(βββ
˜K; bJk(K,g)−βββ) and the rank-measurable random vector (ΓΓΓϑϑϑ;K,g)

−∆∆∆
˜

ϑϑϑ;K,

fully justifies calling βββ
˜K; bJk(K,g) an “R-estimator”.

Proposition 3.1 Let Assumptions (A1)-(A4) hold and let ϑ̂ϑϑ satisfy Assumption (A5).

Then, under P
(n)
ϑϑϑ;g, g ∈ (Fa)

m,

n1/2vec(βββ
˜K; bJk(K,g) − βββ) = (ΓΓΓϑϑϑ;K,g)

−∆∆∆
˜

ϑϑϑ;K + oP(1)

is asymptotically normal with mean zero and covariance matrix

(ΓΓΓϑϑϑ;K,g)
−ΓΓΓϑϑϑ;K(ΓΓΓϑϑϑ;K,g)

−= k(k + 2)Gβββ
k

( m∑

i=1

riJk(Ki, gi)(ννν
(i))−1

)−1

(3.9)

×
( m∑

i=1

riJk(Ki)(ννν
(i))−1

)( m∑

i=1

riJk(Ki, gi)(ννν
(i))−1

)−1

(Gβββ
k)′.

If g = (g1, . . . , g1) (homogeneous elliptical densities), and if the same score function,

K1 : (0, 1) → R, say, is used for the m rankings, then the covariance matrix (3.9) reduces to

(ΓΓΓϑϑϑ;K,g)
−ΓΓΓϑϑϑ;K(ΓΓΓϑϑϑ;K,g)

− = k(k + 2)
Jk(K1)

J 2
k (K1, g1)

Gβββ
k

( m∑

i=1

ri(ννν
(i))−1

)−1

(Gβββ
k)′.

Under the additional assumption of finite fourth-order moments, letting

κk(fi) :=
k

k + 2

∫ 1

0
(F̃−1

ik (u))4 du
( ∫ 1

0
(F̃−1

ik (u))2 du
)2 − 1

denote the kurtosis of the ith elliptic population (see, e.g., page 54 of Anderson 2003),

the asymptotic relative efficiency of βββ
˜K; bJk(K,g) with respect to the Flury (1984) Gaus-

sian MLE β̂ββ in (1.1) takes the simple form (see Hallin et al. (2008) for the asymptotic

distribution of β̂ββ in that case)

AREk,g(βββ
˜K; bJk(K,g)/β̂ββ) =

(1 + κk(g1))

k(k + 2)

J 2
k (K1, g1)

Jk(K1)
. (3.10)
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The AREs in (3.10) coincide with those obtained in one-sample shape problems: see Hallin

and Paindaveine (2006), and Hallin et al. (2006, 2010b). The Chernoff-Savage property

of Paindaveine (2006) therefore extends to the present CPC context: denoting by βββ
˜

vdW

the van der Waerden estimator (based on the Gaussian scores K1 = . . . = Km := Ψ−1
k ;

see Section 2.3), we have

AREk,g(βββ
˜

vdW/β̂ββ) ≥ 1 (3.11)

for all homogeneous g ∈ (F4
a )m, with equality in the Gaussian case only. Our van der

Waerden estimator of CPC thus is not just more robust than Flury’s MLE, it also uni-

formly outperforms it, in the Pitman sense, under homogeneous elliptical densities.

Denote by β̂ββA the estimator of βββ obtained by replacing, in the Gaussian likelihood

equations (1.1), the covariance matrices S1, . . . ,Sm by root-n consistent estimators of

shape V̂A,1, . . . , V̂A,m (typically, robust ones). It follows from Boente et al. (2002) that

n1/2vec(β̂ββA − βββ) is asymptotically normal (still in the homogeneous elliptical case g =

(g1, . . . , g1)), with mean zero and covariance matrix

ρ(A, g1)Gβββ
k

( m∑

i=1

ri(ννν
(i))−1

)−1

Gβββ′
k ,

for some scalar ρ(A, g1) governing the efficiency properties of the off-diagonal elements

of V̂A (their role is comparable to that of our cross-information quantities: see Croux and

Haesbroeck 2000 for similar results in the PCA context). It follows that the asymptotic

relative efficiency, in the homogeneous elliptical case g = (g1, . . . , g1), of βββ
˜K; bJk(K,g) with

respect to β̂ββA is

AREk,g(βββ
˜K; bJk(K,g)/β̂ββA) =

ρ(A, g1)

k(k + 2)

J 2
k (K1, g1)

Jk(K1)
. (3.12)

