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Abstract

This paper mainly focusses on one of the most classical testing problems in directional

statistics, namely the spherical location problem that consists in testing the null hypothe-

sis H0 : θθθ = θθθ0 under which the (rotational) symmetry center θθθ is equal to a given value θθθ0 .

The most classical procedure for this problem is the so-called Watson test, which is based

on the sample mean of the observations. This test enjoys many desirable properties, but

its asymptotic theory requires the sample size n to be large compared to the dimension p .

This is a severe limitation, since more and more problems nowadays involve high-dimensional

directional data (e.g., in genetics or text mining). In the present work, we derive the asymp-

totic null distribution of the Watson statistic as both n and p go to infinity. This reveals

that (i) the Watson test is robust against high dimensionality, and that (ii) it allows for

(n, p)-asymptotic results that are universal, in the sense that p may go to infinity arbitrar-

ily fast (or slowly) as a function of n . Turning to Euclidean data, we show that our results

also lead to a test for the null that the covariance matrix of a high-dimensional multinor-

mal distribution has a “θθθ0 -spiked” structure. Finally, Monte Carlo studies corroborate our

asymptotic results and briefly explore non-null rejection frequencies.

Keywords: Directional statistics, high-dimensional data, location tests, principal

component analysis, rotationally symmetric distributions, spherical mean

1. Introduction

The technological advances and the ensuing new devices to collect and store data lead

nowadays in many disciplines to data sets with very high dimension p , often larger than

the sample size n . Consequently, there is a need for inferential methods that can deal

with such high-dimensional data, and this has entailed a huge activity related to high-

dimensional problems in the last decade. One- and multi-sample location problems have

been investigated in Srivastava and Fujikoshi (2006), Schott (2007), Chen and Qin (2010),
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Srivastava et al. (2013), and Srivastava and Kubokawa (2013), among others. Since the

seminal paper Ledoit and Wolf (2002), problems related to covariance or scatter matrices

have also been thoroughly studied by several authors; see, e.g., Chen et al. (2010), Li and

Chen (2012), Onatski et al. (2013) and Jiang and Yang (2013). In particular, the problem

of testing for sphericity has attracted much attention.

In this paper, we are interested in high-dimensional directional data, that is, in data

lying on the unit hypersphere

Sp−1 =
{
x ∈ Rp : ‖x‖ =

√
x′x = 1

}
,

with p large. Such data occur when only the direction of the observations and not their

magnitude matters, and are extremely common, e.g., in magnetic resonance (Dryden, 2005),

gene-expression (Banerjee et al., 2003), and text mining (Banerjee et al., 2005). Inference

for high-dimensional directional data has already been considered in several papers. For

instance, Banerjee and Ghosh (2002, 2004) and Banerjee et al. (2005) investigate clustering

methods in this context. Most asymptotic results available, however, have been obtained

as p goes to infinity, with n fixed. This is the case of almost all results in Stam (1982),

Watson (1983a), Watson (1988), and Dryden (2005). To the best of our knowledge, the only

(n, p)-asymptotic results available can be found in Dryden (2005), Cai and Jiang (2012),

Cai et al. (2013), and Paindaveine and Verdebout (2015a). However, Dryden (2005) imposes

the stringent condition that p/n2 → ∞ when studying the asymptotic behavior of the

classical pseudo-FvML location estimator (FvML here refers to Fisher-von Mises-Langevin

distributions; see below). Cai and Jiang (2012) and Cai et al. (2013) consider various (n, p)-

asymptotic regimes in the context of testing for uniformity on the unit sphere, but the

tests to be used depend on the regime considered which makes practical implementation

problematic. Finally, Paindaveine and Verdebout (2015a) propose tests that are robust to

the (n, p)-asymptotic regime considered; their tests, however, are sign procedures, hence are

not based on sufficient statistics — unlike the much more classical pseudo-FvML procedures.

In the present paper, we intend to overcome these limitations in the context of the

spherical location problem, one of the most fundamental problems in directional statistics.

The natural distributional framework for this problem is provided by the class of rotationally

symmetric distributions (see Section 2), that is a semiparametric model, indexed by a finite-

dimensional (location) parameter θθθ ∈ Sp−1 and an infinite-dimensional parameter F . The

spherical location problem is the problem{
H0 : θθθ = θθθ0

H1 : θθθ 6= θθθ0,

where θθθ0 is a given unit vector and F remains unspecified. The classical test for this

problem is the so-called Watson test, based on the sample mean of the observations; see

Watson (1983b). This test enjoys many desirable properties, and in particular is a pseudo-

FvML procedure : in other words, it achieves optimality under FvML distributions, yet

remains valid (in the sense that it meets the asymptotic nominal level constraint) under

extremely mild assumptions on F .

Unfortunately, nothing is known about the validity of the Watson test in the high-
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dimensional setup, which, in view of the growing number of high-dimensional directional

data to be analyzed, is a severe limitation. Therefore, the aim of this paper is to investigate

this issue. We derive the (n, p)-asymptotic null properties of the Watson test. Our

results require minimal distributional assumptions and allow for virtually any rotationally

symmetric distributions. Even better : in contrast with earlier asymptotic investigations

of high-dimensional pseudo-FvML procedures, our asymptotic results are “universal” in the

sense that they only require that p goes to infinity as n does (p may go arbitrarily fast

(or slowly) to infinity as a function of n). Moreover, as an interesting by-product, we show

that our procedures can be used to test the null hypothesis that the covariance matrix

of a high-dimensional multinormal distribution is “θθθ0 -spiked”, meaning that it is of the

form ΣΣΣ = σ2(Ip + λθθθ0θθθ
′
0) for some σ2, λ > 0 and θθθ0 ∈ Rk ; see, e.g., Johnstone (2001) or

the quite recent Onatski et al. (2013) where this covariance structure has been used as an

alternative to sphericity.

