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Abstract

The minimum covariance determinant (MCD) estimator of scatter is one of the most famous robust
procedures for multivariate scatter. Despite the quite important research activity related to this
estimator, culminating in the recent thorough asymptotic study of Cator & Lopuhaä (2010, 2012),
no results have been obtained on the corresponding estimator of shape, which is the parameter of
interest in many multivariate problems (including principal component analysis, canonical correla-
tion analysis, testing for sphericity, etc.) In this paper, we therefore propose and study MCD-based
inference procedures for shape, that inherit the good robustness properties of the MCD. The main
emphasis is on asymptotic results, for point estimation (Bahadur representation and asymptotic
normality results) as well as for hypothesis testing (asymptotic distributions under the null and
under local alternatives). Influence functions of the MCD-estimators of shape are obtained as a
corollary. Monte-Carlo studies illustrate our asymptotic results and assess the robustness of the
proposed procedures.

Keywords: Bahadur representation results; elliptical distributions; MCD estimators; robustness;
shape parameters; tests of sphericity

1. Introduction

The minimum covariance determinant (MCD) estimators of location and scatter, that were
introduced in Rousseeuw (1985), are among the most famous estimators in robust statistics. As-

suming that k-variate observations X1, . . . ,Xn are available, the MCD estimators of location θ̂θθγ and

scatter Σ̂ΣΣγ, for any γ ∈ (0, 1], are defined as the sample average and covariance matrix computed
from “the”2 subsample leading to a covariance matrix with smallest determinant over the collection
of all possible subsamples of size larger than or equal to dnγe (it was shown in Cator & Lopuhaä
(2012) that the smallest determinant is always obtained for a subsample of size dnγe).

Despite their relatively poor efficiency under multinormality, MCD estimators have been quite
successful. This is explained by their very good robustness properties: for appropriately chosen γ,
MCD estimators indeed show the highest breakdown points that can be achieved in the class of
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affine-equivariant estimators; see Lopuhaä & Rousseeuw (1991) and Agullò et al. (2008). Another
advantadge over competing methods is that they can be computed very efficiently through the
so-called FAST-MCD algorithm from Rousseeuw & Van Driessen (1999) (that is available in the
R package MASS ). This holds for relatively high dimensions, where Rousseeuw & Van Driessen
(1999) could treat a dataset involving up to n = 137, 256 observations with k = 27 variables.

Asymptotic results were slow to come. Within the framework of elliptical distributions, Butler
et al. (1993) established strong consistency of θ̂θθγ and Σ̂ΣΣγ, as well as asymptotic normality (at

the standard root-n rate) of θ̂θθγ. Croux & Haesbroeck (1999) computed the influence function

of Σ̂ΣΣγ, and, assuming the validity of the usual von Mises expansion linking estimators and their

influence functions, deduced the asymptotic covariance matrix of
√
n Σ̂ΣΣγ in the elliptical setup.

Recently, Cator & Lopuhaä (2010, 2012) showed that this von Mises expansion indeed holds under
very broad distributional assumptions, which provides as a corollary the first proof of aymptotic
normality for Σ̂ΣΣγ (and validates the asymptotic covariance computation of Croux & Haesbroeck
(1999)); their results apply in particular in the context of elliptical densities.

It is argued in Cator & Lopuhaä (2010, 2012) that, beyond their initial purpose to estimate

location and scatter, the MCD estimators, in particular Σ̂ΣΣγ, also serve as robust plug-ins in other
multivariate statistical techniques. It is often the case, however, that these techniques do only
require to know or to estimate the scatter matrix up to a positive scalar factor. In other words,
factorizing the population scatter matrix ΣΣΣ into σ2V, where σ2 = (detΣΣΣ)1/k is a scale parameter
and V = ΣΣΣ/(detΣΣΣ)1/k is a shape parameter, it is often so that the parameter of interest is V (with
dimension K := k(k + 1)/2 − 1), while σ2 plays the role of a nuisance. In principal component
analysis, for instance, principal directions may be interchangeably computed from ΣΣΣ or from V,
and both scatter and shape matrices will lead to the same proportions of explained variance. Other
factorizations of scatter into scale × shape are possible, such as those based on σ2 = (trΣΣΣ)/k
or on σ2 = Σ11 that lead to shape matrices with fixed trace k or upper-left entry equal to one,
respectively.

There have been many recent works developing specific inference procedures for shape; see,
among others, Hallin & Paindaveine (2006b), Hallin et al. (2006), Frahm (2009), and Taskinen
et al. (2010). For many robust scatter estimators, the corresponding estimators of shape have been
studied. In particular, a quite systematic investigation of the properties of robust estimators of
shape has been performed in Frahm (2009), where M-, S-, and R-estimators of shape are considered.

To the best of our knowledge, however, MCD-estimators of shape have not been considered,
which may seem surprising in view of (i) the importance of the MCD estimators of (location
and) scatter in robust statistics and (ii) the continued research related to the MCD. The goal of
this paper is therefore to provide, in the elliptical case, MCD estimators and tests for shape, that
inherit the good robustness properties of the MCD. Emphasis is put on asymptotic results (Bahadur
representation and asymptotic normality results, for point estimation, and asymptotic distribution
under the null and under local alternatives, for hypothesis testing). Influence functions of the
MCD-estimators of shape considered will also be obtained as a corollary. Rather than adopting
a particular definition of shape (e.g., the determinant-based or trace-based definitions above), we
throughout derive our results for a generic shape concept.

The outline of the paper is as follows. In Section 2, we first introduce the notation and assump-
tion we will need on elliptical densities, and then state, in a form that is adapted to our purposes,
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the Cator & Lopuhaä (2010) Bahadur representation result for Σ̂ΣΣγ. In Section 3, we introduce
and discuss the concept of shape based on a general “scale functional”. In Section 4, we develop
MCD-based inference procedures for shape; point estimation and hypothesis testing are considered
in Sections 4.1 and 4.2, respectively. In Section 5, we describe how to estimate consistently the
nuisance parameters involved in these procedures, which is required for their practical implementa-
tion. Section 6 derives the corresponding result for the procedures based on the empirical covariance
matrix, which allows to obtain asymptotic relative efficiencies of the MCD shape procedures with
respect to these covariance-based competitors. Monte-Carlo studies are conducted in Section 7 in
order to confirm our asymptotic results and to assess the robustness properties of the proposed
procedures. Finally, the Appendix collects technical proofs.

2. Elliptical densities and MCD

Let Sk be the collection of k × k symmetric and positive definite matrices, and let F be the
collection of functions from R+ to R+ that satisfy the integrability condition µk−1,f < ∞, where
we wrote µ`,f =

∫∞
0
r`f(r) dr. The random k-vector X is said to be elliptically symmetric with

location θθθ (∈ Rk), scatter ΣΣΣ (∈ Sk), and radial density f ∈ F (this will be denoted as X ∼
Ellk(θθθ,ΣΣΣ, f)) if it is absolutely continuous with respect to the Lebesgue measure on Rk, with
density

fX : Rk → R

x 7→ (µk−1,fωk−1)−1

√
detΣΣΣ

f
(√

(x− θθθ)′ΣΣΣ−1(x− θθθ)
)
,

(1)

where ωk−1 = 2πk/2/Γ(k/2) is the (k− 1)-measure of the unit sphere Sk−1 in Rk. The Mahalanobis

distance dθθθ,ΣΣΣ :=
√

(X− θθθ)′ΣΣΣ−1(X− θθθ) has then density r 7→ f̃k(r) = (µk−1,f )
−1rk−1f(r)I[r > 0],

where I denotes the indicator function. Unlike this distance, the unit vector Uθθθ,ΣΣΣ = ΣΣΣ−1/2(X −
θθθ)/dθθθ,ΣΣΣ is distribution-free, with a uniform distribution over Sk−1, and is independent of dθθθ,ΣΣΣ
(throughout, A1/2, for a symmetric and positive definite matrix A, will stand for the symmet-
ric and positive definite square root of A). To make ΣΣΣ and f identifiable without imposing any
moment assumption, we will assume that dθθθ,ΣΣΣ has median one, i.e., that∫ 1

0

f̃k(r) dr = 1/2. (2)

If X has finite second-order moments (equivalently, if µk+1,f < ∞), the covariance matrix of X is
proportional to ΣΣΣ. Classical examples of elliptical distributions are the multinormal distributions,
with radial density f(r) = φ(r) := exp(−akr2/2), the Student distributions, with radial densities
(for ν > 0 degrees of freedom) f(r) = f tν(r) := (1 + ak,νr

2/ν)−(k+ν)/2, and the power-exponential
distributions, with radial densities of the form f(r) = f eη (r) := exp(−bk,ηr2η), η > 0 (the positive
constants ak, ak,ν , and bk,η are such that (2) is fulfilled).

For the sake of convenience, we are listing here the assumptions needed in the sequel.

Assumption (A). The observations Xi, i = 1, . . . , n are i.i.d. with a common distribution
Ellk(θθθ,ΣΣΣ, f) involving a monotone decreasing f .
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Assumption (B). The observations Xi, i = 1, . . . , n are i.i.d. with a common distribution
Ellk(θθθ,ΣΣΣ, f) admitting finite fourth-order moments (i.e., involving a radial density f such that
µk+3,f <∞).

Assumption (A′) (resp., (B ′)). Reinforcement of Assumption (A) (resp., (B)), further impos-
ing that f is absolutely continous (with a.e. derivative f ′, say) and

∫∞
0
r2ϕ2

f (r)f̃k(r) dr <∞, where
we wrote ϕf = −f ′/f .