Some numerical values of (3.10) are provided in Table 1, which also provides AREs

with respect to the (50% breakdown point) MCD shape estimator V̂MCD. Note that
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Table 1: AREs of the R-estimators βββ
˜ K; bJk(K,g) based on van der Waerden (vdW), Wilcoxon (W), and t5

scores with respect to Flury’s Gaussian estimator β̂ββ (in brackets, with respect to the estimator β̂ββMCD

obtained from the MCD estimator of shape), under k-dimensional Student (with 5, 8, and 12 degrees of

freedom), and Gaussian densities, for k = 2, 3, 4, 6, 10, and 250.

underlying density

K k t5 t8 t12 N

2 2.204 (13.721) 1.215 (17.623) 1.078 (20.664) 1.000 (30.018)

3 2.270 (7.617) 1.233 (9.453) 1.086 (10.935) 1.000 (15.835)

vdW 4 2.326 (5.587) 1.249 (6.747) 1.093 (7.710) 1.000 (11.114)

6 2.413 (4.051) 1.275 (4.698) 1.106 (5.262) 1.000 (7.504)

10 2.531 (3.113) 1.312 (3.438) 1.126 (3.745) 1.000 (5.223)

250 2.959 (2.194) 1.480 (2.149) 1.234 (2.128) 1.000 (2.331)

2 2.258 (14.056) 1.174 (17.023) 1.001 (19.197) 0.844 (25.328)

3 2.386 (8.004) 1.246 (9.557) 1.068 (10.756) 0.913 (14.457)

W 4 2.432 (5.843) 1.273 (6.881) 1.094 (7.716) 0.945 (10.506)

6 2.451 (4.113) 1.283 (4.729) 1.105 (5.256) 0.969 (7.272)

10 2.426 (2.983) 1.264 (3.313) 1.088 (3.619) 0.970 (5.069)

250 2.262 (1.677) 1.135 (1.648) 0.950 (1.637) 0.821 (1.913)

2 2.333 (14.526) 1.244 (18.039) 1.078 (20.676) 0.945 (28.355)

3 2.400 (8.052) 1.264 (9.689) 1.089 (10.967) 0.946 (14.980)

t5 4 2.455 (5.896) 1.281 (6.921) 1.099 (7.749) 0.948 (10.531)

6 2.538 (4.261) 1.309 (4.824) 1.115 (5.305) 0.951 (7.134)

10 2.647 (3.255) 1.347 (3.531) 1.139 (3.788) 0.956 (4.995)

250 2.977 (2.207) 1.488 (2.161) 1.240 (2.138) 0.994 (2.317)
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the 50% breakdown point of the MCD estimator implies a very high cost in terms of

efficiency, with AREs of the order of 30 in dimension 2, under Gaussian densities.

Finally, note that, when βββ
˜Kf ; bJk(Kf ,g)

is based on the score functions Kf = (Kf1, . . . , Kfm)

with Kfi
(u) := ϕfi

(F̃−1
i (u))F̃−1

i (u), then n1/2vec(βββ
˜Kf ; bJk(Kf ,g)

− βββ) is, under P
(n)
ϑϑϑ;f with

f = (f1, . . . , fm), asymptotically normal with mean zero and covariance matrix

k(k + 2)Gβββ
k

( m∑

i=1

riJk(Kfi
)(ννν(i))−1

)−1

(Gβββ
k)′= k(k + 2)Gβββ

k

( m∑

i=1

riJk(fi)(ννν
(i))−1

)−1

(Gβββ
k)′,

where the right-hand side is nothing else but the Moore-Penrose inverse of the Fisher

information for βββ at f = (f1, . . . , fm). It follows that the R-estimator βββ
˜Kf ; bJk(Kf ,g)

is

asymptotically efficient under P
(n)
ϑϑϑ;f (it achieves the parametric efficiency bound).

4 Rank-based PCA

In the one-sample setup (m = 1), common principal components reduce to ordinary

principal components, and it can be expected that the methodology just described yields

estimators enjoying the same type of asymptotic properties as in Section 3.2. We show

in this section that this is indeed the case.

Let X1, . . . ,Xn be a random sample from an elliptical distribution with location θθθ,

scale σ, shape matrix V = βββΛΛΛVβββ ′, and radial density f1. Put Ui := V−1/2(Xi − θθθ)/di,

where di := di(θθθ,V) := ‖V−1/2(Xi − θθθ)‖, i = 1, . . . , n, and write Ri := Ri(θθθ,V) for

the rank of di among d1, . . . , dn. In this one-sample setup, we write P
(n)
ϑϑϑ;f for the joint

distribution of the Xi’s under parameter value ϑϑϑ := (θθθ′, σ2, (dv
◦

ecΛΛΛV)′, (vecβββ)′)′ and radial

density f1.

