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Abstract

The minimum covariance determinant (MCD) estimator of scatter is one of the most famous robust
procedures for multivariate scatter. Despite the quite important research activity related to this
estimator, culminating in the recent thorough asymptotic study of Cator & Lopuhaé (2010, 2012),
no results have been obtained on the corresponding estimator of shape, which is the parameter of
interest in many multivariate problems (including principal component analysis, canonical correla-
tion analysis, testing for sphericity, etc.) In this paper, we therefore propose and study MCD-based
inference procedures for shape, that inherit the good robustness properties of the MCD. The main
emphasis is on asymptotic results, for point estimation (Bahadur representation and asymptotic
normality results) as well as for hypothesis testing (asymptotic distributions under the null and
under local alternatives). Influence functions of the MCD-estimators of shape are obtained as a
corollary. Monte-Carlo studies illustrate our asymptotic results and assess the robustness of the
proposed procedures.

Keywords: Bahadur representation results; elliptical distributions; MCD estimators; robustness;
shape parameters; tests of sphericity

1. Introduction

The minimum covariance determinant (MCD) estimators of location and scatter, that were
introduced in Rousseeuw (1985), are among the most famous estimators in robust statistics. As-
suming that k-variate observations Xy, ..., X,, are available, the MCD estimators of location 97 and
scatter 2% for any v € (0, 1], are defined as the sample average and covariance matrix computed
from “the”? subsample leading to a covariance matrix with smallest determinant over the collection
of all possible subsamples of size larger than or equal to [ny] (it was shown in Cator & Lopuhaé
(2012) that the smallest determinant is always obtained for a subsample of size [ny]).

Despite their relatively poor efficiency under multinormality, MCD estimators have been quite
successful. This is explained by their very good robustness properties: for appropriately chosen ~,
MCD estimators indeed show the highest breakdown points that can be achieved in the class of
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affine-equivariant estimators; see Lopuhad & Rousseeuw (1991) and Agullo et al. (2008). Another
advantadge over competing methods is that they can be computed very efficiently through the
so-called FAST-MCD algorithm from Rousseeuw & Van Driessen (1999) (that is available in the
R package MASS). This holds for relatively high dimensions, where Rousseeuw & Van Driessen
(1999) could treat a dataset involving up to n = 137,256 observations with k& = 27 variables.

Asymptotic results were slow to come. Within the framework of elliptical distributions, Butler
et al. (1993) established strong consistency of 0 and 27, as well as asymptotic normality (at
the standard root-n rate) of 07. Croux & Haesbroeck (1999) computed the influence function
of ZAIW, and, assuming the validity of the usual von Mises expansion linking estimators and their
influence functions, deduced the asymptotic covariance matrix of \/n 27 in the elliptical setup.
Recently, Cator & Lopuhad (2010, 2012) showed that this von Mises expansion indeed holds under
very broad distributional assumptions, which provides as a corollary the first proof of aymptotic
normality for ¥, (and validates the asymptotic covariance computation of Croux & Haesbroeck
(1999)); their results apply in particular in the context of elliptical densities.

It is argued in Cator & Lopuhad (2010, 2012) that, beyond their initial purpose to estimate
location and scatter, the MCD estimators, in particular ZAL,, also serve as robust plug-ins in other
multivariate statistical techniques. It is often the case, however, that these techniques do only
require to know or to estimate the scatter matrix up to a positive scalar factor. In other words,
factorizing the population scatter matrix ¥ into 02V, where 02 = (det £)"/* is a scale parameter
and V = ¥/(det £)'/* is a shape parameter, it is often so that the parameter of interest is V (with
dimension K := k(k + 1)/2 — 1), while o2 plays the role of a nuisance. In principal component
analysis, for instance, principal directions may be interchangeably computed from ¥ or from V,
and both scatter and shape matrices will lead to the same proportions of explained variance. Other
factorizations of scatter into scale x shape are possible, such as those based on ¢ = (trX)/k
or on 02 = ¥;; that lead to shape matrices with fixed trace k or upper-left entry equal to one,
respectively.

There have been many recent works developing specific inference procedures for shape; see,
among others, Hallin & Paindaveine (2006b), Hallin et al. (2006), Frahm (2009), and Taskinen
et al. (2010). For many robust scatter estimators, the corresponding estimators of shape have been
studied. In particular, a quite systematic investigation of the properties of robust estimators of
shape has been performed in Frahm (2009), where M-, S-; and R-estimators of shape are considered.

To the best of our knowledge, however, MCD-estimators of shape have not been considered,
which may seem surprising in view of (i) the importance of the MCD estimators of (location
and) scatter in robust statistics and (ii) the continued research related to the MCD. The goal of
this paper is therefore to provide, in the elliptical case, MCD estimators and tests for shape, that
inherit the good robustness properties of the MCD. Emphasis is put on asymptotic results (Bahadur
representation and asymptotic normality results, for point estimation, and asymptotic distribution
under the null and under local alternatives, for hypothesis testing). Influence functions of the
MCD-estimators of shape considered will also be obtained as a corollary. Rather than adopting
a particular definition of shape (e.g., the determinant-based or trace-based definitions above), we
throughout derive our results for a generic shape concept.

The outline of the paper is as follows. In Section 2, we first introduce the notation and assump-
tion we will need on elliptical densities, and then state, in a form that is adapted to our purposes,



the Cator & Lopuhad (2010) Bahadur representation result for 27. In Section 3, we introduce
and discuss the concept of shape based on a general “scale functional”. In Section 4, we develop
MCD-based inference procedures for shape; point estimation and hypothesis testing are considered
in Sections 4.1 and 4.2, respectively. In Section 5, we describe how to estimate consistently the
nuisance parameters involved in these procedures, which is required for their practical implementa-
tion. Section 6 derives the corresponding result for the procedures based on the empirical covariance
matrix, which allows to obtain asymptotic relative efficiencies of the MCD shape procedures with
respect to these covariance-based competitors. Monte-Carlo studies are conducted in Section 7 in
order to confirm our asymptotic results and to assess the robustness properties of the proposed
procedures. Finally, the Appendix collects technical proofs.

2. Elliptical densities and MCD

Let Si be the collection of k£ x k symmetric and positive definite matrices, and let F be the
collection of functions from R* to RT that satisfy the integrability condition p_1 s < oo, where
we wrote figf = fooo rtf(r)dr. The random k-vector X is said to be elliptically symmetric with
location 6 (€ R¥), scatter ¥ (€ Si), and radial density f € F (this will be denoted as X ~
Ell,(0,%, f)) if it is absolutely continuous with respect to the Lebesgue measure on RF, with

density
PRV R

X (Mkl’—jl:le)_l f(\/(x —0)yS (x — 9)>> W

where wy,_; = 27%/2/T'(k/2) is the (k — 1)-measure of the unit sphere S*~! in R¥. The Mahalanobis
distance dgx = \/(X —0)' L' (X —0) has then density © — fi(r) = (ue_1.p) " r* L f()I[r > 0],

where I denotes the indicator function. Unlike this distance, the unit vector Ugy = »Y 2(X —
0)/dpx is distribution-free, with a uniform distribution over S*~!, and is independent of dpx
(throughout, A'/2, for a symmetric and positive definite matrix A, will stand for the symmet-
ric and positive definite square root of A). To make ¥ and f identifiable without imposing any
moment assumption, we will assume that dg s has median one, i.e., that

/O fu(r)dr =1/2. (2)

If X has finite second-order moments (equivalently, if 41 f < 00), the covariance matrix of X is
proportional to ¥. Classical examples of elliptical distributions are the multinormal distributions,
with radial density f(r) = ¢(r) := exp(—axr?/2), the Student distributions, with radial densities
(for v > 0 degrees of freedom) f(r) = fi(r) := (1 + ax,r?/v)~**+)/2 and the power-exponential
distributions, with radial densities of the form f(r) = fr(r) := exp(—=bg,7*"), n > 0 (the positive
constants a, ax,, and by, are such that (2) is fulfilled).