We also report here the various notations we will use in relation with elliptical distribu-
tions. Let rγ = rk,γ(f) be the γ-quantile of dθθθ,ΣΣΣ, that satisfies

∫ rγ
0
f̃k(r) dr = γ (note that

our parametrization of elliptical densities implies that rk,1/2(f) = 1 for any k and f). Writing

I(`)
γ,θθθ,ΣΣΣ := d`θθθ,ΣΣΣI[dθθθ,ΣΣΣ ≤ rγ], define then

D(`)
γ := D

(`)
k,γ(f) := E

[
I(`)
γ,θθθ,ΣΣΣ

]
=

∫ rγ

0

r`f̃k(r) dr, αγ := αk,γ(f) :=

√
D

(2)
γ

kγ
,

and

βγ := βk,γ(f) :=
1

k(k + 2)

∫ rγ

0

r3ϕf (r)f̃k(r) dr =
(k + 2)D

(2)
γ − r3

γ f̃k(rγ)

k(k + 2)
, (3)

where the last equality follows by integrating by parts. Note that, under Assumption (A), βγ is
positive and increases monotonically in γ.

Under ellipticity, the MCD estimator of scatter Σ̂ΣΣγ is not consistent for ΣΣΣ, but rather for α2
γΣΣΣ;

see Proposition 2.1 below. Our derivations will rely on the following Bahadur representation result
for Σ̂ΣΣγ which follows directly from Corollary 4.1 of Cator & Lopuhaä (2010) by using the affine-

equivariance of Σ̂ΣΣ and by rearranging the terms there (note that the radial function h in Cator &
Lopuhaä (2010) is linked to the f introduced above through h(r2) = (µk−1,fωk−1)−1f(r)).

Proposition 2.1. Under Assumption (A), we have that

√
n (Σ̂ΣΣγ − α2

γΣΣΣ) =
α2
γ

βγ
√
n

ΣΣΣ1/2
n∑
i=1

I(2)
i;γ,θθθ,ΣΣΣ

(
Ui;θθθ,ΣΣΣU

′
i;θθθ,ΣΣΣ −

1

k
Ik

)
ΣΣΣ1/2

+
1

kγ
√
n

n∑
i=1

(I(2)
i;γ,θθθ,ΣΣΣ − kγα

2
γ)ΣΣΣ−

r2
γ

kγ
√
n

n∑
i=1

(I(0)
i;γ,θθθ,ΣΣΣ − γ)ΣΣΣ + oP(1),

(4)

as n→∞, where Ik denotes the k-dimensional identity matrix.

As we will see, this formulation of the Bahadur result from Cator & Lopuhaä (2010) is suitable
for our purposes. It will be convenient that each of the first three terms in the right-hand side
of (4) has zero mean and bounded variance, hence is bounded in probability. This will indeed
allow to apply the continuous mapping theorem in order to derive the asymptotic behavior of the
corresponding shape estimators.
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3. The shape parameter

As mentioned in the Introduction, many problems in multivariate analysis (principal component
analysis, canonical correlation analysis, testing for sphericity, etc.) require to know or estimate the
scatter ΣΣΣ up to a positive scalar factor only. In other words, the parameter of interest, in such
problems, is the corresponding S-shape matrix

VS := ΣΣΣ/S(ΣΣΣ)

(while the scale parameter σ2
S := S(ΣΣΣ) plays the role of a nuisance), where the scale func-

tional S : Sk → R+
0 (i) is homogeneous (for all λ > 0, S(λΣΣΣ) = λS(ΣΣΣ)), (ii) is differentiable,

with ∂S
∂Σ11

(ΣΣΣ) 6= 0 for all ΣΣΣ ∈ Sk, and (iii) satisfies S(Ik) = 1; see Paindaveine (2008) for comments

on the requirements (i)-(iii). The collection of k × k S-shape matrices will be denoted by VSk .
Classical scale functionals include

(a) S(ΣΣΣ) = Σ11 (Randles (2000) and Hettmansperger & Randles (2002)),

(b) S(ΣΣΣ) = (trΣΣΣ)/k (Tyler (1987), Dümbgen (1998),Visuri et al. (2003), and Taskinen et al.
(2010)),

(c) S(ΣΣΣ) = |ΣΣΣ|1/k (Tatsuoka & Tyler (2000), Dümbgen & Tyler (2005), and Taskinen et al.
(2006)), and

(d) S(ΣΣΣ) = k/(trΣΣΣ−1) (Frahm (2009)).

The scale functional in (c) was shown to be “canonical” in Paindaveine (2008), in the sense that it
is the only scale functional that provides parameter-orthogonality between shape VS and scale σ2

S

(parameter orthogonality here refers to block-diagonality of the corresponding information ma-
trix; see, e.g., Cox & Reid (1987), Section 2.1). A directly related result is that this particular
scale functional is the only one for which asymptotically normal shape and scale estimators are
asymptotically independent; see Frahm (2009).

The following notation will be used throughout. For any k × k matrix A, let vecA denote
the k2-dimensional vector resulting from stacking the columns of A on top of each other. Write
vechA for the (K + 1)-vector (recall that K = k(k + 1)/2 − 1) obtained by stacking the upper-
triangular elements of A; ˚vechA will denote the K-vector obtained by depriving vechA of its first
component. Write A⊗2 for the Kronecker product A ⊗ A. Denoting by e` the `th vector of the
canonical basis of Rk, let Kk :=

∑k
i,j=1(eie

′
j)⊗ (eje

′
i) be the k2 × k2 commutation matrix, and put

Jk :=
∑k

i,j=1(eie
′
j) ⊗ (eie

′
j) = (vec Ik)(vec Ik)

′. Finally, define Nk as the K × k2 matrix such that

Nk(vecA) = ( ˚vechA) for any k × k matrix A.
The algebra of S-shape matrices then requires introducing the following quantities. For any ΣΣΣ∈

Sk and any S as above, let DΣΣΣ
S := (CΣΣΣ

S+(CΣΣΣ
S )′)/2, where CΣΣΣ

S :=CΣΣΣ
S,k is the upper-triangular k×k ma-

trix such that vechCΣΣΣ
S = ∇S(vechΣΣΣ); here, ∇S(vechΣΣΣ) stands for the gradient gradvechΣΣΣS(vechΣΣΣ).

Define MΣΣΣ
S := MΣΣΣ

S,k as the K×k2 matrix such that (MΣΣΣ
S )′( ˚vechv) = vecv for any symmetric k×k

matrix v satisfying (∇S(vechΣΣΣ))′(vechv) = 0 (equivalently, (vecDΣΣΣ
S )′(vecv) = 0, or tr [DΣΣΣ

Sv] = 0).

Finally, for any S and V ∈ VSk , define EVk := tr[(DV
SV)2]. For S(ΣΣΣ) = Σ11, S(ΣΣΣ) = (trΣΣΣ)/k,

S(ΣΣΣ) = |ΣΣΣ|1/k, and S(ΣΣΣ) = k/(trΣΣΣ−1), one has DΣΣΣ
S = e1e

′
1, DΣΣΣ

S = 1
k
Ik, DΣΣΣ

S = 1
k
|ΣΣΣ|1/kΣΣΣ−1, and

DΣΣΣ
S = kΣΣΣ−2/(trΣΣΣ−1)2 — hence EVk = 1, EVk = 1

k2
tr[V2], EVk = 1

k
, and EVk = 1

k2
tr[V−2], respectively.
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4. Inference on shape based on the MCD

In this section, we provide the main results of the paper. First, we determine the asymptotic
behavior of the MCD estimator of S-shape (Section 4.1). Then we exploit this result to propose and
study a test for the null hypothesis that the S-shape is equal to a given possible value (Section 4.2).

4.1. MCD-estimator of shape

Denoting again the MCDγ estimator of scatter as Σ̂ΣΣγ, the corresponding MCD estimator for

S-shape is naturally defined as V̂S,γ := Σ̂ΣΣγ/S(Σ̂ΣΣγ). The affine-equivariance of Σ̂ΣΣγ implies that, for
any k × k invertible matrix A and any k-vector b,

V̂S,γ(AX1 + b, . . . ,AXn + b) =
AV̂S,γ(X1, . . . ,Xn)A′

S(AV̂S,γ(X1, . . . ,Xn)A′)
,

which is the natural affine-equivariance property for S-shape matrices.
We are primarily interested in the asymptotic properties of V̂S,γ. These can be derived from

Proposition 2.1 by applying the Delta method. In order to state a Bahadur representation and
asymptotic normality result for V̂S,γ, we let

ck,γ :=
k(k + 2)β2

γ

D
(4)
γ

(5)

and
QVS
k :=(Ik2 + Kk)

(
V⊗2
S

)
− 2
(
V⊗2
S

)
(vecDVS

S )(vecVS)′

− 2(vecVS)(vecDVS
S )′

(
V⊗2
S

)
+ 2 EVS

k (vecVS)(vecVS)′.
(6)

We then have the following result (see Appendix A for the proof).

Theorem 4.1. Let Assumption (A) hold. Then (i) we have that

√
n vec(V̂S,γ −VS) =

1

βγ
√
n

[
Ik2 − (vecVS)(vecDVS

S )′
]

×
(
V⊗2
S

)1/2
n∑
i=1

I(2)
i;γ,θθθ,ΣΣΣ vec

(
Ui;θθθ,VS

U′i;θθθ,VS
− 1

k
Ik

)
+ oP(1)

as n→∞ ; hence, (ii)
√
n vec(V̂S,γ −VS) is asymptotically normal with mean zero and covariance

matrix c−1
k,γQ

VS
k .

Building confidence zones for V̂S,γ from Theorem 4.1 requires to estimate consistently the
quantity ck,γ (the continuous mapping theorem indeed trivially implies that QVS

k may simply be

consistently estimated by Q
V̂S,γ

k ). Estimation of ck,γ will be discussed in Section 5 below.
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If Assumption (B) also holds, that is, if the elliptical distribution at hand has finite fourth-order
(hence also third-order) moments, then

∫∞
0
r3f̃k(r) dr is finite. This implies that r3

γ f̃k(rγ) must go
to zero as γ → 1, which yields that, still as γ → 1,

c−1
k,γ =

(
1−

r3
γ f̃k(rγ)

(k + 2)D
(2)
γ

)−2

× kD
(4)
γ

(k + 2)(D
(2)
γ )2

=:
(

1−
r3
γ f̃k(rγ)

(k + 2)D
(2)
γ

)−2

(1 + κγ)→ 1 + κ :=
kD(4)

(k + 2)(D(2))2
,

where we let D(`) = D
(`)
1 =

∫∞
0
r`f̃k(r) dr. The quantity κ = κk(f) is the usual kurtosis coefficient

for k-dimensional elliptical distributions with radial density f ; see, e.g., Muirhead & Waternaux
(1980) or Tyler (1982). The coefficient κγ may be interpreted as a truncated elliptical kurtosis co-
efficient (where truncation is governed by the population MCDγ ellipsoid). Writing the asymptotic
covariance matrix in terms of κγ also clarifies the link with the corresponding result for the usual
empirical covariance matrix; see Theorem 6.1 below.