The one-sample versions of the rank-based central sequence in (3.2) and the cross-
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information matrix in (3.4) are (for a score function K satisfying Assumption (A4))

∆∆∆
˜ ϑ̂ϑϑ;K , with ∆∆∆

˜
ϑϑϑ;K =

1

2n1/2
Gβββ

kL
βββ,ΛΛΛV

k

(
V⊗2

)−1/2
n∑

i=1

K

(
Ri

n + 1

)
vec (UiU

′
i),

and

ΓΓΓϑϑϑ;K,g1 =
Jk(K, g1)

4k(k + 2)
Gβββ

kννν
−1(Gβββ

k)′,

respectively, where ννν := diag(ν12, ν13, . . . , ν(k−1)k), with νjh := λV

j λV

h /(λV

j −λV

h )2. Working

along the same lines as in Section 3.1, define

vec(β̃ββK;Jk(K,g1)) = vec(β̂ββ) + n−1/2(ΓΓΓϑ̂ϑϑ;K,g1
)−∆∆∆
˜ ϑ̂ϑϑ;K ,

where ϑ̂ϑϑ := (θ̂θθ
′
, σ̂2, (dv

◦

ec Λ̂ΛΛ
V

)′, (vec β̂ββ)′)′ is a (adequately discretized) root-n consistent pre-

liminary estimator. Letting Ĵk(K, g1) be a consistent estimator of the cross-information

quantity Jk(K, g1), the final estimator is

βββ
˜K; bJk(K,g1)

:=
(
βββ
˜K; bJk(K,g1);1

, . . . , βββ
˜K; bJk(K,g1);k

)
,

where

βββ
˜K; bJk(K,g1);1

:= β̃ββK; bJk(K,g1);1
/‖β̃ββK; bJk(K,g1);1

‖

and, recursively,

βββ
˜K; bJk(K,g1);l

:=

(
Ik −

∑l−1
j=1 βββ
˜K; bJk(K,g1);j

βββ
˜
′

K; bJk(K,g1);j

)
β̃ββK; bJk(K,g1);l

‖
(
Ik −

∑l−1
j=1 βββ
˜K; bJk(K,g1);j

βββ
˜
′

K; bJk(K,g1);j

)
β̃ββK; bJk(K,g1);l

‖
, l = 2, . . . , k.

As the following result shows, this PCA R-estimator βββ
˜K; bJk(K,g1)

has the same asymp-

totic properties as its CPC counterpart: root-n consistency, asymptotic normality, and

asymptotic efficiency under correctly specified radial densities.

Proposition 4.1 Let ϑ̂ϑϑ stand for a locally and asymptotically discrete estimator (see

Asumption (A5)) such that ϑ̂ϑϑ − ϑϑϑ = OP(n−1/2) under
⋃

g1∈Fa
P

(n)
ϑϑϑ;g1

and K be a score
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function satisfying Assumption (A4). Furthermore let (the one sample versions of) As-

sumptions (A1)-(A2) hold. Then,

(i) n1/2vec(βββ
˜K; bJk(K,g1)

− βββ) under P
(n)
ϑϑϑ;g1

is asymptotically normal with mean zero and

covariance matrix

k(k + 2)Jk(K)

J 2
k (K, g1)

Gβββ
kννν(Gβββ

k)′;

(ii) when based on the score function Kf1(u) := ϕf1(F̃
−1
1 (u))F̃−1

1 (u), the R-estimator

βββ
˜Kf1

; bJk(Kf1
,g1)

is asymptotically efficient under P
(n)
ϑϑϑ;f1

.

The AREs in (3.10) thus remain valid under finite fourth-order moments, and the Chernoff-

Savage result in (3.11) still holds, since m = 1 trivially implies homogeneity of radial

densities.

5 Monte-Carlo study

This section presents a numerical study of the finite-sample performances of our R-

estimators under various light- and heavy-tailed population densities, for various scores

and preliminary estimators, both for CPC and PCA.

5.1 CPC

We considered two distinct CPC setups: (i) a “proportional” CPC setup, that involves

eigenvalues matrices that are proportional to each other, and (ii) a “non-proportional”

CPC setup that does not exhibit such proportionality structure. In both cases, we gener-

ated N = 1, 500 independent replications of four pairs (m = 2) of mutually independent
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samples with respective (and relatively small) sizes n1 = 100 and n2 = 150

εεεℓ;1j, j = 1, . . . , n1 = 100, and εεεℓ;2j , j = 1, . . . , n2 = 150, ℓ = a, b, c, d

of bivariate (k = 2) spherical random vectors, where

– (power-exponential/Gaussian case) the εεεa;1j ’s have a power-exponential radial den-

sity with parameter η = 10 (E10), and the εεεa;2j ’s are standard normal;

– (Gaussian/Gaussian case) the εεεb;1j ’s and the εεεb;2j ’s are standard normal;

– (Gaussian/Student t5 case) the εεεc;1j are standard normal and the εεεc;2j’s have a t5

radial density;

– (Student t5/Cauchy case) the εεεd;1j ’s have a t5 radial density, and the εεεd;2j ’s have a

t1 radial density;

Note that both lighter-than-Gaussian tails (E10) and heavier-than-Gaussian tails (t5, t1)

are considered.