For the sake of convenience, we are listing here the assumptions needed in the sequel.

AssuMPTION (A). The observations X;, i = 1,...,n are i.i.d. with a common distribution
Ell,(0,%, f) involving a monotone decreasing f.



AssumpPTION (B). The observations X;, i« = 1,...,n are i.i.d. with a common distribution
Ell,(,%, f) admitting finite fourth-order moments (i.e., involving a radial density f such that
[ik43.f < 00).

ASSUMPTION (A’) (resp., (B’)). Reinforcement of Assumption (A) (
ing that f is absolutely continous (with a.e. derivative f’; say) and fo
we wrote pr = —f'/f.

We also report here the various notations we will use in relation with elliptical distribu-
tions. Let 7, = ry,(f) be the y-quantile of dgs, that satisfies [|” fi(r)dr = v (note that
our parametrization of elliptical densities implies that ry/2(f) = 1 for any k and f). Writing
H%z = dy5l[dgz < 1], define then

(B)), further impos-

p-
©3(r) fe(r) dr < oo, where

es
2
P

r (2)
¢ ¢ T 0F D
DY =D (f) =E[I 5] = / r () dr, = g (f) = ki/Y ,
0

and
Ty s k Dg) — 37 T
By = B (f) = m/(] riop(r) fi(r) dr = ( +2)k(k+2)”fk( ), (3)

where the last equality follows by integrating by parts. Note that, under Assumption (A), 3, is
positive and increases monotonically in ~. X

Under ellipticity, the MCD estimator of scatter 3, is not consistent for 3, but rather for oz%Z‘;
see Proposition 2.1 below. Our derivations will rely on the following Bahadur representation result
for 3, which follows directly from Corollary 4.1 of Cator & Lopuhad (2010) by using the affine-
equivariance of ¥ and by rearranging the terms there (note that the radial function h in Cator &
Lopuhaé (2010) is linked to the f introduced above through hA(r?) = (ur—1 jwr—1)"*f(r)).

Proposition 2.1. Under Assumption (A), we have that

N 9 1
Vi (8, - al%) = zmzng Jos(UiosUlps — 711 )512
Lo (4)
— 1?5k 7)E
+ ky\/1 ;( 17,0, Ty ) k”)/\/_z 7,08 +op(1),

as n — 00, where I denotes the k-dimensional identity matrix.

As we will see, this formulation of the Bahadur result from Cator & Lopuhaa (2010) is suitable
for our purposes. It will be convenient that each of the first three terms in the right-hand side
of (4) has zero mean and bounded variance, hence is bounded in probability. This will indeed
allow to apply the continuous mapping theorem in order to derive the asymptotic behavior of the
corresponding shape estimators.



3. The shape parameter

As mentioned in the Introduction, many problems in multivariate analysis (principal component
analysis, canonical correlation analysis, testing for sphericity, etc.) require to know or estimate the
scatter ¥ up to a positive scalar factor only. In other words, the parameter of interest, in such
problems, is the corresponding S-shape matrix

Vg = 2/5(Z)

(while the scale parameter oz := S(X) plays the role of a nuisance), where the scale func-
tional S : S, — Ry (i) is homogeneous (for all A > 0, S(AX) = \S(E)), (ii) is differentiable,
with 8‘;—*?1(2) # 0 for all ¥ € S, and (iii) satisfies S(I)) = 1; see Paindaveine (2008) for comments

on the requirements (i)-(iii). The collection of k x k S-shape matrices will be denoted by V5.
Classical scale functionals include

(a) S(¥) = X1 (Randles (2000) and Hettmansperger & Randles (2002)),

(b) S(X) = (trX)/k (Tyler (1987), Diimbgen (1998),Visuri et al. (2003), and Taskinen et al.
(2010)),

(c) S(X) = |B|/* (Tatsuoka & Tyler (2000), Diimbgen & Tyler (2005), and Taskinen et al.
(2006)), and

(d) S(X) =k/(trZ7") (Frahm (2009)).

The scale functional in (¢) was shown to be “canonical” in Paindaveine (2008), in the sense that it
is the only scale functional that provides parameter-orthogonality between shape Vg and scale 0%
(parameter orthogonality here refers to block-diagonality of the corresponding information ma-
trix; see, e.g., Cox & Reid (1987), Section 2.1). A directly related result is that this particular
scale functional is the only one for which asymptotically normal shape and scale estimators are
asymptotically independent; see Frahm (2009).

The following notation will be used throughout. For any k x k matrix A, let vec A denote
the k2-dimensional vector resulting from stacking the columns of A on top of each other. Write
vech A for the (K + 1)-vector (recall that K = k(k + 1)/2 — 1) obtained by stacking the upper-
triangular elements of A; vech A will denote the K-vector obtained by depriving vech A of its first
component. Write A®? for the Kronecker product A ® A. Denoting by e, the ¢th vector of the
canonical basis of R*, let K}, := Zﬁjzl(eie;) ® (e;e}) be the k* x k* commutation matriz, and put
Ji = Zf,j:l(eie;) ® (ese}) = (vecIy)(vecI;)'. Finally, define Ny as the K x k* matrix such that
Ni(vecA) = (VeOCh A) for any k x k matrix A.

The algebra of S-shape matrices then requires introducing the following quantities. For any X €
S and any S as above, let DY := (C5+(C%)’)/2, where C% := C%, is the upper-triangular kx k ma-
trix such that vech CE = V.S (vech X); here, V.S(vech ¥) stands for the gradient grad,,, S (vech ).
Define M := M5, as the K x k? matrix such that (M%)’ (vechv) = vecv for any symmetric k x k
matrix v satisfying (V.S(vech X))’ (vech v) = 0 (equivalently, (vec DE)’(vec v) = 0, or tr [DEv] = 0).
Finally, for any S and V € V| define &Y = tr[(DYV)?]. For S(T) = Xy, S(X) = (trX)/k,
S(8) = [E|YF, and S(E) = k/(trE7"), one has D = eje}, D¥ = 1I;, D¥ = 1[S[Y/*T7" and
DI =kX7?/(trE7")? — hence &Y =1, &Y = Ltr[V?], &Y = L, and &Y = Ltr[V 2, respectively.
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4. Inference on shape based on the MCD

In this section, we provide the main results of the paper. First, we determine the asymptotic
behavior of the MCD estimator of S-shape (Section 4.1). Then we exploit this result to propose and
study a test for the null hypothesis that the S-shape is equal to a given possible value (Section 4.2).

4.1. MCD-estimator of shape

Denoting again the MCD, estimator of scatter as 2% the corresponding MCD estimator for
S-shape is naturally defined as Vg, :=X,/S(2,). The affine-equivariance of ¥, implies that, for
any k x k invertible matrix A and any k-vector b,

AV (Xy, ..., X, )A
S(AVs,(Xy,...,X,)A")

Vs, (AX; +b,...,AX, +b) =

which is the natural affine-equivariance property for S-shape matrices.

We are primarily interested in the asymptotic properties of \A/*Sﬁ. These can be derived from
Proposition 2.1 by applying the Delta method. In order to state a Bahadur representation and
asymptotic normality result for \Afgm we let

k(k + 2)2

5
o )

Ck,,y =

and
Ve =L + Ki) (V) — 2(VE?) (vec DY) (vec Vi)' ©)
— 2(vec Vg)(vee DY®) (VE?) +2 Y5 (vec Vg)(vee V).
We then have the following result (see Appendix A for the proof).
Theorem 4.1. Let Assumption (A) hold. Then (i) we have that

1
B/

Vnvee(Vs, —Vg) = [Ikg — (vec Vg)(vec D;’S)’}

12 — 1
X (Vgﬂ) / Zﬂgﬂz vec (Ui;&VsUg;e,vs - E1k> +op(1)

i=1

as n — oo ; hence, (ii) v/nvec(Vg, — V) is asymptotically normal with mean zero and covariance
: -1 Vs

matrix ¢, Qg .