Theorem 4.1 straightforwardly provides the influence function of the MCD estimator V̂S,γ.

Theorem 4.2. The influence function of V̂S,γ, under location θθθ, scale σ2
S, shape VS, and radial

density f , is given by

x 7→ IF(x, V̂S,γ;θθθ, σ
2
S,VS, f) :=

1

βγσ2
S

d2
θθθ,VS

I[dθθθ,VS
≤ σSrγ]

×V
1/2
S

(
uθθθ,VS

u′θθθ,VS
−
[
u′θθθ,VS

V
1/2
S DVS

S V
1/2
S uθθθ,VS

]
Ik

)
V

1/2
S ,

where dθθθ,VS
:= ((x− θθθ)′V−1

S (x− θθθ))1/2 and uθθθ,VS
:= V

−1/2
S (x− θθθ)/dθθθ,VS

.

As expected, the support of the influence function of V̂S,γ is the hyper-ellipsoid {x ∈ Rk :

dθθθ,VS
≤ σSrγ}, hence coincides with the support of the influence function of Σ̂ΣΣγ; see Croux &

Haesbroeck (1999). Note also that, in this support, the influence function of V̂S,γ takes a value
that depends on f (hence, on the distribution of dθθθ,ΣΣΣ) and on γ only through the scalar factor 1/βγ,

whereas the influence function of Σ̂ΣΣγ depends on f and γ in a much more complicated way (implying,

e.g., that the influence functions of Σ̂ΣΣγ at elliptical t-distributions and at the multinormal are not

proportional to each other). Of course, the smaller γ, the smaller the support of V̂S,γ’s influence
function, but also the larger the influence function itself within this support (recall that βγ is
monotonically increasing in γ).

As an illustration, Figure 1 plots, for S(ΣΣΣ) = (detΣΣΣ)1/k, the influence functions of (V̂S,γ)22

(first column) and (V̂S,γ)12 (second column) at the bivariate standard normal distribution; first
row (resp., second row) corresponds to γ = 0.5 (resp., γ = 0.75). Note that the influence function
of (V̂S,γ)12 does not depend on the scale functional S. In the spherical setup considered, the scale
functionals S(ΣΣΣ) = (detΣΣΣ)1/k, S(ΣΣΣ) = (trΣΣΣ)/k, and S(ΣΣΣ) = k/(trΣΣΣ−1) lead to the same influence
function for (V̂S,γ)22, and the influence function of (V̂S,γ)22 for S(ΣΣΣ) = ΣΣΣ11 is equal to twice the
common influence function obtained for the three other scale functionals.
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Figure 1: Plots of the influence functions, for the scale functional S(ΣΣΣ) = (detΣΣΣ)1/k, of (V̂S,γ)22 (first column)

and (V̂S,γ)12 (second column) at the bivariate standard normal distribution. The first row (resp., second row)
corresponds to γ = 0.5 (resp., γ = 0.75).
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4.2. MCD-test for shape

In this section, we construct a Wald-type test, based on the MCD shape estimator V̂S,γ above
for the problem {

H0 : VS = V0
S

H1 : VS 6= V0
S,

(7)

where V0
S ∈ VSk is fixed. The important case for which V0

S = Ik corresponds to testing the null
of sphericity. A Wald test cannot be directly based on Theorem 4.1(ii) because the asymptotic
covariance matrix of

√
n vec(V̂S,γ − VS) is not invertible. This non-invertibility is explained by

the fact that only K of the k2 entries of vec(VS) are functionally independent (which follows from
symmetry of VS and the normalization constraint S(VS) = 1).

To solve this issue, one can rather base a Wald test on the random K-vector
√
n ˚vech(V̂S,γ−VS),

which, in view of Theorem 4.1(ii), is asymptotically normal with mean zero and covariance matrix
c−1
k,γ NkQ

VS
k N′k. As we learn from Lemma 4.1 below, this asymptotic covariance matrix is invertible,

so that a MCD Wald test for (7) may be based on

Q̊S,γ = nĉk,γ
[

˚vech(V̂S,γ −V0
S)
]′(

NkQ
V0
S

k N′k
)−1 ˚vech(V̂S,γ −V0

S), (8)

where ĉk,γ is an arbitrary consistent estimator of ck,γ; see Section 5 for possible estimators.
We actually propose rather using the simpler test statistic

QS,γ =
nĉk,γ

2

(
tr
[
((V0

S)−1V̂S,γ)
2
]
− 1

k
tr2
[
(V0

S)−1V̂S,γ)
])
, (9)

that, under the null (hence also under sequences of contiguous alternatives), is asymptotically
equivalent to Q̊S,γ in probability; see Theorem 4.3(i). Denoting by λ̂j, j = 1, . . . , k the eigenvalues

of (V0
S)−1/2V̂S,γ(V

0
S)−1/2, note that QS,γ is proportional to Varλ̂ = 1

k

∑k
j=1{λ̂j − ( 1

k

∑k
j=1 λ̂j)}2, so

that the larger Varλ̂, the more (V0
S)−1/2V̂S,γ(V

0
S)−1/2 is far from being proportional to Ik, and the

more severe the deviation from the null. The corresponding test, φS,γ say, then rejects the null at
asymptotic level α whenever QS,γ > χ2

K,1−α, where χ2
K,1−α stands for the upper α-quantile of the χ2

K

distribution. Theorem 4.3 below gives the asymptotic properties of this test; its proof requires the
following preliminary result (see Appendix A for the proofs).

Lemma 4.1. The matrix NkQ
VS
k N′k has full rank K, and its inverse is given by (NkQ

VS
k N′k)

−1 =
1
4
MVS

k

(
V⊗2
S

)−1/2[
Ik2 + Kk − 2

k
Jk
](
V⊗2
S

)−1/2(
MVS

k

)′
.

Theorem 4.3. Let Assumption (A) hold. Then, (i) under H0 : VS = V0
S, QS,γ = Q̊S,γ + oP(1),

as n → ∞; (ii) under H0 : VS = V0
S, QS,γ is asymptotically χ2

K ; (iii) under sequences of local

alternatives H(n)
1 : V

(n)
S = V0

S + n−1/2v, with tr[D
V0
S

S v] = 0, QS,γ is asymptotically non-central χ2
K ,

with non-centrality parameter

ck,γ
2

(
tr
[
((V0

S)−1v)2
]
− 1

k
tr2
[
(V0

S)−1v
])
,

provided, however, that Assumption (A) is reinforced into (A′).
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The condition tr[D
V0
S

S v] = 0 in the local alternatives H(n)
1 : V

(n)
S = V0

S + n−1/2v above ensures

that, at the first order as n → ∞, S(V
(n)
S ) = 1, hence that V

(n)
S remains an S-shape matrix;

see (4.3) in Hallin & Paindaveine (2006a) for details. For “linear” scale functionals, this can
easily be understood : if S normalizes VS to have trace k (resp., upper-left entry equal to one),
then v is constrained to have trace zero (resp., to have upper-left entry equal to zero), so that the

perturbed value V
(n)
S = V0

S + n−1/2v indeed remains an S-shape matrix (for n large enough). The
intuition is similar for “non-linear” scale functionals (such as the determinant-based one), where

the constraint S(V
(n)
S ) = 1, however, can only be achieved at the first order.

The null hypothesis H0 : VS = V0
S is not invariant under the group of affine transformations,

but it is invariant under the subgroup of affine transformations of the form

(X1, . . . ,Xn) 7→ ((V0
S)1/2O(V0

S)−1/2X1 + b, . . . , (V0
S)1/2O(V0

S)−1/2Xn + b), (10)

where O is an arbitrary orthogonal k× k matrix and b is an arbitrary k-vector. Note that the test
statistic QS,γ in (9) is invariant under this group of transformations.

5. Estimation of nuisance parameters

As already mentioned, implementing the test φS,γ for H0 : VS = V0
S requires to estimate

consistently (at least under the null) the quantity ck,γ in (5). We now present two such estimators,
establish their consistency, and compare their finite-sample performances through simulations.

To describe the first estimator, consider the mapping r 7→ f̃k;shape(r) = σ−1
S f̃k(r/σS). Note

that this mapping — unlike f̃k — does not depend on σS, which follows from the fact that f̃k;shape

(resp., f̃k) is the pdf of dθθθ,VS
(resp., dθθθ,ΣΣΣ). Similarly, sγ := σSrγ — unlike rγ itself — does not

depend on σS, since sγ (resp., rγ) is the order-γ quantile of dθθθ,VS
(resp., dθθθ,ΣΣΣ). Consequently, the

quantity ck,γ, that, by using the identity

D(`)
γ = E[d`θθθ,ΣΣΣI[dθθθ,ΣΣΣ ≤ rγ]] = σ−`S E[d`θθθ,VS

I[dθθθ,VS
≤ sγ]], (11)

rewrites

ck,γ =
k(k + 2)β2

γ

D
(4)
γ

=
((k + 2)D

(2)
γ − r3

γ f̃k(rγ))
2

k(k + 2)D
(4)
γ

(12)

=
((k + 2)E[d2

θθθ,VS
I[dθθθ,VS

≤ sγ]]− s3
γ f̃k;shape(sγ))

2

k(k + 2)E[d4
θθθ,VS

I[dθθθ,VS
≤ sγ]]

, (13)

does not depend on σS, hence may be estimated without estimating this scale parameter. Since the
MCDγ-estimators of location and S-shape θ̂θθγ and V̂S,γ are consistent for θθθ and VS, respectively,
(13) leads to the estimator

ĉk,γ :=
((k + 2) 1

n

∑n
i=1 d

2
i;θ̂θθγ ,V̂S,γ

I[di;θ̂θθγ ,V̂S,γ
≤ ŝγ]− ŝ3

γ
ˆ̃fk;shape(ŝγ))

2

k(k + 2) 1
n

∑n
i=1 d

4
i;θ̂θθγ ,V̂S,γ

I[di;θ̂θθγ ,V̂S,γ
≤ ŝγ]

, (14)
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where ŝγ, quite naturally, is taken as the sample γ-quantile of the di;θ̂θθγ ,V̂S,γ
’s, and where

ˆ̃fk;shape(s) :=
1

nhn

n∑
i=1

K

( s− di;θ̂θθγ ,V̂S,γ

hn

)
(15)

is a kernel density estimator for f̃k;shape(s). We then have the following consistency result (see Ap-
pendix B for a proof).