In the first setup, each replication of the εεεℓ;1j ’s was linearly transformed into

Xℓ;1j = βββΛΛΛ
1/2
1 εεεℓ;1j, ℓ = a, b, c, d, j = 1, . . . , n1 = 100,

with βββ = I2 and ΛΛΛ1 = diag(2, 1), each replication of the εεεℓ;2j’s into

Xℓ;2j = βββΛΛΛ
1/2
2 εεεℓ;2j, ℓ = a, b, c, d, j = 1, . . . , n2 = 150, with ΛΛΛ2 := 2ΛΛΛ1 = diag(4, 2).

The second setup rather uses ΛΛΛ2 := diag(3, 1).

For each replication, we computed the preliminary estimators β̂ββMLE, β̂ββTyler and β̂ββMCD,
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along with the resulting one-step van der Waerden R-estimators βββ
˜

vdW (Gaussian scores

in each sample), one-step Wilcoxon R-estimators βββ
˜

W (Wilcoxon scores in each sample),

one-step R-estimators βββ
˜

(N ,t5) (Gaussian scores in the first sample, t5 scores in the second

one) and βββ
˜

(t5,t1) (t5 scores in the first sample, t1 scores in the second one). For each of

those R-estimators βββ
˜

= (βββ
˜

1, βββ
˜

2), taking values βββ
˜

(ν) = (βββ
˜

(ν)
1 , βββ
˜

(ν)
2 ) in replication ν, we

computed the mean squared errors

γν := n−1

2∑

i=1

ni∑

j=1

∥∥∥(X′
ℓ;ijβββ˜

(ν)
1 )βββ
˜

(ν)
1 − (X′

ℓ;ijβββ1)βββ1

∥∥∥
2

, ν = 1, . . . , N = 1, 500. (5.1)

Those γν ’s provide measures of the performances of the various βββ
˜

(ν)
1 ’s in the estimation

of the first common eigenvector βββ1 in replication ν. Tables 2 and 3 report boxplots for

those γν ’s in the first and second setups, respectively; since γν is intrinsically nonnegative,

those boxplots, reporting side quantiles only, are one-sided (from the bottom upwards:

first quartile, median, third quartile, and a whisker at the .95 quantile).

Inspection of these tables reveals that the results are uniformly good, and that one-step

R-estimators, as a rule, do improve over the corresponding preliminary estimators. The

performances in Table 2 being very similar to those in Table 3, our discussion concentrates

on Table 2.

Flury’s Gaussian MLE, as expected, produces excellent results in the light-tailed

cases (a) and (b). In the Gaussian case (b), the impact of the one-step improvement

is essentially nil, irrespective of the scores considered: in case (b), no improvement is

possible asymptotically while, in the power-exponential case (a), improvement is almost

imperceptible. However, the performance of β̂ββMLE rapidly deteriorates as tails get heavier.

Under the t5/t1 case (d), the mean squared error for β̂ββMLE explodes (in agreement with the

fact that root-n consistency does not hold anymore), a situation the one-step R-estimators
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only partially manage to straighten out—although dividing the median squared error by

two. One should thus avoid considering Flury’s β̂ββMLE as a preliminary as soon as one of

the samples involved in the CPC analysis is likely to exhibit heavy tails.

Although β̂ββMCD and β̂ββTyler have very similar behaviors under light-tailed densities, β̂ββTyler

clearly dominates β̂ββMCD under the heavy-tailed ones. The second column of Table 2 leads

to the following conclusions for the choice of β̂ββMCD as a preliminary: in the presence (t5/t1

case (d)) of heavy tails in one of the samples, and although root-n consistency still does

hold, its median performance is not that bad, but its mean squared errors is quite poor

in the upper tail, a behavior for which the one-step R-estimators only partly compensate.

A Tyler preliminary β̂ββTyler, along with van der Waerden or Wilcoxon scores, thus seems to

be the safest choice, yielding, in the Gaussian case (b), a moderate increase of about 30%

over the optimal Gaussian MLE of the median of mean squared errors, but dividing it by

a factor eight in the t5/t1 case (d).

5.2 PCA

In the one-sample case, we similarly generated N = 1, 500 independent replications of four

independent samples (with small sample size n = 150) of (k = 4)-dimensional spherical

random vectors

εεεℓ;j, j = 1, . . . , n = 150, ℓ = a, b, c, d,

where

– (power-exponential case) the εεεa;j ’s have a power-exponential (E10) radial density;

– (Gaussian case) the εεεb;j’s are standard normal;
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– (Student t5 case) the εεεc;j’s have a t5 radial density;

– (Cauchy t1 case) the εεεd;j ’s have a t1 radial density.