Building confidence zones for \A/'S,7 from Theorem 4.1 requires to estimate consistently the
quantity ¢, (the continuous mapping theorem indeed trivially implies that Q,:/S may simply be

consistently estimated by QZS”). Estimation of ¢, will be discussed in Section 5 below.



If Assumption (B) also holds, that is, if the elliptical distribution at hand has finite fourth-order
(hence also third-order) moments, then fooo r3 fi(r) dr is finite. This implies that Tf’/ fr(ry) must go
to zero as v — 1, which yields that, still as v — 1,

qh = (- PRy A
(k+2D%/ " (k+2)(DY)?
3 fulry) 2 kD@
= (1-—2") (14k) o l4+rk=——"")
( (k+ 2>Dg2>> (14 5) (k+2)(D@)?

where we let D) = D%e) = [ fu(r) dr. The quantity x = k;(f) is the usual kurtosis coefficient
for k-dimensional elliptical distributions with radial density f; see, e.g., Muirhead & Waternaux
(1980) or Tyler (1982). The coefficient x, may be interpreted as a truncated elliptical kurtosis co-
efficient (where truncation is governed by the population MCD,, ellipsoid). Writing the asymptotic
covariance matrix in terms of s, also clarifies the link with the corresponding result for the usual
empirical covariance matrix; see Theorem 6.1 below.

Theorem 4.1 straightforwardly provides the influence function of the MCD estimator \Afgﬁ.

Theorem 4.2. The influence function of \A/'Sm under location 0, scale 0%, shape Vg, and radial
density f, is given by

. 1
x — IF(x, V50,05, Vs, f) = — dj v I[do vy < or4]

2
B0

VY (wovethy, — [uhy VDYV ugy L) VY,
o YAt YA 1/2 Y20,
where dg v, == ((x—0)Vg (x—6))"/? and ugv, .= Vs ' (x—8)/dov,.

As expected, the support of the influence function of \A/S,7 is the hyper-ellipsoid {x € R* :
dovs < osry}, hence coincides with the support of the influence function of 27; see Croux &
Haesbroeck (1999). Note also that, in this support, the influence function of \7577 takes a value
that depends on f (hence, on the distribution of dgx) and on «y only through the scalar factor 1/,
whereas the influence function of 27 depends on f and « in a much more complicated way (implying,
e.g., that the influence functions of ZA)AY at elliptical t-distributions and at the multinormal are not
proportional to each other). Of course, the smaller «y, the smaller the support of \A/'Sﬁ’s influence
function, but also the larger the influence function itself within this support (recall that 3, is
monotonically increasing in 7).

As an illustration, Figure 1 plots, for S(X) = (detX)"/*, the influence functions of (V. )as
(first column) and (V)12 (second column) at the bivariate standard normal distribution; first
row (resp., second row) corresponds to v = 0.5 (resp., v = 0.75). Note that the influence function
of (\7577)12 does not depend on the scale functional S. In the spherical setup considered, the scale
functionals S(Z) = (det£)/*, S(X) = (trX)/k, and S(Z) = k/(tr ") lead to the same influence
function for (\7577)22, and the influence function of (\A/—S,V)zg for S(X) = Xy; is equal to twice the
common influence function obtained for the three other scale functionals.
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Figure 1: Plots of the influence functions, for the scale functional S(X) = (det X)
and (\Afsﬁ)lg (second column) at the bivariate standard normal distribution. The first row (resp., second row)

corresponds to v = 0.5 (resp., v = 0.75).



4.2. MCD-test for shape

In this section, we construct a Wald-type test, based on the MCD shape estimator \A/'S,7 above
for the problem
{ Ho: Vs =V )
Hi: Vs # VOS:

where V% € V7 is fixed. The important case for which V% = I corresponds to testing the null
of sphericity. A Wald test cannot be directly based on Theorem 4.1(ii) because the asymptotic
covariance matrix of \/n Vec(\Af&7 — Vg) is not invertible. This non-invertibility is explained by
the fact that only K of the k? entries of vec(Vg) are functionally independent (which follows from
symmetry of Vg and the normalization constraint S(Vg) = 1). )

To solve this issue, one can rather base a Wald test on the random K-vector \/n Ve(:h(\A/'g,V —Vs),
which, in view of Theorem 4.1(ii), is asymptotically normal with mean zero and covariance matrix
c,;}y NkQZ]s Nj.. As we learn from Lemma 4.1 below, this asymptotic covariance matrix is invertible,
so that a MCD Wald test for (7) may be based on

o o N 0 _ o ~
Qs = néy [vech(V, — V)] (N.Qy *NY) ™' vech(V, — V), (8)

where ¢, is an arbitrary consistent estimator of ¢y 5; see Section 5 for possible estimators.
We actually propose rather using the simpler test statistic

Qs = "% (w[(V8) V5] - e[V V). ()

that, under the null (hence also under sequences of contiguous alternatives), is asymptotically
equivalent to 6025,7 in probability; see Theorem 4.3(i). Denoting by j\j, j=1,...,k the eigenvalues
of (V)~1?V_ (V$)~1/2 note that Qg is proportional to Var; = %Zle{j\j - (3 Z?Zl A}, s0
that the larger Var;, the more (V¢)~1/2Vg_(V2)~1/2 is far from being proportional to I, and the
more severe the deviation from the null. The corresponding test, ¢g, say, then rejects the null at
asymptotic level a whenever Qs > X% ,_,. Where x%,_, stands for the upper a-quantile of the x%
distribution. Theorem 4.3 below gives the asymptotic properties of this test; its proof requires the
following preliminary result (see Appendix A for the proofs).

Lemma 4.1. The matrix NkQ;{SNﬁ€ has full rank K, and its inverse is given by (NkQXSN;)_l =
—1/2 —1/2
I (VS T K 20 (VE) Y’

Theorem 4.3. Let Assumption (A) hold. Then, (i) under Ho : Vg = V¢, Qs = 6025,7 + op(1),
as n — oo; (ii) under Hy : Vg = V3§, Qg is asymptotically x%; (iii) under sequences of local

0
alternatives ’HYL) : V(S") = VY% +n12v with tr[Dgs v] =0, Qs is asymptotically non-central x%,
with non-centrality parameter

Ck, _ 1 _
% (V)] - vV,
provided, however, that Assumption (A) is reinforced into (A’).
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The condition tr[DggV] — 0 in the local alternatives H\™ : VI’ = V4 4+ n=/2y above ensures
that, at the first order as n — oo, S (Vfgn)) = 1, hence that V(S") remains an S-shape matrix;
see (4.3) in Hallin & Paindaveine (2006a) for details. For “linear” scale functionals, this can
easily be understood : if S normalizes Vg to have trace k (resp., upper-left entry equal to one),
then v is constrained to have trace zero (resp., to have upper-left entry equal to zero), so that the
perturbed value V(Sn) = V% +n~'/2y indeed remains an S-shape matrix (for n large enough). The
intuition is similar for “non-linear” scale functionals (such as the determinant-based one), where
the constraint S (Vfgn)) = 1, however, can only be achieved at the first order.

The null hypothesis Hy : Vs = V3 is not invariant under the group of affine transformations,
but it is invariant under the subgroup of affine transformations of the form

(Xy1,....X,) = (VHY2O(VYH VX, +b,..., (VH2O(VE) "X, + b), (10)

where O is an arbitrary orthogonal k x k matrix and b is an arbitrary k-vector. Note that the test
statistic Qg in (9) is invariant under this group of transformations.

5. Estimation of nuisance parameters

As already mentioned, implementing the test ¢g, for Hy : Vg = VY requires to estimate
consistently (at least under the null) the quantity ¢y in (5). We now present two such estimators,
establish their consistency, and compare their finite-sample performances through simulations.