Theorem 5.1. Let Assumption (A) hold. Assume further that (i) the bandwidth sequence (hn)
satisfies hn → 0 and nh4

n →∞ as n→∞, and that (ii) the kernel function K has a compact support
and is differentiable, and that there exists C > 0 such that the derivative of K satisfies |K ′(s)| ≤ C
for all s. Then ĉk,γ in (14) converges to ck,γ in probability as n→∞.

This result shows in particular that ĉk,γ is a consistent estimator of ck,γ when the usual optimal
bandwidth hn ∝ n−1/5 is used. Note also that consistency holds not only under the null H0 : VS =
V0
S but under an arbitrary value of VS. Consequently, this estimator may be used both in the

tests of Section 4.2 and to build confidence zones for VS, based on the asymptotic normality result
for V̂S,γ in Theorem 4.1. When performing hypothesis testing, though, it is of course preferable to
replace ĉk,γ with its null counterpart — ĉ0

k,γ, say — obtained by replacing the di;θ̂θθγ ,V̂S,γ
’s in (14)-(15)

above with their null versions di;θ̂θθγ ,V0
S
, i = 1, . . . , n; this estimator ĉ0

k,γ involves in particular the

sample γ-quantile ŝ0
γ of the di;θ̂θθγ ,V0

S
’s. The proof of Theorem 5.1 still applies and shows that the

resulting estimator is weakly consistent under the null H0 : VS = V0
S.

We then present a second estimator of ck,γ, that was suggested to us by one of the Referees.
This alternative estimator has the advantage to avoid density estimation. However, it consistently
estimates ck,γ under the null H0 : VS = V0

S only, hence cannot be used to obtain confidence
zones for VS. The construction of this estimator exploits Theorem 4.1, that indeed suggests that,
under H0, the quantity σ2

Sβγ can be consistently estimated by

ρ(n) =
1

n
∥∥vec(V̂S,γ −V0

S)‖2

(
vec(V̂S,γ −V0

S)
)′[

Ik2 − (vecV0
S)(vecD

V0
S

S )′
]

×
(
(V0

S)⊗2
)1/2

n∑
i=1

d2
θ̂θθγ#,V

0
S

I[dθ̂θθγ#,V0
S
≤ ŝ0

γ#]vec
(
Ui;θ̂θθγ#,V

0
S
U′
i;θ̂θθγ#,V

0
S

− 1

k
Ik

)
,

where θ̂θθγ# = ((θ̂θθγ#)1, . . . , (θ̂θθγ#)k)
′ and ŝ0

γ# are discretized versions of θ̂θθγ = ((θ̂θθγ)1, . . . , (θ̂θθγ)k)
′ and ŝ0

γ.
The discretized estimators are obtained as

(θ̂θθγ#)` := sign
(
(θ̂θθγ)`

)da√n|(θ̂θθγ)`|e
a
√
n

, ` = 1, . . . , k, and ŝ0
γ# :=

da
√
n|ŝ0

γ|e
a
√
n

,

for some arbitrary constant a > 0. These discretized estimators are still root-n consistent, but
now are also locally and asymptotically discrete; see, e.g., Kreiss (1987) or Ilmonen & Paindaveine
(2011), and the comments therein. Since a can be chosen arbitrarily large, such discretization has
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no impact in real data applications, where n is fixed, so that one may in practice simply use the
original estimators θ̂θθγ and ŝ0

γ.
Under the null, it is then natural to estimate

ck,γ =
k(k + 2)β2

γ

D
(4)
γ

=
k(k + 2)(σ2βγ)

2

E[d4
θθθ,V0

S
I[dθθθ,V0

S
≤ sγ]]

(see (11)-(12)) by

c̄0
k,γ =

k(k + 2)(ρ(n))2

1
n

∑n
i=1 d

4
i;θ̂θθγ ,V0

S

I[di;θ̂θθγ ,V0
S
≤ ŝ0

γ]
. (16)

Consistency is established in the following result (see Appendix B for a proof, which requires such
discretization).

Theorem 5.2. Let Assumption (A′) hold. Then, under the null H0 : VS = V0
S, c̄0

k,γ in (16)
converges to ck,γ in probability as n→∞.

We conducted the following numerical experiment in order to compare the finite-sample perfor-
mances of the universally consistent density-based estimator ĉk,γ, with those of its null version ĉ0

k,γ,
and of the null density-free estimator c̄0

k,γ. We generated M = 5, 000 independent random sam-
ples of sizes n = 50, 400, and 10, 000 from the bivariate standard normal distribution (θθθ = 0 and
VS = Ik). In each of these samples, we evaluated, for γ = 0.5, 0.6, 0.7, 0.8, 0.9, the estimators ĉk,γ,
ĉ0
k,γ, and c̄0

k,γ, where the last two are based on the true value V0
S = Ik. We also computed the

universally consistent estimator ĉk of the corresponding covariance-based quantity ck, along with
the null version ĉ0

k of this estimator (see Section 6).
Boxplots of the resulting estimates are reported in Figure 2. The results indicate that the

universally consistent estimators ĉk,γ are severely biased for small γ-values (unless, of course, the
sample size is very large) but behave well for larger γ-values. As expected, the corresponding null
estimators ĉ0

k,γ, that are based on the true underlying shape V0
S, are more accurate, and show a much

smaller bias. Finally, the density-based estimators ĉ0
k,γ strongly dominate their competitors c̄0

k,γ,
particularly so for large γ-values.

6. Covariance-based procedures and AREs

The goal of this section is to derive the asymptotic relative efficiencies (AREs) of the MCDγ

procedures of Section 4 with respect to their competitors based on the empirical covariance ma-
trix Σ̂ΣΣ := 1

n

∑n
i=1(Xi − X̄)(Xi − X̄)′. Although Σ̂ΣΣ = Σ̂ΣΣγ for γ = 1, the asymptotic properties of

these covariance-based procedures cannot be obtained by taking γ = 1 in Theorems 4.1 and 4.3,
since these results were derived from Proposition 2.1, that is not valid for γ = 1 (if f(r) > 0 for
all r, then we indeed have r1 =∞).

A Bahadur representation result for Σ̂ΣΣ, however, can be obtained quite trivially. Of course,
unlike for the MCDγ scatter estimator, finite fourth-order moments here are needed.
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Figure 2: Boxplots, computed from 5,000 independent bivariate standard normal samples of size n = 50, 400
and 10, 000, of (i) the estimators ĉk,γ in (14), (ii) their version ĉ0k,γ based on the true value of VS , and of (iii) the

estimators c̄0k,γ in (16), for γ = 0.5, 0.6, 0.7, 0.8, 0.9. The lower right panel reports the covariance-based estimators ĉk
and ĉ0k (see Section 6). The corresponding population quantities (ck,γ or, in the lower right panel, ck) are throughout
reported in orange.
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Proposition 6.1. Let Assumption (B) hold. Then we have that

√
n vec

(
Σ̂ΣΣ− D(2)

k
ΣΣΣ
)

=
1√
n

(
ΣΣΣ⊗2

)1/2
n∑
i=1

d2
i;θθθ,ΣΣΣ vec

(
Ui;θθθ,ΣΣΣU

′
i;θθθ,ΣΣΣ −

1

k
Ik

)
+

1

k
√
n

n∑
i=1

(
d2
i;θθθ,ΣΣΣ −D(2)

)
(vecΣΣΣ) + oP(1),

as n→∞, where D(2) = D
(2)
1 =

∫∞
0
r2f̃k(r) dr.

Proceeding along the exact same lines as in the proof of Theorem 4.1, we then obtain the
asymptotic behavior of the covariance-based estimator of shape V̂S = Σ̂ΣΣ/S(Σ̂ΣΣ).

Theorem 6.1. Let Assumption (B) hold. Then (i) we have that

√
n vec(V̂S −VS) =

k

D(2)
√
n

[
Ik2 − (vecVS)(vecDVS

S )′
]

×
(
V⊗2
S

)1/2
n∑
i=1

d2
i;θθθ,ΣΣΣ vec

(
Ui;θθθ,VU

′
i;θθθ,V −

1

k
Ik

)
+ oP(1)

as n → ∞; hence, (ii)
√
n vec(V̂S −VS) is asymptotically normal with mean zero and covariance

matrix c−1
k QVS

k , where ck = 1/(1 + κ) involves the kurtosis coefficient defined in Page 7.

It directly follows that the ARE, under radial density f , of the MCD estimator of shape V̂S,γ

with respect to its covariance-based competitor V̂S is given by

AREf [V̂S,γ/V̂S] = ck,γ/ck. (17)

Such AREs are unambiguously defined since the asymptotic covariance matrices in Theorems 4.1
and 6.1 are of the form λfQ, for a common matrix Q, hence are proportional to each other. In
contrast, AREs for (affine-equivariant) estimators of scatter would not be as easily defined, as such
estimators have asymptotic covariance matrices (under radial density f) of the form λ1,fQ1+λ2,fQ2;
see, e.g., Tyler (1982, 1983). Some plots of the AREs in (17) will be provided below.