Each replication of the εεεℓ;j’s was transformed into

Xℓ;j = βββΛΛΛ1/2εεεℓ;j, j = 1, . . . , 150, ℓ = a, b, c, d,

with ΛΛΛ := diag(4, 3, 2, 1), and βββ = I4. For each replication, we computed the eigenvectors

β̂ββMLE, β̂ββMCD, β̂ββTyler of the empirical covariance, the MCD and the Tyler matrices, respec-

tively. Based on these, we also computed the one-step van der Waerden, Wilcoxon, and

Student R-estimators βββ
˜

vdW (Gaussian scores), βββ
˜

W (Wilcoxon scores), βββ
˜

(t5) and βββ
˜

(t1) (t5

and t1 scores, respectively). For each of those R-estimators βββ
˜

= (βββ
˜

1, βββ
˜

2, βββ
˜

3, βββ
˜

4), taking

value βββ
˜

(ν) = (βββ
˜

(ν)
1 , βββ
˜

(ν)
2 , βββ
˜

(ν)
3 , βββ
˜

(ν)
4 ) in replication ν, and for each replication, we evaluated

the estimation performance via the mean squared error

γν := n−1

n∑

i=1

∥∥∥(X′
ℓ;iβββ˜

(ν)
1 )βββ
˜

(ν)
1 − (X′

ℓ;iβββ1)βββ1

∥∥∥
2

, ν = 1, . . . , N = 1, 500. (5.2)

One-sided boxplots (from the bottom upwards: first quartile, median, third quartile,

and a whisker at the .95 quantile) of the γν ’s are provided in Table 4. Inspection of those

boxplots calls for very similar comments as Tables 2-3: the Gaussian MLE preliminary

is definitely dangerous, while the MCD one behaves rather poorly, under heavy-tailed

distributions such as the Cauchy. The best overall performance seems to be that of a

Tyler preliminary, along with van der Waerden or Wilcoxon scores.
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A Appendix

A.1 ULAN

Consider an arbitrary local sequence

ϑϑϑ(n) := (ϑϑϑ(n)′
I ,ϑϑϑ(n)′

II ,ϑϑϑ(n)′
III ,ϑϑϑ(n)′

IV )′ := (θθθ
(n)′
1 , . . . , θθθ(n)′

m ,

σ
2(n)
1 , . . . , σ2(n)

m , (dv
◦

ecΛΛΛ
V(n)
1 )′, . . . , (dv

◦

ecΛΛΛV(n)
m )′, (vecβββ(n))′)′ ∈ ΘΘΘ,

where ϑϑϑ(n)− ϑϑϑ= O(n−1/2), and further sequences of the form ϑϑϑ(n) + n−1/2ςςς (n)τττ (n), where

τττ (n) = (τττ
(n)′
I , τττ

(n)′
II , τττ

(n)′
III , τττ

(n)′
IV )′ = (t

(n)′
1 , . . . , t(n)′

m , s
(n)
1 , . . . , s(n)

m , l
(n)′
1 , . . . , l(n)′

m , (vecb(n))′)′

is such that supn τττ (n)′τττ (n) < ∞ and ϑϑϑ(n)+n−1/2ςςς(n)τττ (n)∈ ΘΘΘ. Strong restrictions are required

on τττ (n) = (τττ
(n)′
I , τττ

(n)′
II , τττ

(n)′
III , τττ

(n)′
IV )′ if the perturbed parameter values ϑϑϑ(n) + n−1/2ςςς(n)τττ (n) are

to belong to ΘΘΘ. In particular, the perturbed orthogonal matrix should remain orthogonal;

we refer to Hallin et al. (2010b) for details.

Denoting by eℓ the ℓth vector of the canonical basis of R
k, let Kk :=

∑k
i,j=1(eie

′
j) ⊗

(eje
′
i) denote the classical (k2 × k2) commutation matrix. Define Hk as the k × k2 matrix

such that Hkvec (A) = dvec (A) for any k × k matrix A. For any k × k diagonal matrix

ΛΛΛ = diag(λ1, λ2, . . . , λk), write MΛΛΛ
k for the (k− 1)× k matrix

(
−λ1(λ

−1
2 , . . . , λ−1

k )′
... Ik−1

)

and L
βββ,ΛΛΛV

i
k for (L

βββ,ΛΛΛV

i
k;12 L

βββ,ΛΛΛV

i
k;13 . . .L

βββ,ΛΛΛV

i

k;(k−1)k)
′, with L

βββ,ΛΛΛV

i
k;jh := (λV

ih − λV

ij)(βββh ⊗ βββj). Finally, let

Gβββ
k := (Gβββ

k;12 Gβββ
k;13 . . .Gβββ

k;(k−1)k), with Gβββ
k;jh := ej⊗βββh−eh⊗βββj, ν

(i)
jh := λV

ijλ
V

ih/(λV

ij−λV

ih)
2,

and ννν(i) := diag(ν
(i)
12 , ν

(i)
13 , . . . , ν

(i)
(k−1)k). We then have the following ULAN result.
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Proposition A.1 (ULAN) Let Assumptions (A1) (with f = (f1, . . . , fm) ∈ (Fa)
m), (A2)