To describe the first estimator, consider the mapping r fk shape(T) = 0g fk(T/Us) Note
that this mapping — unlike fk — does not depend on g, which follows from the fact that fk shape
(resp., fk) is the pdf of dgv, (resp., dgx). Similarly, s, := ogr, — unlike r, itself — does not
depend on og, since s, (resp., 1) is the order-y quantile of dg v (resp., dgx). Consequently, the
quantity ¢, that, by using the identity

DO = Elds glldgs < 1)) = 05 Elds v, Ildo v, < 5] (1)

rewrites

k(k+2)82  ((k+2)DP — 13 fi(r))?

T pd k(k +2)D{Y 12)
_ ((k + 2>E[d(%,vs]1[d0 Vs < Sv]] - 53J?k;shape(57))2 (13)

k(k + 2)Eldg v Ildovs < s5]]

does not depend on g, hence may be estimated without estimating this scale parameter. Since the
MCD,-estimators of location and S-shape 0 and VS7 are consistent for @ and Vg, respectively,
(13) leads to the estimator

((k+ 2)1 Z d1207 Vs, H[dz‘@y,\?sw < §w] - §§,fk;shape(§7))2
k(k + 2) ZZ 1 107 Vs H[di;ém\?s,y < 5,]

éka = ? (14)
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where 5., quite naturally, is taken as the sample y-quantile of the di,é,7 Ve ’s, and where
) ) Y

fk bhape = h Z (w) (15)

is a kernel density estimator for fk;shape(s). We then have the following consistency result (see Ap-
pendix B for a proof).

Theorem 5.1. Let Assumption (A) hold. Assume further that (i) the bandwidth sequence (k)
satisfies h,, — 0 and nh} — oo asn — oo, and that (ii) the kernel function K has a compact support
and is differentiable, and that there exists C' > 0 such that the derivative of K satisfies |[K'(s)| < C
for all s. Then ¢, in (14) converges to ¢, in probability as n — co.

This result shows in particular that ¢, is a consistent estimator of ¢; , when the usual optimal
bandwidth h,, oc n~? is used. Note also that consistency holds not only under the null H, : Vg =
VY but under an arbitrary value of Vg. Consequently, this estimator may be used both in the
tests of Section 4.2 and to build confidence zones for Vg, based on the asymptotic normality result
for \7577 in Theorem 4.1. When performing hypothesis testing, though, it is of course preferable to
replace ¢, with its null counterpart — égﬁ, say — obtained by replacing the di;éy,\?sﬁ,S in (14)-(15)
above with their null versions d, LV 1 = 1,...,n; this estimator égﬁ involves in particular the
sample y-quantile s,y of the dz‘;ow,vg s. The proof of Theorem 5.1 still applies and shows that the

resulting estimator is weakly consistent under the null Ho: Vg = VY.

We then present a second estimator of ¢, that was suggested to us by one of the Referees.
This alternative estimator has the advantage to avoid density estimation. However, it consistently
estimates ¢, under the null Hy : Vg = VOS only, hence cannot be used to obtain confidence
zones for Vg. The construction of this estimator exploits Theorem 4.1, that indeed suggests that,
under Hy, the quantity o2/, can be consistently estimated by

1 - 0

(n) _ 0V)/ 0 Vs /

p" = - (vec(Vsy — V) [Ikz — (vec Vg)(vecDg )]
n|[vec(Vs, — Vg)|?

o2 n ) " 1
(V) Xl vy < Svec(Usa vy Ui, vy = 1)
=1

where 0,4 = ((B,4)1, - . ., (0,4)1) and 89, are discretized versions of 0, =((0,)1,...,(0,)) and 89.
The discretized estimators are obtained as

[av/n|@:)] o . Javnldl
——— {=1,...0k, and §,:=——Fr—,

av/n 7 ay/n
for some arbitrary constant a > 0. These discretized estimators are still root-n consistent, but

now are also locally and asymptotically discrete; see, e.g., Kreiss (1987) or Ilmonen & Paindaveine
(2011), and the comments therein. Since a can be chosen arbitrarily large, such discretization has

(8,4)¢ = sign((0,)e)

11



no impact in real data applications, where n is fixed, so that one may in practice simply use the
original estimators ., and 59.
Under the null, it is then natural to estimate

Ck(E+2)82 k(k+2)(028,)?
Cky = D§4) o E[d H[dg o < 37]]

6,vY

(see (11)-(12)) by
o k(k +2)(p'™)?

Gy = )
LS S ZoW,VO]I[d“’w vo < 801

Consistency is established in the following result (see Appendix B for a proof, which requires such
discretization).

(16)

Theorem 5.2. Let Assumption (A’) hold. Then, under the null #, : = Vg, @, in (16)
converges to ¢y in probability as n — oo.

We conducted the following numerical experiment in order to compare the finite-sample perfor-
mances of the universally consistent density-based estimator ¢, with those of its null version 62,7,
and of the null density-free estimator (‘:,277. We generated M = 5,000 independent random sam-
ples of sizes n = 50, 400, and 10,000 from the bivariate standard normal distribution ( = 0 and
Vs =1). In each of these samples, we evaluated, for v = 0.5, 0.6, 0.7, 0.8, 0.9, the estimators ¢ -,
¢, and &, where the last two are based on the true value Vg = I;. We also computed the
universally consistent estimator ¢ of the corresponding covariance-based quantity ¢, along with
the null version ¢} of this estimator (see Section 6).

Boxplots of the resulting estimates are reported in Figure 2. The results indicate that the
universally consistent estimators ¢, , are severely biased for small y-values (unless, of course, the
sample size is very large) but behave well for larger y-values. As expected, the corresponding null
estimators 62’7, that are based on the true underlying shape V%, are more accurate, and show a much
smaller bias. Finally, the density-based estimators égﬂ strongly dominate their competitors 5,277,

particularly so for large ~-values.

6. Covariance-based procedures and AREs

The goal of this section is to derive the asymptotic relative efficiencies (AREs) of the MCD,,
procedures of Section 4 with respect to their competitors based on the empirical covariance ma-
trix ¥ := 13" (X; — X)(X; — X)'. Although ¥ = X, for v = 1, the asymptotic properties of
these covariance-based procedures cannot be obtained by taking v = 1 in Theorems 4.1 and 4.3,
since these results were derived from Proposition 2.1, that is not valid for v = 1 (if f(r) > 0 for
all 7, then we indeed have r = 00).

A Bahadur representation result for fl, however, can be obtained quite trivially. Of course,
unlike for the MCD,, scatter estimator, finite fourth-order moments here are needed.

12
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Figure 2: Boxplots, computed from 5,000 independent bivariate standard normal samples of size n = 50, 400
and 10,000, of (i) the estimators ¢ in (14), (ii) their version & _ based on the true value of Vg, and of (iii) the
estimators 6277 in (16), for v = 0.5, 0.6, 0.7, 0.8, 0.9. The lower right panel reports the covariance-based estimators ¢,
and ¢) (see Section 6). The corresponding population quantities (¢ or, in the lower right panel, ¢) are throughout
reported in orange.
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Proposition 6.1. Let Assumption (B) hold. Then we have that

. D® 1/2 1
V/nvec <2 -~ 2) 2®2 / Z dzozvec< i05Ulgs — E1k>

1
+m ; (dZgx — D) (vecE) + op(1),

as n — 0o, where D®) = D§2) = I r2 fi(r) dr

Proceeding along the exact same lines as in the proof of Theorem 4.1, we then obtain the
asymptotic behavior of the covariance-based estimator of shape Vg = %/5(%).

Theorem 6.1. Let Assumption (B) hold. Then (i) we have that

k

\/EVGC(VS — VS) ZD(T\/E

[Ikz — (vec Vg)(vec Dgs)’}

1
V®2 1/2 Z dwz Vec( 197VU2;07V — Elk) + op(1)

as n — oo; hence, (ii) v/nvec(Vs — Vi) is asymptotically normal with mean zero and covariance
matrix ¢, 'Qy ¥, where ¢, = 1/(1 + &) involves the kurtosis coefficient defined in Page 7.