Turning to hypothesis testing, the exact similarity between Theorems 4.1 and 6.1 allows to
readily deduce the form and asymptotic properties of the covariance-based tests for the problem (7).
More precisely, the covariance-based test, φS say, rejects the null at asymptotic level α whenever

QS =
nĉ0

k

2

(
tr
[
((V0

S)−1V̂S)2
]
− 1

k
tr2
[
(V0

S)−1V̂S

])
> χ2

K,1−α,

with ĉ0
k := 1/(1 + κ̂0), where κ̂0 := [k( 1

n

∑n
i=1 d

4
i;X̄,V0

S
)]/[(k + 2)( 1

n

∑n
i=1 d

2
i;X̄,V0

S
)2] − 1 consistently

estimates, under the null, the kurtosis coefficient κ. Of course, consistent estimation, for an arbi-
trary shape value, is achieved by considering ĉk := 1/(1 + κ̂), where κ̂ is obtained by substituting Σ̂ΣΣ
for V0

S in κ̂0. Finite-sample performances of these estimators of ck were illustrated in the lower
right panel of Figure 2.
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This test coincides with the modified version defined in Hallin & Paindaveine (2006b) of the
Gaussian test from John (1972). The modification, that consists in adding the factor ĉ0

k, extends the
validity of John’s test to any elliptical distribution with finite fourth-order moments (John’s test,
originally, is only valid under elliptical distributions having the same kurtosis as in the multinormal
case — i.e., κk(f) = κk(φ) = 0). The following result summarizes the asymptotic properties of this
test.

Theorem 6.2. Let Assumption (B) hold. Then, (i) underH0 : VS = V0
S, QS is asymptotically χ2

K ;

(ii) under sequences of local alternatives H(n)
1 : V

(n)
S = V0

S + n−1/2v, with tr[D
V0
S

S v] = 0, QS is
asymptotically non-central χ2

K , with non-centrality parameter

ck
2

(
tr
[
((V0

S)−1v)2
]
− 1

k
tr2
[
(V0

S)−1v
])
,

provided, however, that Assumption (B) is reinforced into (B ′).

Asymptotic relative efficiencies, as usual, are obtained as the ratios of the non-centrality param-
eters in the asymptotic non-null distributions of the corresponding tests. Therefore, the ARE, under
radial density f , of the MCDγ test for shape φS,γ with respect to its covariance-based competitor φS
is given by

AREf [φS,γ/φS] = ck,γ/ck, (18)

which coincides with the ARE obtained in (17) for point estimation. Both for hypothesis testing
and point estimation, these AREs require that the underlying elliptical distribution has finite
fourth-order moments (µk+3,f < ∞). Note, however, that the AREs may be considered infinite
when fourth-order moments themselves are infinite, since the covariance-based competitors then
collapse, while the MCDγ procedures remain valid (in the sense that V̂S,γ remains root-n consistent
and that φS,γ still meets the asymptotic α-level constraint).

Figure 3 provides several plots (as functions of γ or of the number of degrees of freedom ν
of the underlying standard elliptical tν distribution) of the AREs in (17)-(18), under k-variate
standard normal and tν densities. It is seen that the AREs decrease with the tail weight ν. At the
multinormal, as expected, MCD-based shape procedures are poorly efficient, but they dominate
their covariance-based competitors under heavy tails, particularly so for large dimensions k.

7. Monte-Carlo studies

In this section, we illustrate the finite-sample behaviors of the MCDγ inference procedures for
shape from Section 4 and of their covariance-based competitors from Section 6. The goal is not
so much to show how the former compare with the latter, but rather to confirm our asymptotic
results and to learn how well these results approximate the finite-sample properties of the procedures
considered. A robustness study will also be conducted.

We start with hypothesis testing, where we focused on the problem of testing for sphericity,
i.e., on the null hypothesis H0 : VS = Ik. Throughout, we adopted the determinant-based scale
functional S(ΣΣΣ) = (detΣΣΣ)1/k. We generated collections of M = 2, 000 independent random samples
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Figure 3: Plots of asymptotic relative efficiencies (AREs) of MCDγ shape estimators and tests with respect to their
covariance-based competitors, under k-variate standard normal and tν densities.
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of sizes n = 50, 400, and 2, 000, from a bivariate normal distribution with mean θθθ = 0, scale σS = 1,
and shape

V
(n)
S (m; ξ) =

I2 +
m

ξ
√
n

(
1 0.5

0.5 −1

)
(

det

[
I2 +

m

ξ
√
n

(
1 0.5

0.5 −1

)])1/2
, m = 0, 1, 2, . . . , 6, (19)

with ξ = 1.2. Figure 4 plots, for each sample size n above, a few equidensity contours of the
bivariate normal distribution with shape V

(n)
S (6; 1.2), which corresponds to the most extreme al-

ternative considered. We also generated collections of M = 2, 000 independent random samples
with the same sample sizes from a bivariate t5 distribution with mean zero, S-scale one, and shape
matrices V

(n)
S (m; ξ), still for m = 0, 1, 2, . . . , 6, but here with ξ = 1; these heterogeneous ξ-values

were chosen so that the most severe alternatives — associated with the shape matrices V
(n)
S (6; ξ)

— lead to roughly similar rejection frequencies in the multinormal and t5 cases.
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Figure 4: Some equidensity contours of the bivariate normal distribution with mean θθθ = 0, scale σS = 1, and

shape V
(n)
S (6; 1.2) (see (19)), for n = 50, 400, and 2, 000. These correspond to the most severe alternatives considered

in the hypothesis testing simulation.

For each such sample, we performed, at asymptotic level α = 5%, the MCDγ tests of spheric-
ity φS,γ, for γ = 0.5, 0.75, 0.9 and 0.95, their covariance-based competitor φS from Section 6, as
well as the sign test and van der Waerden signed-rank test from Hallin & Paindaveine (2006a).
Figure 5 plots the corresponding rejection frequencies as functions of m. This figure also reports
the corresponding asymptotic powers, that are readily obtained from Theorems 4.3(iii) and 6.2(ii)
(and from Proposition 4.1 in Hallin & Paindaveine (2006a)). MCDγ tests were based on the null es-
timators ĉ0

k,γ from Section 5. The “covMcd” function from the “Robusbase” R-package was used to
select the best subsample among nsamp=5000 subsamples. The MCDγ estimator of shape was then
obtained as the shape matrix associated with the covariance matrix of this subsample. The kernel
density estimation involved in the testing procedure used a Gaussian kernel and the automatic
bandwidth selection in Equation (3.31) from Silverman (1986), as implemented in the “density()”
R function.
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This simulation exercise clearly confirms our asymptotic results in Theorems 4.3 and 6.2 as the
empirical rejection frequencies for n = 2, 000 very well match the corresponding asymptotic powers;
all findings associated with the AREs derived in Section 6 therefore show at this large sample size
(in particular, MCDγ tests, for large γ-values, dominate the covariance-based one under t5). For
small sample size (n = 50), the lowest γ-value considered (γ = 0.5) leads to slightly liberal tests,
which is due to the relatively poor estimation (see Figure 2) of ck,γ by ĉ0

k,γ. Simulations based on
other alternatives led to extremely similar conclusions.
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We turn to simulations for point estimation. Parallel as above, we generated M = 2, 000
independent random samples, of sizes n = 400 and n = 10, 000, from the bivariate (without loss of
generality, standard) normal and t5 distributions. For each sample, we evaluated the MCDγ shape

estimators V̂S,γ, still for γ = 0.5, 0.75, 0.9 and 0.95, and their covariance-based competitor V̂S. For
the sake of comparison, we also computed the corresponding reweighted MCDγ estimators, obtained

through the “covMcd” R function. For each shape estimators V̂ = (V̂ij), Figure 6 provides the
boxplots of the corresponding estimation errors for fixed diagonal and off-diagonal entries — more
precisely, the boxplots of (V̂11 − 1) and V̂12 are reported there. The results confirm that, under
multinormality, the covariance-based estimators dominate the MCDγ estimators, that become less
and less accurate as γ decreases. Under heavy tails, however, MCDγ estimators, for large values of
γ, are slightly more efficient than the covariance-based one, which is in line with the AREs in the
lower-right panel of Figure 3. These finite-sample performances therefore thoroughly confirm our
asymptotic (efficiency) results. Reweighted estimators dominate the original MCD estimators, but
the difference is negligible for large γ.

Finally, we performed a simulation study in order to assess the robustness of MCD-based infer-
ence procedures for shape. As previously, we generated M = 2, 000 independent random samples
of size n = 400 from the bivariate standard normal and t5 distributions. Contamination was then
introduced by multiplying by four the first component of ψn observations in each sample; this was
done for ψ = 0, 0.05, 0.10, . . . , 0.50. Figure 7 shows the coverage frequencies of the asymptotic
95%-confidence intervals for (VS)11 and for (VS)12 based on V̂S,γ, still for γ = 0.5, 0.75, 0.9, 0.95.
These confidence intervals were obtained from Theorem 4.1, where the relevant asymptotic variance
was estimated by plugging V̂S,γ and by using the estimator ĉk,γ introduced in Section 5. As above,
the raw MCDγ was computed through the “covMcd” R function, with nsamp= 5, 000 subsam-
ples. For (VS)11, robustness, as expected, increases as γ decreases. For γ = 0.50, high robustness is
achieved despite the density-based estimator ĉk,γ used in the procedure. Results are much more sta-
ble for (VS)12 than for (VS)11, which indicates that the increasingly poorer performances obtained
for (VS)11 as contamination increases, should not be attributed to the non-robustness of ĉk,γ.
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Appendix A.

In this appendix, we prove Theorems 4.1 and 4.3, Lemma 4.1, and Proposition 6.1.

Proof of Theorem 4.1. (i) The Delta method yields that, as n→∞,

√
n vec(V̂S,γ −VS) =

1

S(α2
γΣΣΣ)

[
Ik2 − (vecVS)(vecDVS

S )′
]√

n vec(Σ̂ΣΣ− α2
γΣΣΣ) + oP(1).