and (A3) hold. Then, the family P(n)
f :=

{
P

(n)
ϑϑϑ;f |ϑϑϑ ∈ ΘΘΘ

}
is ULAN, with central sequence

∆∆∆ϑϑϑ;f = ∆∆∆
(n)
ϑϑϑ;f :=

(
∆∆∆

I(n)′
ϑϑϑ;f , ∆∆∆

II(n)′
ϑϑϑ;f , ∆∆∆

III(n)′
ϑϑϑ;f , ∆∆∆

IV (n)′
ϑϑϑ;f

)′
,

∆∆∆I

ϑϑϑ;f =




∆∆∆I,1
ϑϑϑ;f1

...

∆∆∆I,m
ϑϑϑ;fm


 , ∆∆∆II

ϑϑϑ;f =




∆II,1
ϑϑϑ;f1

...

∆II,m
ϑϑϑ;fm


 , ∆∆∆III

ϑϑϑ;f =




∆∆∆III,1
ϑϑϑ;f1

...

∆∆∆III,m
ϑϑϑ;fm


,

where (with dij = dij(θθθi,Vi) and Uij = Uij(θθθi,Vi))

∆∆∆I,i
ϑϑϑ;fi

:=
1√
niσi

ni∑

j=1

ϕfi

(
dij

σi

)
V

−1/2
i Uij , ∆II,i

ϑϑϑ;fi
:=

1

2
√

niσ2
i

ni∑

j=1

(
ϕfi

(
dij

σi

)
dij

σi
− k

)
,

∆∆∆III,i
ϑϑϑ;fi

:=
1

2
√

ni
M

ΛΛΛV

i
k Hk

(
(ΛΛΛV

i )−1/2βββ ′
)⊗2

ni∑

j=1

ϕfi

(
dij

σi

)
dij

σi
vec
(
UijU

′
ij

)
,

∆∆∆IV

ϑϑϑ;f :=
1

2n1/2

m∑

i=1

Gβββ
kL

βββ,ΛΛΛV

i
k

(
V⊗2

i

)−1/2
ni∑

j=1

ϕfi

(
dij

σi

)
dij

σi
vec
(
UijU

′
ij

)
,

i = 1, . . . , m, and with block-diagonal information matrix

ΓΓΓϑϑϑ;f := diag(ΓΓΓI

ϑϑϑ;f ,ΓΓΓ
II

ϑϑϑ;f ,ΓΓΓ
III

ϑϑϑ;f ,ΓΓΓ
IV

ϑϑϑ;f), (A.1)

where ΓΓΓI

ϑϑϑ;f = diag(ΓΓΓI,1
ϑϑϑ;f1

, . . . ,ΓΓΓI,m
ϑϑϑ;fm

), ΓΓΓII

ϑϑϑ;f = diag(ΓII,1
ϑϑϑ;f1

, . . . , ΓII,m
ϑϑϑ;fm

), ΓΓΓIII

ϑϑϑ;f = diag(ΓΓΓIII,1
ϑϑϑ;f1

, . . . ,ΓΓΓIII,m
ϑϑϑ;fm

),

with

ΓΓΓI,i
ϑϑϑ;fi

:=
Ik(fi)

kσ2
i

V−1
i , ΓII,i

ϑϑϑ;fi
:=

Jk(fi) − k2

4σ4
i

,

ΓΓΓIII,i
ϑϑϑ;fi

:=
Jk(fi)

4k(k + 2)
M

ΛΛΛV

i
k Hk((ΛΛΛ

V

i )−1)⊗2 [Ik2 + Kk]H
′
k(M

ΛΛΛV

i
k )′,

and

ΓΓΓIV

ϑϑϑ;f =
1

4k(k + 2)
Gβββ

k

(
m∑

i=1

riJk(fi)(ννν
(i))−1

)
(
Gβββ

k

)′
.

More precisely, for any ϑϑϑ(n) = ϑϑϑ + O(n−1/2) ∈ ΘΘΘ and any bounded sequence τττ (n) such

that ϑϑϑ(n) + n−1/2ςςς(n)τττ (n) ∈ ΘΘΘ, we have, under P
(n)

ϑϑϑ(n);f
,

Λ
(n)

ϑϑϑ(n)+n−1/2ςςς(n)τττ (n)/ϑϑϑ(n);f
:= log

(
dP

(n)

ϑϑϑ(n)+n−1/2ςςς(n)τττ (n);f
/dP

(n)

ϑϑϑ(n);f

)

= (τττ (n))′∆∆∆
(n)

ϑϑϑ(n);f
− 1

2
(τττ (n))′ ΓΓΓϑϑϑ;fτττ

(n) + oP(1)

and ∆∆∆ϑϑϑ(n);f

L−→ N (0,ΓΓΓϑϑϑ;f), as n → ∞.
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Although this ULAN result is distinct from the one in Hallin et al. (2013) (where pertur-

bations of the CPC hypothesis are considered), its proof follows along the same lines, and

is therefore omitted.