It directly follows that the ARE, under radial density f, of the MCD estimator of shape \7577
with respect to its covariance-based competitor Vg is given by

AREf [Vsﬂ/v,g] = ck,y/ck. (17)

Such AREs are unambiguously defined since the asymptotic covariance matrices in Theorems 4.1
and 6.1 are of the form A\;Q, for a common matrix Q, hence are proportional to each other. In
contrast, AREs for (affine-equivariant) estimators of scatter would not be as easily defined, as such
estimators have asymptotic covariance matrices (under radial density f) of the form Ay ;Q1+ X2, Qo
see, e.g., Tyler (1982, 1983). Some plots of the AREs in (17) will be provided below.

Turning to hypothesis testing, the exact similarity between Theorems 4.1 and 6.1 allows to
readily deduce the form and asymptotic properties of the covariance-based tests for the problem (7).
More precisely, the covariance-based test, ¢g say, rejects the null at asymptotic level a whenever

ned N 1 .
Qs = (| (VHVs?| = 262 |(V) V] ) > X
with ¢) := 1/(1 + £°), where /° := [k(n o d4X VO)]/[(k: + 2)(%2 dzxvo) ] — 1 consistently
estimates, under the null, the kurtosis coefficient x. Of course, consistent estlmatlon, for an arbi-
trary shape value, is achieved by considering ¢, := 1/(1+ &), where & is obtained by substituting X
for V% in #°. Finite-sample performances of these estimators of ¢, were illustrated in the lower
right panel of Figure 2.
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This test coincides with the modified version defined in Hallin & Paindaveine (2006b) of the
Gaussian test from John (1972). The modification, that consists in adding the factor ¢}, extends the
validity of John’s test to any elliptical distribution with finite fourth-order moments (John’s test,
originally, is only valid under elliptical distributions having the same kurtosis as in the multinormal
case — 1.e., ki(f) = kr(¢) = 0). The following result summarizes the asymptotic properties of this
test.

Theorem 6.2. Let Assumption (B) hold. Then, (i) under Hy : Vs = V2, Qg is asymptotically x%;
0

(i) under sequences of local alternatives H\" : Vi = V¢ 4 n=1/2y with tr[Dy°v] = 0, Qg is

asymptotically non-central y2, with non-centrality parameter

Cp _ 1 _
% (slvervr) - putoverv ).
provided, however, that Assumption (B) is reinforced into (B’).

Asymptotic relative efficiencies, as usual, are obtained as the ratios of the non-centrality param-
eters in the asymptotic non-null distributions of the corresponding tests. Therefore, the ARE, under
radial density f, of the MCD, test for shape ¢g ., with respect to its covariance-based competitor ¢g
is given by

AREf[¢s~/bs] = cry/ck, (18)

which coincides with the ARE obtained in (17) for point estimation. Both for hypothesis testing
and point estimation, these AREs require that the underlying elliptical distribution has finite
fourth-order moments (uy43; < 00). Note, however, that the AREs may be considered infinite
when fourth-order moments themselves are infinite, since the covariance-based competitors then
collapse, while the MCD,, procedures remain valid (in the sense that \A/‘SN remains root-n consistent
and that ¢g ., still meets the asymptotic a-level constraint).

Figure 3 provides several plots (as functions of v or of the number of degrees of freedom v
of the underlying standard elliptical ¢, distribution) of the AREs in (17)-(18), under k-variate
standard normal and ¢, densities. It is seen that the AREs decrease with the tail weight v. At the
multinormal, as expected, MCD-based shape procedures are poorly efficient, but they dominate
their covariance-based competitors under heavy tails, particularly so for large dimensions k.

7. Monte-Carlo studies

In this section, we illustrate the finite-sample behaviors of the MCD,, inference procedures for
shape from Section 4 and of their covariance-based competitors from Section 6. The goal is not
so much to show how the former compare with the latter, but rather to confirm our asymptotic
results and to learn how well these results approximate the finite-sample properties of the procedures
considered. A robustness study will also be conducted.

We start with hypothesis testing, where we focused on the problem of testing for sphericity,
i.e., on the null hypothesis Hy : Vg = I,. Throughout, we adopted the determinant-based scale
functional S(X) = (det £)/*¥. We generated collections of M = 2, 000 independent random samples

15



k=2 v=0.75

o _| ]
™ o
© — y=0.95 2 — k=10
—— v=0.90 —— k=6
o | --- y=0.75 o _| --- k=4
NN y=0.50 R I N k=2
n
w v o)
€ < 7 - 7
<
o | " - e y
s N \\\ ~ \
\ S~ B - T ——
0 | N T —— 0 _| T —————T—
o Te~el o e T T T T
- e sl
o c
I I I I I I I I I I
4 6 8 10 12 4 6 8 10 12
v v
Multinormal ts
(2]
|
o
<

Figure 3: Plots of asymptotic relative efficiencies (AREs) of MCD.,, shape estimators and tests with respect to their
covariance-based competitors, under k-variate standard normal and ¢, densities.
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of sizes n = 50, 400, and 2, 000, from a bivariate normal distribution with mean 8 = 0, scale o5 = 1,
and shape

; ﬂ(l 0.5)
VO (i) — 2 em Los -1

(ol (s 21)])

with & = 1.2. Figure 4 plots, for each Sam}}JIe size n above, a few equidensity contours of the
bivariate normal distribution with shape Vs (6;1.2), which corresponds to the most extreme al-
ternative considered. We also generated collections of M = 2,000 independent random samples
with the same sample sizes from a bivariate t5 distribution with mean zero, S-scale one, and shape
matrices Vfgn) (m; &), still for m = 0,1,2,...,6, but here with £ = 1; these heterogeneous {-values
were chosen so that the most severe alternatives — associated with the shape matrices Vgn)(6; €)
— lead to roughly similar rejection frequencies in the multinormal and ¢5 cases.

m=0,1,2,...,6, (19)

n=50 n=400 n=2,000

0.02 ———

Figure 4: Some equidensity contours of the bivariate normal distribution with mean 6 = 0, scale og = 1, and

shape Vén)(6; 1.2) (see (19)), for n = 50, 400, and 2, 000. These correspond to the most severe alternatives considered
in the hypothesis testing simulation.

For each such sample, we performed, at asymptotic level o = 5%, the MCD,, tests of spheric-
ity ¢g., for v = 0.5, 0.75, 0.9 and 0.95, their covariance-based competitor ¢g from Section 6, as
well as the sign test and van der Waerden signed-rank test from Hallin & Paindaveine (2006a).
Figure 5 plots the corresponding rejection frequencies as functions of m. This figure also reports
the corresponding asymptotic powers, that are readily obtained from Theorems 4.3(iii) and 6.2(ii)
(and from Proposition 4.1 in Hallin & Paindaveine (2006a)). MCD,, tests were based on the null es-
timators c,C from Section 5. The “covMeced” function from the “Robusbase R-package was used to
select the best subsample among nsamp=>5000 subsamples. The MCD,, estimator of shape was then
obtained as the shape matrix associated with the covariance matrix of this subsample. The kernel
density estimation involved in the testing procedure used a Gaussian kernel and the automatic
bandwidth selection in Equation (3.31) from Silverman (1986), as implemented in the “density()”
R function.
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This simulation exercise clearly confirms our asymptotic results in Theorems 4.3 and 6.2 as the
empirical rejection frequencies for n = 2, 000 very well match the corresponding asymptotic powers;
all findings associated with the AREs derived in Section 6 therefore show at this large sample size
(in particular, MCD, tests, for large y-values, dominate the covariance-based one under t5). For
small sample size (n = 50), the lowest y-value considered (y = 0.5) leads to slightly liberal tests,
which is due to the relatively poor estimation (see Figure 2) of ¢ by égﬁ. Simulations based on
other alternatives led to extremely similar conclusions.