Since tr[DVS
S VS] = S(VS) = 1 (see Lemma 4.2(ii) in Paindaveine (2008)), this implies that[

Ik2 − (vecVS)(vecDVS
S )′

]
(vecVS) = (vecVS)− tr[DVS

S VS](vecVS) = 0. (A.1)

The result then follows from the Bahadur representation result in Proposition 2.1, by using (A.1)
and the identity vec (ABC) = (C′ ⊗A) (vecB).

(ii) Since

Varθθθ,ΣΣΣ,f

[
vec
(
Ui;θθθ,VS

U′i;θθθ,VS
− 1

k
Ik

)]
=

1

k(k + 2)
(Ik2 + Kk + Jk)− Jk =: Ak,

we readily obtain that
√
n vec(V̂S,γ −VS) is asymptotically normal with mean zero and covariance

matrix

D
(4)
γ

β2
γ

[
Ik2 − (vecVS)(vecDVS

S )′
](
V⊗2
S

)1/2
Ak

(
V⊗2
S

)1/2
[
Ik2 − (vecVS)(vecDVS

S )′
]′
.

By using (A.1), Kk(A ⊗ B) = (A ⊗ B)Kk, and Kk(vecA) = vec (A′), this covariance matrix
rewrites

D
(4)
γ

k(k + 2)β2
γ

[
Ik2 − (vecVS)(vecDVS

S )′
](
V⊗2
S

)1/2
(Ik2 + Kk)

(
V⊗2
S

)1/2
[
Ik2 − (vecVS)(vecDVS

S )′
]′

= c−1
k,γ

[
Ik2 − (vecVS)(vecDVS

S )′
](
V⊗2
S

)
(Ik2 + Kk)

[
Ik2 − (vecVS)(vecDVS

S )′
]′

= c−1
k,γ

[
Ik2 − (vecVS)(vecDVS

S )′
][

(Ik2 + Kk)
(
V⊗2
S

)
− 2
(
V⊗2
S

)
(vecDVS

S )(vecVS)′
]
.

Performing this last product and using (vecA)′(vecB) = tr[A′B] establishes the result. �

Proof of Lemma 4.1. The result follows by noting that QVS
k = QVS

k;1,2EVSk
, where QVS

k;r,s is

defined in (5.3) from Hallin & Paindaveine (2006a), and by applying Lemma 5.2 from the same
paper. �

Proof of Theorem 4.3. (i) Using first Lemma 4.1, then the identities vec (ABC) = (C′ ⊗
A) (vecB) and Kk(vecA) = vec (A′), and Lemma 5.1 from Hallin & Paindaveine (2006a), we
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obtain that, under the null as n→∞,

Q̊S,γ =
n

4ĉk,γ

[
vec(V̂S,γ −V0

S)
]′(

V0⊗2
S

)−1/2
[
Ik2 + Kk −

2

k
Jk

](
V0⊗2
S

)−1/2
vec(V̂S,γ −V0

S) + oP(1)

=
n

2ĉk,γ

[
vec((V0

S)−1/2V̂S,γ(V
0
S)−1/2 − Ik)

]′[
Ik2 −

1

k
Jk

][
vec((V0

S)−1/2V̂S,γ(V
0
S)−1/2 − Ik)

]
+ oP(1).

From the identities
[
Ik2 − 1

k
Jk
]
(vec Ik) = 0 and (vecA)′(vecB) = tr[A′B], we then obtain that,

still under the null as n→∞,

Q̊S,γ =
n

2ĉk,γ

(
tr
[
((V0

S)−1/2V̂S,γ(V
0
S)−1/2))2

]
− 1

k
tr2
[
(V0

S)−1/2V̂S,γ(V
0
S)−1/2

])
+ oP(1),

which establishes the result.
(ii) This readily follows from Part (i) of the result, the consistency of ĉk,γ, and the fact that√
n ˚vech(V̂S,γ −VS) is asymptotically normal with mean zero and (full rank K; see Lemma 4.1)

covariance c−1
k,γ NkQ

VS
k N′k.

(iii) Under Assumption (A′), the fixed-f parametric model described by Pf := {P(n)

θθθ,σ2
S ,

˚vechVS ;f
}

(where P
(n)

θθθ,σ2
S ,

˚vechVS ;f
denotes the probability measure of n i.i.d. k-variate elliptical observations with

location θθθ, scale σ2
S, shape VS, and radial density f) is uniformly locally and asymptotically normal

(ULAN) with a central sequence of the form ∆∆∆f = ((∆∆∆θθθ
f )
′,∆

σ2
S
f , (∆∆∆

VS
f )′)′, where

∆∆∆VS
f :=

1

2
√
n
MVS

k

(
V⊗2
S

)−1/2
n∑
i=1

vec

(
di;θθθ,VS

σS
ϕf

(di;θθθ,VS

σS

)
Ui;θθθ,VS

U′i;θθθ,VS
− 1

k
Ik

)
;

see, e.g., Paindaveine (2008). This ULAN result in particular entails that, under P
(n)

θθθ,σ2
S ,

˚vechVS ;f
,

T (n) := log
(
dP

(n)

θθθ,σ2, ˚vech(V0
S+n1/2v);f

/dP
(n)

θθθ,σ2, ˚vechV0
S ;f

)
= ( ˚vechv)′∆∆∆VS

f −
1

2
( ˚vechv)′ΓΓΓVS

f ( ˚vechv) + oP(1)

as n → ∞, where ΓΓΓVS
f denotes the covariance matrix in the asymptotically normal distribution

of ∆∆∆VS
f under P

(n)

θθθ,σ2
S ,

˚vechVS ;f
. Hence, the standard Cramér-Wold device shows that, still under the

same, the joint asymptotic distribution of S(n) :=
√
n ˚vech(V̂S,γ − V0

S) and T (n) is asymptoti-
cally multinormal, with an asymptotic covariance between S(n) and T (n) that is given by w =
limn→∞ Eθθθ,σ2

S ,V
0
S ;f [S

(n)(∆∆∆VS
f )′]( ˚vechv). By first using Theorem 4.1(i) and Nk(vecA) = ( ˚vechA),

then by simplifying w along the same lines as in the previous proofs, we obtain

w =
1

k(k + 2)βγ
Eθθθ,σ2

S ,V
0
S ;f

[ d2
i;θθθ,V0

S

σ2
S

I
[
di;θθθ,V0

S

σS
≤ rγ

]
×
di;θθθ,V0

S

σS
ϕf

(di;θθθ,V0
S

σS

)]
( ˚vechv),
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which, in view of (3), yields w = ( ˚vech v). Le Cam’s third lemma then yields that S(n) is asymp-

totically normal, under P
(n)

θθθ,σ2, ˚vech(V0
S+n1/2v);f

, with mean ( ˚vech v) and the same covariance ma-

trix c−1
k,γNkQ

V0
S

k N′k as under the null. Hence, still under P
(n)

θθθ,σ2, ˚vech(V0
S+n1/2v);f

,

QS,γ = Q̊S,γ + oP(1) = ck,γ(S
(n))′

(
NkQ

VS
k N′k

)−1
S(n) + oP(1)

(contiguity implies that the first part of the theorem and the consistency of ĉk,γ extend to the local
alternatives considered) is asymptotically non-central χ2

K with non-centrality parameter

ĉk,γ( ˚vech v)′
(
NkQ

VS
k N′k

)−1
( ˚vech v),

which, after some computations, reduces to the non-centrality parameter in the statement of the
theorem. �

Proof of Proposition 6.1. Decomposing as usual Σ̂ΣΣ into Σ̂ΣΣθθθ + (X̄ − θθθ)(X̄ − θθθ)′, with

Σ̂ΣΣθθθ := 1
n

∑n
i=1(Xi − θθθ)(Xi − θθθ)′, we obtain that, as n→∞,

√
n
(

Σ̂ΣΣ− D(2)

k
ΣΣΣ
)

=
√
n
(

Σ̂ΣΣθθθ −
D(2)

k
ΣΣΣ
)

+ oP(1)

=
1√
n

n∑
i=1

(
d2
i;θθθ,ΣΣΣΣΣΣ1/2Ui;θθθ,ΣΣΣU

′
i;θθθ,ΣΣΣΣΣΣ1/2 − D(2)

k
ΣΣΣ
)

+ oP(1),

which establishes the result. �

Appendix B.

It remains to prove Theorem 5.1. The proof relies on several lemmas. We first introduce the
following notation. Let ŝ

(n)
γ and s

(n)
γ be the sample γ-quantiles of d̂i = di;θ̂θθγ ,V̂S,γ

, i = 1, . . . , n, and

di = di;θθθ,VS
, i = 1, . . . , n, respectively. In the rest of the paper, all convergences, oP’s, and OP’s are

as n→∞. Also, we will write maxi and
∑

i for maxi=1,...,n and
∑n

i=1, respectively. Similarly, “for
some i” will stand for “for some i ∈ {1, . . . , n}”.

Lemma B.1. Let (L(n)) be a sequence of random variables that is OP(1). Then (i) maxi
(
|d̂i −

di|I[di ≤ L(n)]
)

= OP(n−1/2) and (ii) maxi
(
|d̂i − di|I[d̂i ≤ L(n)]

)
= OP(n−1/2).

Proof of Lemma B.1. (i) Using repeatedly the triangular inequality provides

|d̂i − di| ≤ ‖V̂−1/2
S,γ (Xi − θ̂θθγ)−V

−1/2
S (Xi − θθθ)‖

= ‖(V̂−1/2
S,γ −V

−1/2
S )(Xi − θθθ)− V̂

−1/2
S,γ (θ̂θθγ − θθθ)‖

≤ ‖V̂−1/2
S,γ −V

−1/2
S ‖L‖V1/2

S ‖L di + ‖V̂−1/2
S,γ ‖L‖θ̂θθγ − θθθ‖,
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where ‖A‖L = sup{Au : u ∈ Sk−1} is the operator norm of A. Hence, we obtain

√
nmaxi

(
|d̂i − di| I[di ≤ L(n)]

)
≤ L(n)‖

√
n(V̂

−1/2
S,γ −V

−1/2
S )‖L‖V1/2

S ‖L + ‖V̂−1/2
S,γ ‖‖

√
n(θ̂θθγ − θθθ)‖,

so that the result follows from the root-n consistency of θ̂θθγ and V̂S,γ. (ii) The proof is entirely
similar but is based on the decomposition

|d̂i − di| ≤ ‖V̂−1/2
S,γ (Xi − θ̂θθγ)−V

−1/2
S (Xi − θθθ)‖

= ‖(V̂−1/2
S,γ −V

−1/2
S )(Xi − θ̂θθγ)−V

−1/2
S,γ (θ̂θθγ − θθθ)‖

≤ ‖V̂−1/2
S,γ −V

−1/2
S ‖L‖V̂1/2

S,γ‖L d̂i + ‖V−1/2
S,γ ‖L‖θ̂θθγ − θθθ‖. �

Lemma B.2. Let A(n) and B(n) be two sequences of random variables that converge in probability
to constants a and b, respectively, with a < b. Then P[di ≤ A(n), d̂i ≥ B(n) for some i] and
P[d̂i ≤ A(n), di ≥ B(n) for some i] both converge to zero as n→∞.