A.2 Asymptotic properties of ∆∆∆
˜

ϑϑϑ;K and ∆∆∆
˜ ϑ̂ϑϑ;K

The following proposition provides (i) asymptotic representation, (ii) asymptotic normal-

ity, and (iii) asymptotic linearity results for ∆∆∆
˜

ϑϑϑ;K.

Proposition A.2 Let Assumptions (A1)-(A4) hold and let ϑ̂ϑϑ satisfy Assumption (A5).

Fix g ∈ (F1)
m. Then, under P

(n)
ϑϑϑ;g, as n → ∞,

(i) ∆∆∆
˜

ϑϑϑ;K = ∆∆∆ϑϑϑ;K;g + oL2(1), where (recall that G̃i stands for the cumulative distribution

function under P
(n)
ϑϑϑ;g of dij; see Section 2.1)

∆∆∆ϑϑϑ;K;g :=
1

2n1/2

m∑

i=1

Gβββ
kL

βββ,ΛΛΛV

i
k

(
V⊗2

i

)−1/2
ni∑

j=1

Ki

(
G̃i(dij)

)
vec (UijU

′
ij);

(ii) ∆∆∆ϑϑϑ;K;g is asymptotically normal with mean zero and covariance matrix

ΓΓΓϑϑϑ;K :=
1

4k(k + 2)
Gβββ

k

(
m∑

i=1

Jk(Ki)(ννν
(i))−1

)
(Gβββ

k)′;

(iii) ∆∆∆
˜

ϑϑϑ;K is locally and asymptotically linear in the sense that

∆∆∆
˜ ϑ̂ϑϑ;K − ∆∆∆

˜
ϑϑϑ;K = −ΓΓΓϑϑϑ;K,g n1/2vec(β̂ββ − βββ) + oP(1),

(see (3.4) for a definition of ΓΓΓϑϑϑ;K,g); this latter result requires g ∈ (Fa)
m.

Proof. Part (i) of the result follows from more or less standard application of Hájek’s

classical projection theorem, Part (ii) from the multivariate central limit theorem. We

thus focus on Part (iii). Let J⊥
k := Ik2 − k−2(vec Ik)(vec Ik)

′ and

S
˜

(n)
ϑϑϑ;Ki

:= n−1
i

ni∑

j=1

Ki

(
R

(n)
ij (θθθi,Vi)

ni + 1

)
Uij(θθθi,Vi)U

′
ij(θθθi,Vi).

Lemma A.1 in Hallin et al. (2006) and Lemma 4.4 in Kreiss (1987) entail that
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J⊥
k ni

1/2 vec (S
˜

(n)

ϑ̂ϑϑ;Ki
− S
˜

(n)
ϑϑϑ;Ki

)

+
Jk(Ki, gi)

4k(k + 2)

[
Ik2 + Kk −

2

k
Jk

]
(Vi

−1/2)⊗2n
1/2
i vec (V̂i − Vi) = oP(1) (A.2)

as n → ∞, under P
(n)
ϑϑϑ;g. This and the fact that L

βββ,ΛΛΛV

i

k (V
−1/2
i )⊗2Jk = 0 directly imply that,

still under P
(n)
ϑϑϑ;g,

∆∆∆
˜

IV

ϑ̂ϑϑ;K
− ∆∆∆
˜

IV

ϑϑϑ;K =
m∑

i=1

ri
Jk(Ki, gi)

4k(k + 2)
Gβββ

kL
βββ,ΛΛΛV

i
k

(
V⊗2

i

)−1
[
Ik2 + Kk

]
n

1/2
i vec (V̂i − Vi) + oP(1).

(A.3)

Following the same argument as in the proof of Lemma 4.2 in Hallin et al. (2010b), we

obtain that

n
1/2
i vec (V̂i−Vi) = (L

βββ,ΛΛΛV

i
k )′(Gβββ

k)′n1/2vec (β̂ββ−βββ)+βββ⊗2H′
kn

1/2
i dvec(Λ̂ΛΛV

i −ΛΛΛV

i )+oP(1) (A.4)

as n → ∞ under P
(n)
ϑϑϑ;g. The result then follows by plugging (A.4) into (A.3), taking into

account the fact that (L
βββ,ΛΛΛV

i
k )′

(
V⊗2

i

)−1 [
Ik2 + Kk

]
βββ⊗2H′

k = 0. �

A.3 Two lemmas

This appendix states and proves two lemmas used in Section 3.2.