18



‘S[Tejop I0] ) UOTIJO9G 0} I9JOI OA\ 'SOIISUSP 97 PUR [RULIOU 9)RIIRAI] IOpUN ‘(RY(()Z) PUIOARPUTR] 2§ UI[[R]] WIOIJ }S9} URI-POUSIS UOPISRAN
Iop ueA pue 159y uSis oY) ‘S¢ 109139dUI0D PISE|-IOURLIRAOD IO} ‘GE'() PUR ‘6'0 ‘GL°0 ‘G'0 = L 10f ‘“'S¢ Ayoueyds jo s3s0) “@DIN o3 jo (wumniod
psounyySu) stamod orjoydurdse pue (A[earpoadsal ‘000 ‘g PUR 00F ‘0G = U I0] ‘SUWN[OD PIM) PUR ‘PUODLS ‘ISIf) seduanbalj uoroaley :¢ amsiqg

w w w w
0z sL oL S 0 9 S 4 € z L 0 9 S v € z L 0 9 S I4 € z L 0
1 1 1 1 1
o o
I o [ o
o o
o Y
P 2
L o3 Lo 8 o
V.m Vw. %
2 2 2
[3) Q
° 8 53
o O o <
F o = fo 8§ &
@ o
7] o3
2]
° °
M o N
o o
o o
ro ro
o o
S I~ N
o
5 & w
< o) N
rg 3 r2 5 g
2 S ©
S o
5 3 ®
o o 3
l o ¢ Lo§ 8
o = 9% 3
g g B
7] o =
"
o o
) N =
o o

co=U 000°Z=u 00p=u 0G=u

19



We turn to simulations for point estimation. Parallel as above, we generated M = 2,000
independent random samples, of sizes n = 400 and n = 10, 000, from the bivariate (without loss of
generality, standard) normal and ¢5 distributions. For each sample, we evaluated the MCD, shape
estimators \A/'Sm still for v = 0.5, 0.75, 0.9 and 0.95, and their covariance-based competitor VS. For
the sake of comparison, we also computed the corresponding reweighted MCD,, estimators, obtained
through the “covMcd” R function. For each shape estimators V = (‘zj), Figure 6 provides the
boxplots of the corresponding estimation errors for fixed diagonal and off-diagonal entries — more
precisely, the boxplots of (‘711 — 1) and V12 are reported there. The results confirm that, under
multinormality, the covariance-based estimators dominate the MCD, estimators, that become less
and less accurate as v decreases. Under heavy tails, however, MCD.,, estimators, for large values of
7, are slightly more efficient than the covariance-based one, which is in line with the AREs in the
lower-right panel of Figure 3. These finite-sample performances therefore thoroughly confirm our
asymptotic (efficiency) results. Reweighted estimators dominate the original MCD estimators, but
the difference is negligible for large ~.

Finally, we performed a simulation study in order to assess the robustness of MCD-based infer-
ence procedures for shape. As previously, we generated M = 2,000 independent random samples
of size n = 400 from the bivariate standard normal and ¢5 distributions. Contamination was then
introduced by multiplying by four the first component of ¥)n observations in each sample; this was
done for ¢ = 0,0.05,0.10,...,0.50. Figure 7 shows the coverage frequencies of the asymptotic
95%-confidence intervals for (Vg)y; and for (Vg)is based on Vi, still for v = 0.5,0.75, 0.9, 0.95.
These confidence intervals were obtained from Theorem 4.1, where the relevant asymptotic variance
was estimated by plugging \A/'gV and by using the estimator ¢, introduced in Section 5. As above,
the raw MCD, was computed through the “covMcd” R function, with nsamp= 5,000 subsam-
ples. For (Vg)i1, robustness, as expected, increases as y decreases. For v = 0.50, high robustness is
achieved despite the density-based estimator ¢, used in the procedure. Results are much more sta-
ble for (V)12 than for (Vg)i1, which indicates that the increasingly poorer performances obtained
for (Vg)11 as contamination increases, should not be attributed to the non-robustness of ¢ ..
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Appendix A.
In this appendix, we prove Theorems 4.1 and 4.3, Lemma 4.1, and Proposition 6.1.

PROOF OF THEOREM 4.1. (i) The Delta method yields that, as n — oo,

1
S(a2X)

5

Vnvee(Vg, — Vg) = [Ik2 — (vec Vg)(vee DYS) | v/n vee(E — a2%) + op(1).

Since tr[Dy*Vg] = S(Vg) = 1 (see Lemma 4.2(ii) in Paindaveine (2008)), this implies that
Iz — (vec Vg)(vec D;’S)’] (vec V) = (vec Vg) — tr[Dy*Vg](vec Vg) = 0. (A.1)

The result then follows from the Bahadur representation result in Proposition 2.1, by using (A.1)
and the identity vec (ABC) = (C' ® A) (vec B).
(ii) Since
1

1
Val'o’z’f |:VeC(Ui§0,VSU;;0,V5 — E1k>:| = m(l,@ + Kk + Jk) — Jk = Ak,

we readily obtain that y/n VGC(VSW — V) is asymptotically normal with mean zero and covariance
matrix

DY
5

By using (A.1), Kix(A ® B) = (A ® B)K}, and Kj(vec A) = vec (A’), this covariance matrix
rewrites

1/2 1/2

[T — (vee Vo) (vee DY) | (V) 2 A (VE?) " [T — (vee Vi) (vec D;’S)’]/.

DY
k(k + 2)32

1/2

[Ikz — (vec Vg)(vec D}’S)’] (Vf‘§’2)1/2(1k2 + Kk)<V?2) [IkQ — (vec Vg)(vec D;’S)/T

!/

= c,;}y [Ikz — (vec Vg)(vec Dgs)’} (V) (L2 + Ky) [Ik2 — (vec Vg)(vec Dgs)’}
=) [Ikz — (vec Vg)(vec Dgs)’} [(Ikz +Ky)(VE?) —2(VE?) (vec DY ¥) (vec VS)’]

Performing this last product and using (vec A)’'(vec B) = tr[A’B] establishes the result. O

PROOF OF LEMMA 4.1. The result follows by noting that Q5 = QZ;EVS, where QS is
bt k

defined in (5.3) from Hallin & Paindaveine (2006a), and by applying Lemma 5.2 from the same
paper. 0

PROOF OF THEOREM 4.3. (i) Using first Lemma 4.1, then the identities vec (ABC) = (C' ®
A) (vecB) and Kg(vecA) = vec(A’), and Lemma 5.1 from Hallin & Paindaveine (2006a), we
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obtain that, under the null as n — oo,

o n - ! - 2 - ~
Qs = g [veeVao = VO] (V7)™ Lo 4 Ko = 0 (VEP) ™ vec(Visy = V8) 4 0n()
7')/

= 2 [reel (V) s, (V)2 = 1] [T — 1 [seel (V) 2V, (V)2 — 1)) + op (1),

2k

From the identities [Tz — 1J;](vecI;) = 0 and (vec A)(vec B) = tr[A’B], we then obtain that,
still under the null as n — oo,

Qs = g (i [(VO 2V, (VB 2)P] L6 [(VE V5, (VY] ) 4 on(1),

20k

which establishes the result.
(ii) This readily follows from Part (i) of the result, the consistency of ¢ ., and the fact that

NZD veoch(\Afg,7 — V) is asymptotically normal with mean zero and (full rank K see Lemma 4.1)
covariance c,:# NkQZS N

(ili) Under Assumption (A’), the fixed- f parametric model described by Py := {Pén)2 Ve f}
,0g,vec ;
(where Pén 2 veeh Vasf denotes the probability measure of n i.i.d. k-variate elliptical observations with
,0g,vec ;

location 8, scale 0%, shape Vg, and radial density f) is uniformly locally and asymptotically normal
2
(ULAN) with a central sequence of the form A, = ((A?c)’ : A;S : (A}/s)’ ), where