Proof of Lemma B.2. Fix δ ∈ (0, (b− a)/3). We then have

P[di ≤ A(n), d̂i ≥ B(n) for some i]

≤ P[di ≤ A(n), d̂i ≥ B(n) for some i, A(n) ≤ a+ δ, B(n) ≥ b− δ] + P[A(n) > a+ δ] + P[B(n) < b− δ]

≤ P[di ≤ a+ δ, d̂i ≥ b− δ for some i] + P[|A(n) − a| > δ] + P[|B(n) − b| > δ]

≤ P
[
maxi|d̂i − di| I[di ≤ a+ δ] > δ

]
+ P[|A(n) − a| > δ] + P[|B(n) − b| > δ],

so that the (i) follows from Lemma B.1(i). Interchanging di and d̂i, one concludes that P[d̂i ≤
A(n), di ≥ B(n), for some i] converges to zero as n→∞ (this time by using Lemma B.1(ii)). �

Lemma B.3. Recalling that sγ is the γ-quantile of d1;θθθ,VS
, we have that

√
n(ŝ

(n)
γ − s

(n)
γ ) and√

n(ŝ
(n)
γ − sγ) are OP(1) as n→∞.

Proof of Lemma B.3. Since the di’s are i.i.d., the root-n consistency of sample quantiles
trivially entails that

√
n(s

(n)
γ − sγ) = OP(1), so that it is sufficient to show that

√
n(ŝ

(n)
γ − s(n)

γ ) =
OP(1). To do so, fix ε > 0, and write

P
[√
n |ŝ(n)

γ − s(n)
γ | > ε

]
≤ P

[√
n |ŝ(n)

γ − s(n)
γ | > ε, s(n)

γ ≤ sγ + 1
]

+ P
[
s(n)
γ > sγ + 1

]
≤ P

[√
nmaxi|d̂i − di|I[di ≤ sγ + 1] > ε

]
+ P

[
s(n)
γ > sγ + 1

]
.

The result then follows from Lemma B.1(i) and the fact that s
(n)
γ − sγ is oP(1). �

Lemma B.4. Let the assumptions of Theorem 5.1 hold. Then, for any α ∈ (0, 1),

sup
s∈[0,sα]

|f̂ (n)(s)− f (n)(s)| = oP(1),

where we let f̂ (n)(s) = (nhn)−1
∑

iK
(
s−d̂i
hn

)
and f (n)(s) = (nhn)−1

∑
iK
(
s−di
hn

)
.

26



Proof of Lemma B.4. Pick an arbitrary α′ ∈ (α, 1), and write |f̂ (n)(s)− f (n)(s)| ≤ T
(n)
1 (s) +

T
(n)
2 (s), with

T
(n)
1 (s) =

1

nhn

∑
i

∣∣∣K(s− d̂i
hn

)
−K

(s− di
hn

)∣∣∣ I[di ≤ sα′ ]

and

T
(n)
2 (s) =

1

nhn

∑
i

∣∣∣K(s− d̂i
hn

)
−K

(s− di
hn

)∣∣∣ I[di > sα′ ].

From the mean value theorem and the boundedness of K ′, we obtain

sup
s∈[0,sα]

T
(n)
1 (s) ≤ C

nhn
sup

s∈[0,sα]

∑
i

∣∣∣(s− d̂i
hn

)
−
(s− di

hn

)∣∣∣ I[di ≤ sα′ ]

=
C

nh2
n

∑
i |d̂i − di| I[di ≤ sα′ ] ≤ C√

nh4
n

(√
nmaxi|d̂i − di| I[di ≤ sα′ ]

)
,

which is oP(1) (since nh4
n →∞ and the sequence in the brackets is OP(1) in view of Lemma B.1(i)).

Turning then to T
(n)
2 (s), pick c > 0 so that the support of K is a subset of [−c, c]. Fix δ ∈ (0, sα′−sα)

and choose n0 so that sα+chn < sα′−δ for all n ≥ n0. In the rest of the proof, we restrict (without
loss of generality) to n ≥ n0. For any s ∈ [0, sα], we then trivially have s+chn ≤ sα+chn < sα′−δ.
Therefore, we have that, for all i = 1, . . . , n,

K
(s− di

hn

)
I[di > sα′ ] = 0,

almost surely, which implies that, still almost surely and any s ∈ [0, sα],

T
(n)
2 (s) =

1

nhn

∑
i

∣∣∣K(s− d̂i
hn

)∣∣∣ I[di > sα′ ] =
1

nhn

∑
i

∣∣∣K(s− d̂i
hn

)∣∣∣ I[di > sα′ , d̂i ≤ sα′ − δ]

(since d̂i > sα′ − δ would entail |s− d̂i| ≥ chn). Hence,

P
[∣∣∣ sup

s∈[0,sα]

T
(n)
2

∣∣∣ > ε
]
≤ P

[∣∣∣ sup
s∈[0,sα]

T
(n)
2

∣∣∣ 6= 0
]
≤ P[di > sα′ , d̂i ≤ sα′ − δ, for some i]

which, in view of Lemma B.2, converges to zero. We conclude that both T
(n)
1 (s) and T

(n)
2 (s), hence

also |f̂ (n)(s)− f (n)(s)|, are oP(1) uniformly in s ∈ [0, sα]. �

Lemma B.5. For any integer `, 1
n

∑
i d̂

`
i I[d̂i ≤ ŝ

(n)
γ ] converges in probability to E[d`θθθ,VS

I[dθθθ,VS
≤ sγ]]

as n→∞.

Proof of Lemma B.5. The weak law of large numbers implies that it is sufficient to show
that

S(n) =
1

n

∑
i d̂

`
i I[d̂i ≤ ŝ(n)

γ ]− 1

n

∑
i d

`
i I[di ≤ sγ] = oP(1).
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Decompose then S(n) into S
(n)
1 + S

(n)
2 , where

S
(n)
1 =

1

n

∑
i (d̂

`
i − d`i) I[d̂i ≤ ŝ(n)

γ ] and S
(n)
2 =

1

n

∑
i d

`
i

(
I[d̂i ≤ ŝ(n)

γ ]− I[di ≤ sγ]
)
.

Let us start with S
(n)
1 (which only needs to be considered if ` ≥ 1). We have

|S(n)
1 | ≤

1

n

∑
i |d̂

`
i − d`i | I[d̂i ≤ ŝ(n)

γ , di < ŝ(n)
γ + 1] +

1

n

∑
i |d̂

`
i − d`i | I[d̂i ≤ ŝ(n)

γ , di ≥ ŝ(n)
γ + 1]

≤ maxi |d̂`i − d`i | I[d̂i ≤ ŝ(n)
γ , di < ŝ(n)

γ + 1] +
1

n

∑
i |d̂

`
i − d`i | I[d̂i ≤ ŝ(n)

γ , di ≥ ŝ(n)
γ + 1].

= S
(n)
1a + S

(n)
1b ,

say. Using the mean value theorem, then Lemma B.1, yields

S
(n)
1a ≤ `(ŝ(n)

γ + 1)`−1maxi |d̂i − di| I[d̂i ≤ ŝ(n)
γ , di < ŝ(n)

γ + 1] = oP(1).

As for S
(n)
1b , we have that, for any ε > 0,

P[S
(n)
1b > ε] ≤ P[di ≤ ŝ(n)

γ , di ≥ ŝ(n)
γ + 1, for some i],

which converges to zero (Lemma B.2). We conclude that S
(n)
1 is oP(1).

Turning to S
(n)
2 ,

|S(n)
2 | ≤

1

n

∑
i d

`
i

∣∣I[d̂i ≤ ŝ(n)
γ ]− I[di ≤ sγ]

∣∣
=

1

n

∑
i d

`
i I[d̂i ≤ ŝ(n)

γ , di > sγ] +
1

n

∑
i d

`
i I[d̂i > ŝ(n)

γ , di ≤ sγ] = S
(n)
2a + S

(n)
2b ,

say. For any η > 0, we may write

P
[∣∣S(n)

2a

∣∣ > ε
]

≤ P

[
1

n

∑
i d

`
i I[d̂i ≤ ŝ(n)

γ , di > sγ + η] >
ε

2

]
+ P

[
1

n

∑
i d

`
i I[d̂i ≤ ŝ(n)

γ , sγ < di ≤ sγ + η] >
ε

2

]
≤ P

[
d̂i ≤ ŝ(n)

γ , di > sγ + η for some i
]

+ P

[
1

n

∑
i d

`
i I[sγ < di ≤ sγ + η] >

ε

2

]
≤ P

[
d̂i ≤ ŝ(n)

γ , di > sγ + η for some i
]

+
2

ε
E
[
d`1 I[sγ < d1 ≤ sγ + η]

]
, (B.1)

where the last inequality follows from Markov’s inequality. The second term of (B.1) does not
depend on n and can be made arbitrarily small by choosing η appropriately. Since Lemma B.2
implies that the first term of (B.1) converges to zero, this yields that S

(n)
2a is oP(1). The proof

that S
(n)
2b is also oP(1) is extremely similar. We conclude that S(n) itself is oP(1), which establishes

the result. �
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We can now prove Theorem 5.1.