Lemma A.1 Let β̂ββ (with values in SOk) be any estimator of βββ ∈ SOk such that

n1/2(β̂ββ − βββ) = OP(1) under P(n), say, as n → ∞. Then, denoting by proj(A) :=

A(A′A)−A′ the projection onto the column space of A,[
Ik2 − proj(Gβββ

k)
]
n1/2vec (β̂ββ − βββ) =

[
Ik2 − 1

2
Gβββ

kG
βββ′
k

]
n1/2vec (β̂ββ − βββ) = oP(1),

under P(n) as n → ∞.

Proof. Since βββ and β̂ββ are elements of SOk, it is trivial that

n1/2βββ′(β̂ββ − βββ) + n1/2(β̂ββ − βββ)′βββ + n1/2βββ ′(β̂ββ − βββ)(β̂ββ − βββ)′βββ = 0.

Root-n consistency of β̂ββ yields n1/2βββ ′(β̂ββ − βββ) + n1/2(β̂ββ − βββ)′βββ = oP(1); since n1/2βββ ′(β̂ββ −

βββ) + n1/2(β̂ββ − βββ)′βββ = 0 implies that n1/2vec (β̂ββ − βββ) ∈ M(Gβββ
k(Gβββ

k)′), we deduce that
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[
Ik2 − proj(Gβββ

k(Gβββ
k)′)
]
n1/2vec (β̂ββ − βββ) = oP(1).

Now, using the fact that (Gβββ
k)′Gβββ

k = 2Ik(k−1)/2, the result follows easily from the standard

properties of Moore-Penrose inverses. �

Lemma A.2 Let Assumptions (A1)-(A4) hold and let ϑ̂ϑϑ satisfy Assumption (A5). Then,

under P
(n)
ϑϑϑ;g as n → ∞,

n1/2vec(βββ
˜K; bJk(K,g) − βββ) = Jβββ

kn
1/2vec(β̃ββK; bJk(K,g) − βββ) + oP(1), (A.5)

where Jβββ
k is a k2 × k2 matrix such that Jβββ

kG
βββ
k = Gβββ

k .

Proof. The mapping from β̂ββK; bJk(K) to β̃ββK; bJk(K) is continuously differentiable. Denoting

by Jβββ
k its Jacobian matrix at vec(βββ), the result follows from an application of the Delta

method. Now, it is easily shown that

Jβββ
k =




Ik − βββ1βββ
′
1 0 . . . . . . . . . 0

βββ1βββ
′
2 Ik − βββ1βββ

′
1 − βββ2βββ

′
2 0 . . . . . . 0

βββ1βββ
′
2 βββ1βββ

′
3 Ik − βββ1βββ

′
1 − βββ2βββ

′
2 − βββ3βββ

′
3 0 . . . 0

...
...

. . .
. . .

. . .
...

...
...

. . . . . .
. . .

...

βββ1βββ
′
2 βββ1βββ

′
3 . . . . . . βββ1βββ

′
k−1 0




.

The identity Jβββ
kG

βββ
k = Gβββ

k then follows from elementary algebra. �
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Preliminary estimator
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Figure 1: Finite-sample performance of R-estimators for CPC. One-sided box-

plots of mean squared errors, under various couples of elliptical densities (power-exponential

E10/Gaussian, Gaussian/Gaussian, Gaussian/t5, t5/t1, in rows) and different preliminary esti-

mators (β̂ββMLE, β̂ββMCD, β̂ββTyler, in columns), of R-estimators of the first principal component based

on the following scores: van der Waerden, Wilcoxon, van der Waerden in sample 1 and t5 in

sample 2, t5 in sample 1 and t1 in sample 2. Results are obtained from N = 1, 500 replications

of the bivariate two-sample “proportional” CPC model described in Section 5.1.
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Figure 2: Finite-sample performance of R-estimators for CPC. One-sided box-

plots of mean squared errors, under various couples of elliptical densities (power-exponential

E10/Gaussian, Gaussian/Gaussian, Gaussian/t5, t5/t1, in rows) and different preliminary esti-

mators (β̂ββMLE, β̂ββMCD, β̂ββTyler, in columns), of R-estimators of the first principal component based

on the following scores: van der Waerden, Wilcoxon, van der Waerden in sample 1 and t5 in

sample 2, t5 in sample 1 and t1 in sample 2. Results are obtained from N = 1, 500 replications

of the bivariate two-sample “non-proportional” CPC model described in Section 5.1.
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Figure 3: Finite-sample performance of R-estimators for PCA. One-sided boxplots of

mean squared errors, under various elliptical densities (power-exponential E10, Gaussian, t5, t1,

in rows) and different preliminary estimators (β̂ββMLE, β̂ββMCD, β̂ββ Tyler, in columns), of R-estimators

of the first principal component based on the following scores: van der Waerden, Wilcoxon, van

der Waerden, t5 and t1. Results are obtained from N = 1, 500 replications of the 4-dimensional

model described in Section 5.2.