1 e dio v di.o v 1
Vs . Vs (v©2)~1/2 § : i;0,Vg ;0,Vg ‘ ’ )
AfS — 2\/5 Mk,s( S ) - Vec< g (pf( B > UZ;07VS i;07‘rs ka),

see, e.g., Paindaveine (2008). This ULAN result in particular entails that, under Pgn)Q b Vif
y0g, V! )

(n) ._ (n) (n)
T T IOg <dP0,0'2,Veach(Vngnl/?v);f/dP9,0'2,veochV%;f>
o 1 o o
= (vech V)/A},S — §(vech v)’I‘}’S (vechv) 4 op(1)

as n — 0o, where I‘}’S denotes the covariance matrix in the asymptotically normal distribution
of A}/S under Pén) Hence, the standard Cramér-Wold device shows that, still under the

0%, vech Vg;f
same, the joint asymptotic distribution of S™ := \/n Veoch(\A/S,7 — V%) and T™ is asymptoti-
cally multinormal, with an asymptotic covariance between S™ and T™ that is given by w =
lim,, o0 Eo,l,%,Vg;f[S(”)(A}/S)’] (vechv). By first using Theorem 4.1(i) and Ny(vecA) = (vech A),
then by simplifying w along the same lines as in the previous proofs, we obtain

2
1 di-o vo [ digvo d;g o ;g vo o

D ' ARESN | Y 5 0 rs < Y s) h ’
k(k +2)5, G’U%’Vg’f{ o3 [ } og 1<) og } (vechw)
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which, in view of (3), yields w = (vech v). Le Cam’s third lemma then yields that S™ is asymp-

n)
0,02 Vech(Vg-‘r 1/2v);f?

SN/ n)
trix ¢ 7Nka N, as under the null. Hence, still under Po o2 (VO 2v)

totically normal, under p'" with mean (veoch v) and the same covariance ma-

Qs = Qo + 0p(1) = e, (S™) (NLQYSN,) 'S™ 4 0p(1)

(contiguity implies that the first part of the theorem and the consistency of ¢ ., extend to the local
alternatives considered) is asymptotically non-central y% with non-centrality parameter

& (vech v)' (N, QYSNY) ™ (vech v),

which, after some computations, reduces to the non-centrality parameter in the statement of the
theorem. U

PROOF OF PROPOSITION 6.1. Decomposing as usual ¥ into ¥y + (X — 6)(X — ), with
Yo == > " (X; —0)(X; —0), we obtain that, as n — oo,

. D® D
Vi(5-2-8) = I(Ea—TE) +op(1)
1 & D(z)
- 1/2 /2 _
which establishes the result. O

Appendix B.

It remains to prove Theorem 5 1 The proof relies on several lemmas. We first introduce the
following notation. Let sg and s7 ) be the sample y-quantiles of d; = d, 5 0,V t=1,...,n, and
di =diev,, 1 =1,...,n, respectively. In the rest of the paper, all convergences, op’s, and Op’s are
as n — 00. Also, we will write max; and >, for max;—;__, and >, respectively. Similarly, “for
some 4" will stand for “for some ¢ € {1,...,n}".

Lemma B.1. Let (L™) be a sequence of random variables that is Op(1). Then (i) maxi(|cii —
di|1[d; < L™]) = Op(n="?) and (ii) max,(|d; — d;|I[d; < L™]) = Op(n~"/2).

PROOF OF LEMMA B.1. (i) Using repeatedly the triangular inequality provides
di —di| < |IVs*(Xi—6,) - V5" (X, —0>H
= [(Vs? = V") (X —8) - V520, - 0)
< V2=V PVl di + 1Vl l16, — 8]l
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where ||A||; = sup{Au: u € 871} is the operator norm of A. Hence, we obtain
vimax(di — i d; < L) < LYWV = VeIV lle + 1V llIv®, - o)l

so that the result follows from the root-n consistency of «97 and V. (i) The proof is entirely
similar but is based on the decomposition

di —di| < |IVs*(Xi—6,) - V52X - 0)]|
= [(V? = V") (X —8,) - V6, -0
V2 =V 2 IeIVE2 o di + IV 218, — 6. O

IN

Lemma B.2. Let A™ and B™ be two sequences of random variables that converge in probability
to constants a and b, respectively, with a < b. Then Pld; < A™ d;, > B™ for some i] and
Pld; < AM d; > B™ for some i] both converge to zero as n — co.

PrOOF OF LEMMA B.2. Fix § € (0,(b—a)/3). We then have
Pld; < A™ d; > B™ for some 1]
< Pld; < A™ d; > B™ for some i, A™ < a+ 68 B™ >b— 6] +P[A™ > a+ ]+ P[B™ < b— 4]
< Pld; < a+6,d; > b— 6 for some i] + P[|[A™ — a| > 5] + P[|B™ —b| > 4]
< P[max;|d; — ;| I[d; < a+ 4] > 6] + P[|A™ —a| > 5] + P[|B™ —b| > 4],

so that the (i) follows from Lemma B.1(i). Interchanging d; and d;, one concludes that P[d; <
A™ d; > B™ | for some i] converges to zero as n — oo (this time by using Lemma B.1(ii)). O

Lemma B.3. Recalling that s, is the y-quantile of dygvy, we have that \/ﬁ(égn) - sgyn)) and
Vi3 = s,) are Op(1) as n — .

PrOOF OF LEMMA B. 3 Since the d;’s are i.i.d., the root-n consistency of sample quantiles
trivially entails that /n(s{" — s,) = Op(1), so that 1t is sufficient to show that v/n(5" — s{) =
Op(1). To do so, fix € > 0, and write

Pvn|st) — s >¢e] < P[Vn[sl — s > e, s < s, + 1] + P[s” > s, +1]
< P[\/ﬁmaxi|d d;|1[d; <37—|—1]>5}+P[ )>37+1}

The result then follows from Lemma B.1(i) and the fact that s\ — s is op(1). O

Lemma B.4. Let the assumptions of Theorem 5.1 hold. Then, for any a € (0,1),
sup |f(s) = f(s)| = op(1),

s€[0,8q]
where we let f((s) = (nhn)_lzi[((s;—ji) and ™ (s) = (nh,) ™'Y, K (5:%).
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PROOF OF LEMMA B.4. Pick an arbitrary o € (v, 1), and write | f™(s) — f™(s)| < T (s) +
Tz(n)(s), with

A

1) = 55 K () - K (50 s < s

and

A

6 = S () - (5 )

From the mean value theorem and the boundedness of K’, we obtain

- ()

n

—d;

’I’L

sup 71" (s) <

s€[0,s4] Ny s€(0,54]

]I[dl S Sa’]

- n—izzi |d; — d;| I[d; < sar] < <\/ﬁmaxi|czi — d;|T[d; < Sa,]),

C
which is op(1) (since nh} — oo and the sequence in the brackets is Op(1) in view of Lemma B.1(i)).
Turning then to TQ(n) (s), pick ¢ > 0 so that the support of K is a subset of [—¢, ¢]. Fix § € (0, 5o/ —S4)
and choose ng so that s, +ch, < so —0 for all n > ng. In the rest of the proof, we restrict (without
loss of generality) to n > ng. For any s € [0, s,|, we then trivially have s+ ch,, < so+ch, < So —0.
Therefore, we have that, for allz=1,...,n,

K(S - d") T[d; > so] =0,

n

almost surely, which implies that, still almost surely and any s € [0, s,],

Ai) ’ I[d; > so] = n_znzz ‘K<S ;ndAl> ’ I[d; > Sa"di < Sar =]

S —

d
hin

1
T (s) = 3, |
2 (8) nhn Zz
(since d; > so — 0 would entail |s — d;| > ch,). Hence,

Pl

sup T( ‘>5} <P[

s€[0,5a]

sup T\" ‘7&0} < Pld; > S, d; < sor — 6, for some 1]

$€[0,54]

which, in view of Lemma B.2, converges to zero. We conclude that both 7" ) (s) and T ( ), hence

also \f )(s) — fM(s)], are 0p(1) uniformly in s € [0, s,]. O
Lemma B.5. For any integer {, 13 L 1[d; <&l )] converges in probability to Eldy y T[dgvs < 5,]]
as n — oo.