Proof of Theorem 5.1. Fix α ∈ (γ, 1) and pick δ > 0 such that sγ + δ < sα. Then (note

that, using the notation of this Appendix, we have ˆ̃fk;shape(ŝγ) = f̂ (n)(ŝγ)),

P
[∣∣ ˆ̃fk;shape(ŝ

(n)
γ )− f (n)(sγ)

∣∣ > ε
]
≤ P

[∣∣f̂ (n)(ŝ(n)
γ )− f (n)(ŝ(n)

γ )
∣∣ > ε

2

]
+ P

[∣∣f̂ (n)(sγ)− f (n)(sγ)
∣∣ > ε

2

]
≤ P

[∣∣f̂ (n)(ŝ(n)
γ )− f (n)(ŝ(n)

γ )
∣∣ > ε

2
, |ŝ(n)

γ − sγ| ≤ δ
∣∣]+ P

[
|ŝ(n)
γ − sγ| > δ

]
+ P

[∣∣f̂ (n)(sγ)− f (n)(sγ)
∣∣ > ε

2

]
≤ 2 P

[
sup

s∈[0,sα]

∣∣f̂ (n)(s)− f (n)(s)
∣∣ > ε

2

]
+ P

[
|ŝ(n)
γ − sγ| > δ

]
,

which, by using Lemmas B.3-B.4, shows that ˆ̃fk;shape(ŝ
(n)
γ )−f (n)(sγ) is oP(1). The weak consistency

of the standard kernel density estimator f (n)(s) then entails that ˆ̃fk;shape(ŝ
(n)
γ ) − f(sγ) is oP(1).

Hence, the result follows from the continuous mapping theorem, Lemma B.3, and Lemma B.5. �

It remains to prove Theorem 5.2, which requires the following preliminary result.

Lemma B.6. Let Assumption (A′) hold. Let θ̂θθ# and ŝγ# be root-n consistent and locally asymp-
totically discrete estimators of θθθ and sγ, respectively. Then

√
n vec(V̂S,γ −VS) =

1

σ2βγ
√
n

[
Ik2 − (vecVS)(vecDVS

S )′
]

×
(
V⊗2
S

)1/2
n∑
i=1

d2
θ̂θθ#,VS

I[dθ̂θθ#,VS
≤ ŝγ#]vec

(
Ui;θ̂θθ#,VS

U′
i;θ̂θθ#,VS

− 1

k
Ik

)
+ oP(1)

as n→∞.

Proof of Lemma B.6. In Sections 2 and 3, we parametrized the family of elliptical distribu-
tions by (θθθ, σ2,VS) and the radial density f , where identifiability of σ2 and f follows by imposing
that dθθθ,VS

= ((X−θθθ)′V−1
S (X−θθθ))1/2 has median σ. For any given γ ∈ (0, 1), one may equivalently

adopt the parametrization in ϑϑϑ = (θθθ, sγ,VS) and f associated with the densities

fX : Rk → R

x 7→ (µk−1,fωk−1)−1

skγ
√

detVS

f
(
s−1
γ

√
(x− θθθ)′V−1

S (x− θθθ)
)
,

(B.2)

where the scale parameter sγ is defined as the γ-quantile of dθθθ,VS
. Proceeding as in Paindaveine

(2008) (Section 4), it is seen that, for fixed f (satisfying some mild regularity conditions), the para-
metric family of f -elliptical distributions is ULAN with a central sequence that, in this alternative
parametrization, takes the form ∆

(n)
ϑϑϑ,f :=((∆

(n)
ϑϑϑ,f ;1)′,∆

(n)
ϑϑϑ,f ;2, (∆

(n)
ϑϑϑ,f ;3)′)′, with

∆
(n)
ϑϑϑ,f ;1 :=

1

sγ
√
n

n∑
i=1

ϕf

(
di
sγ

)
V
−1/2
S Ui,
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∆
(n)
ϑϑϑ,f ;2 :=

1

2s2
γ

√
n

n∑
i=1

(
ϕf

(
di
sγ

)
di
sγ
− k
)
, (B.3)

and

∆
(n)
ϑϑϑ,f ;3 :=

1

2
√
n
MVS

S

(
V⊗2
S

)−1/2
n∑
i=1

vec

(
ϕf

(
di
sγ

)
di
sγ

UiU
′
i − Ik

)
, (B.4)

where di = di;θθθ,VS
and Ui = Ui;θθθ,VS

. Using classical techniques in ULAN experiments then allows

to show the asymptotic linearity result stating that, under P
(n)
θθθ,sγ ,VS ,f

,

T(n)(θθθ + n−1/2τττ , sγ + n1/2ζ)−T(n)(θθθ, sγ)

= Eθθθ,sγ ,VS ,f

[
T(n)(θθθ, sγ)

(
∆∆∆θθθ,sγ ,VS ,f ;1

∆∆∆θθθ,sγ ,VS ,f ;3

)′ ](
τττ

ζ

)
+ oP(1), (B.5)

as n → ∞; see Van der Vaart (2000), Proposition A.10, for a classical reference, or Hallin et al.
(2013) for a most recent one. Applying this to

T(n)(θθθ, sγ) =
1√
n

n∑
i=1

d2
i;θθθ,VS

I[di;θθθ,VS
≤ sγ]vec

(
Ui;θθθ,VS

U′i;θθθ,VS
− 1

k
Ik

)
,

we readily obtain that, under P
(n)
θθθ,sγ ,VS ,f

,

T(n)(θθθ + n−1/2τττ , sγ + n1/2ζ)−T(n)(θθθ, sγ) = oP(1),

as n→∞, since the expectation in (B.5) is then equal to zero. Therefore, Lemma 4.4 from Kreiss
(1987) entails that

T(n)(θ̂θθ#, ŝγ#)−T(n)(θθθ, sγ) = oP(1), (B.6)

still as n→∞, under P
(n)
θθθ,VS ,sγ ,f

. The result then readily follows from (B.6) and Theorem 4.1. �

We can now establish consistency of the estimator in (16) under the null H0 : VS = V0
S.

Proof of Theorem 5.2. Note first that θ̂θθγ is root-n consistent for θθθ (see Cator & Lopuhaä
(2010)) and that, from Lemma B.3, ŝ0

γ is root-n consistent for sγ under the null H0 : VS = V0
S.

As mentioned in Section 5, the discretization of θ̂θθγ and ŝ0
γ into θ̂θθγ# and ŝ0

γ# does not affect root-n
consistency, and we may therefore apply Lemma B.6 with these discretized estimators. This yields

n
∥∥vec(V̂S,γ −V0

S)‖2 =
1

σ2
Sβγ

(
vec(V̂S,γ −V0

S)
)′[

Ik2 − (vecV0
S)(vecD

V0
S

S )′
]

×
(
(V0

S)⊗2
)1/2

n∑
i=1

d2
θ̂θθγ#,V

0
S

I[dθ̂θθγ#,V0
S
≤ ŝ0

γ#]vec
(
Ui;θ̂θθγ#,V

0
S
U′
i;θ̂θθγ#,V

0
S

− 1

k
Ik

)
+ oP(1),
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as n → ∞ under the null. Since n
∥∥vec(V̂S,γ − V0

S)‖2 is OP(1) under the null but not oP(1), we
have that

ρ(n) =
1

n
∥∥vec(V̂S,γ −V0

S)‖2

(
vec(V̂S,γ −V0

S)
)′[

Ik2 − (vecV0
S)(vecD

V0
S

S )′
]

×
(
(V0

S)⊗2
)1/2

n∑
i=1

d2
θ̂θθγ#,V

0
S

I[dθ̂θθγ#,V0
S
≤ ŝ0

γ#]vec
(
Ui;θ̂θθγ#,V

0
S
U′
i;θ̂θθγ#,V

0
S

− 1

k
Ik

)
is a consistent estimator of σ2

Sβγ under the null. Since Lemma B.5 ensures that, still under the

null, 1
n

∑
i d̂

`
i;θ̂θθγ ,V0

S

I[d̂i;θ̂θθγ ,V0
S
≤ ŝ0

γ] consistently estimates E[d4
θθθ,VS

I[dθθθ,VS
≤ sγ]], the result then follows

from the continuous mapping theorem. �
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Lopuhaä, H. P., & Rousseeuw, P. J. (1991). Breakdown points of affine equivariant estimators of
multivariate location and covariance matrices. Ann. Statist., 19 , 229–248.

Muirhead, R., & Waternaux, C. (1980). Asymptotic distributions in canonical correlation analysis
and other multivariate procedures for nonnormal populations. Biometrika, 67 , 31–43.

Paindaveine, D. (2008). A canonical definition of shape. Statist. Probab. Lett., 78 , 2240–2247.

Randles, R. H. (2000). A simpler, affine-invariant, multivariate, distribution-free sign test. J. Amer.
Statist. Assoc., 95 , 1263–1268.

Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. In W. Grossmann,
G. Pflug, I. Vincze, & W. Wertz (Eds.), Mathematical Statistics and Applications (pp. 283–297).
Dordrecht: Reidel volume B.

Rousseeuw, P. J., & Van Driessen, K. (1999). A fast algorithm for the minimum covariance deter-
minant estimator. Technometrics , 41 , 212–223.

Silverman, B. (1986). Density estimation. London: Chapman and Hall.

Taskinen, S., Croux, C., Kankainen, A., Ollila, E., & Oja, H. (2006). Influence functions and
efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices.
J. Multivariate Anal., 97 , 359–384.
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Visuri, S., Ollila, E., Koivunen, V., Möttönen, J., & Oja, H. (2003). Affine equivariant multivariate
rank methods. J. Statist. Plann. Inference, 114 , 161–185. C.R. Rao 80th Birthday Felicitation
Volume.

33


	Introduction
	Elliptical densities and MCD
	The shape parameter
	Inference on shape based on the MCD
	MCD-estimator of shape
	MCD-test for shape

	Estimation of nuisance parameters
	Covariance-based procedures and AREs
	Monte-Carlo studies
	
	