Proor orF LEMMA B.5. The weak law of large numbers implies that it is sufficient to show

that ) .
S = Z 5 dlTd; < 8™ — = 32 diT[d; < sy] = op(1).
n n
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Decompose then S™ into S\ + S5, where

~

(n n 1 7 aln
= LS - )T <80 and SE) = 3t (1 < 0]~ Tl < 5.,
Let us start with S\ (which only needs to be considered if ¢ > 1). We have
. 1 . .
S| < —z |df — dl|T[d; < 38, d; < st + 1] + ~ ¥ |df — d| I[d; < 899, d; > 35 + 1]

< max; |d — d{|I[d; < 5, d; < 5" + 1] + :LZ |df — d{|1[d; < 3, d; > 5t + 1].
= St + St
say. Using the mean value theorem, then Lemma B.1, yields
S < (3% + 1) 'max, |d; — di| I[d; < 8™, d; < 30 + 1] = op(1).
As for Siz), we have that, for any € > 0,

P[S}y > e] < Pld; < 8. d; > 8™ + 1, for some i,

5(n
Sy
which converges to zero (Lemma B.2). We conclude that SYL) is op(1).

Turning to 55",

1 A
8571 < = 37 df [Tdi < 307) ~ 1[di < 5,

A

1 .
— Z d'I[d; < dz»>sv]+ﬁz.d‘?ﬂ[di>§§”),digsv]:S§Z)+S§Z),

say. For any n > 0, we may write

<P|L S < 80> s, > 5| PS80, << ] >
N 1
<P[di§§(n),di>87+nforsome@']+P[—Zidfﬂ[sy<di§87+n]>%}
n

2
<Pld; < §(7”),di > s, +n for some i] + = E[d] I[s, < d < s, + 1], (B.1)
€

where the last inequality follows from Markov’s inequality. The second term of (B.1) does not
depend on n and can be made arbitrarily small by choosing n approprlately Since Lemma B.2
1mp11es that the first term of (B.1) converges to zero, this yields that 52 ") s op(1). The proof
that 52b is also op(1) is extremely similar. We conclude that S itself is op(1), which establishes
the result. O
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We can now prove Theorem 5.1.

PROOF OF THEOREM 5.1. Fix a € (7,1) and pick § > 0 such that s, + ¢ < s,. Then (note
that, using the notation of this Appendix, we have frhape(8y) = f ™) (3,)),

P[|Festape(585) = 1) (5,)] > €] < P[|FO50) = fOE)] > 1]+ P 7(s) = 19(5,)] > 5]
< P[0 = £ > 5,158 = 5] < 9] | + P18 = s, > 6] + P|[F(s,) = £(s,)| > 2]

< 2P[ sup |f(”)(s) —f(”)(s)} > g] +P[|§£/”) — s, > 4],

$€[0,54]

which, by using Lemmas B.3-B.4, shows that fk;shape(§£,n)) — f™(s,) is op(1). The weak consistency

of the standard kernel density estimator f(™(s) then entails that fk;shapo(égn)) — f(sy) is op(1).
Hence, the result follows from the continuous mapping theorem, Lemma B.3, and Lemma B.5. [

It remains to prove Theorem 5.2, which requires the following preliminary result.

Lemma B.6. Let Assumption (A’) hold. Let 9# and 5,4 be root-n consistent and locally asymp-
totically discrete estimators of @ and s., respectively. Then

1

Ve —Vg) = — L
viveelVsa =Vs) = 5 7w

[Ikz — (vec Vg)(vec D;’S)’]

2\1/2 R 1
V® Z 0# VS 9#7VS S 87#]Vec <Ui§é#7VSU’Ii;9#7V5 - % Ik;) + OP(l)

as n — Q.

PrROOF OF LEMMA B.6. In Sections 2 and 3, we parametrized the family of elliptical distribu-
tions by (8,02 V) and the radial density f, where identifiability of o and f follows by imposing
that dg v, = (X —0) V' (X —80))/? has median o. For any given v € (0, 1), one may equivalently
adopt the parametrization in 9 = (0, s,, Vg) and f associated with the densities

fXRF SR

- (“;k\l/’g‘;”g%_l 7(s W x -0V (x 0)).

where the scale parameter s, is defined as the y-quantile of dgvy. Proceeding as in Paindaveine
(2008) (Section 4), it is seen that, for fixed f (satisfying some mild regularity conditions), the para-
metric family of f-elliptical dlstrlbutlons is ULAN with a central sequence that, in this alternative
parametrization, takes the form Aﬂ = ((Ag?};l)’, Ag?])cg, (Agf}ﬁ)’)', with

n 1/2
A1(9,])”;1 = S'y\/_ Z i ( ) VS / Uza
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1 - d;\ d;
AP =~ T g B.
197f§2 282 n — (Qﬁf <S'y) S’Y > 9 ( 3)

1 e 4.\ d.
(n) ._ \4 ®2)~1/2 § : { { /
Aﬂ,f;ii = 2\/ﬁ MSS(VS ) 2 vec (pr (5) 5 UzUZ — Ik) R (B4)

where d; = dig vy and U; = U, 9 v.. Using classical techniques in ULAN experiments then allows

to show the asymptotic linearity result stating that, under P‘,(,ns)7 Ve fr

and

/

Aoy ver
= Fo. ves [Tm)(o, 5) ( 853 Vs:Fil ) ] ( T ) + op(1), (B.5)

AV ¢

as n — 0o; see Van der Vaart (2000), Proposition A.10, for a classical reference, or Hallin et al.
(2013) for a most recent one. Applying this to

1

- 1
T (9, s,) = = 3 @y Ildigvs < s]vec (Ui;g,vsug;ws - Ik),
=1

we readily obtain that, under Péns)7 Ve.f

T (@O +n~ 1,5, +n'/2¢) — T (0, s,) = op(1),

as n — 00, since the expectation in (B.5) is then equal to zero. Therefore, Lemma 4.4 from Kreiss
(1987) entails that
T™ (@4, 3,4) — T (8, 5,) = op(1), (B.6)

still as n — oo, under Péfl‘),s’s% ;- The result then readily follows from (B.6) and Theorem 4.1.  [J
We can now establish consistency of the estimator in (16) under the null Hy : Vg = V.

PrOOF OF THEOREM 5.2. Note first that «97 is root-n consistent for @ (see Cator & Lopuhad
(2010)) and that, from Lemma B.3, §3 is root-n consistent for s, under the null Hy : Vg = V.

As mentioned in Section 5, the discretization of 97 and 89 into 97# and 87, does not affect root-n
consistency, and we may therefore apply Lemma B.6 with these discretized estimators. This yields

1

0§,

nHvec(\A/'S,Y — Vg)”2 = (Vec(vsﬁ — Vg))/ [Ikz — (vec Vg)(vec Dgg)’]

1/2 = . 1
X ((Vg)@)z) Z dzw#,V%H[déw#:V% S SS#]VGC <Ui§é—y#7Vg~U;;éw#,V% — E Ik) + Op(l),
=1

30



as n — oo under the null. Since n”vec(\AfSN — V)||? is Op(1) under the null but not op(1), we
have that
1 0

(n) _— } N 0 Vv
P = - (vec(Vsy — V2)) [Ikz — (vec Vg)(vecDg )}
n||vec(Vs, — V)2 !

X (V)22 3" a2
=1

1
I(d, < 3 Vec<U» U, —-I)
VY [ 0,4, VY = 7#] 0y Ve i, VY LR

is a consistent estimator of o3, under the null. Since Lemma B.5 ensures that, still under the

null, £3°. df;éw,vg H[dz‘;éw,vg < 59] consistently estimates E[dg v I[dg v < s,]], the result then follows
from the continuous mapping theorem. O
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