The outline of the paper is as follows. In Section 2, we define the class of rotationally

symmetric distributions and introduce the Watson test for spherical location. In Section 3,

we propose a standardized Watson test statistic and derive its asymptotic null distribution

in the high-dimensional setting. We also prove that, in some cases, it is asymptotically

equivalent to a sign test statistic. In Section 4, we show that the standardized Watson

test further allows to test for a spiked covariance structure in high-dimensional multinormal

distributions. Monte Carlo studies are conducted in Section 5, while an Appendix collects

the proofs of some technical lemmas.

2. Rotational symmetry and the Watson test

The distribution of the random p -vector X , with values on the unit hypersphere Sp−1,
is rotationally symmetric about location θθθ(∈ Sp−1) if OX is equal in distribution to X

for any orthogonal p × p matrix O satisfying Oθθθ = θθθ ; see Saw (1978). Rotationally

symmetric distributions are characterized by the location parameter θθθ and an infinite-

dimensional parameter, the cumulative distribution function F of X′θθθ , hence they are of a

semiparametric nature. The rotationally symmetric distribution associated with θθθ and F

will be denoted as R(θθθ, F ) in the sequel. The most celebrated members of this family are

the Fisher-von Mises-Langevin distributions, corresponding to

Fp,κ(t) = cp,κ

∫ t

−1
(1− s2)(p−3)/2 exp(κs) ds (t ∈ [−1, 1]),

where cp,κ is a normalization constant and κ(> 0) is a concentration parameter (the larger

the value of κ , the more concentrated about θθθ the distribution is); see Mardia and Jupp

(2000) for further details.

Let X1, . . . ,Xn be a random sample from R(θθθ, F ) and consider the problem of testing

the null hypothesis H0 : θθθ = θθθ0 against the alternative H1 : θθθ 6= θθθ0 , where θθθ0 ∈ Sp−1

is fixed and F remains unspecified. At first sight, the rotational symmetry assumption

about θθθ0 may appear quite restrictive. Note however that it contains the null hypothesis of

uniformity on the sphere, which itself contains the null hypothesis of sphericity for Euclidean

data (since the uniform distribution on the sphere may be obtained by projecting spherical

3



distributions on the sphere), a null that has been the topic of numerous papers in high-

dimensional statistics.

Letting X̄ := 1
n

∑n
i=1 Xi , the classical test for the problem above rejects the null for

large values of the Watson statistic

Wn :=
n(p− 1)X̄′(Ip − θθθ0θθθ′0)X̄

1− 1
n

∑n
i=1(X′iθθθ0)2

· (2.1)

Under very mild assumptions on F , the fixed-p asymptotic null distribution of Wn is chi-

square with p− 1 degrees of freedom. The resulting test, φWn say, therefore rejects the null,

at asymptotic level α , whenever Wn > Ψ−1p−1(1−α), where Ψp−1 stands for the cumulative

distribution function of the chi-square distribution with p−1 degrees of freedom; see Watson

(1983b).

Beyond achieving asymptotic level α under virtually any rotationally symmetric distri-

bution, φWn is optimal — more precisely, locally and asymptotically maximin, in the Le Cam

sense — when the underlying distribution is FvML; for details, we refer to Paindaveine and

Verdebout (2015b), where the asymptotic properties of φWn under local alternatives are de-

rived. Although φWn is based on the sample mean of the observations, these excellent power

properties are not obtained at the expense of robustness, since observations by construction

are on the unit hypersphere.

Consequently, φWn is a nice solution to the testing problem considered on all counts but

one : implementation is based on fixed-p asymptotics, so that φWn cannot be used when p

is of the same order as, or even larger than, n . The goal of the present work is therefore

to investigate the (n, p)-asymptotic properties of the Watson test. We will show that, as n

and p go to infinity, the standardized Watson test statistic

W̃n :=
Wn − (pn − 1)√

2(pn − 1)
(2.2)

is asymptotically normal under the null. This of course leads to a high-dimensional Watson

test that consists in rejecting the null, at asymptotic level α , whenever W̃n exceeds the

upper α -quantile of the standard normal distribution. This test clearly is asymptotically

equivalent to the original (fixed-p) Watson test based on chi-square critical values, so that

the latter may be considered robust to high dimensionality.

3. A high-dimensional Watson test

Consider the high-dimensional version of the testing problem H0 : θθθ = θθθ0 against

H1 : θθθ 6= θθθ0 , based on a triangular array of observations Xni , i = 1, . . . , n , n = 1, 2, . . . ,

where Xni takes values in Spn−1 and pn goes to infinity with n . Using the (null) tangent-

normal decomposition Xni = (X′niθθθ0)θθθ0 + vniSni , where

vni := ‖Xni − (X′niθθθ0)θθθ0‖ =
√

1− (X′niθθθ0)2

and
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Sni :=


Xni − (X′niθθθ0)θθθ0
‖Xni − (X′niθθθ0)θθθ0‖

if Xni 6= θθθ0

0 otherwise,

the Watson statistic rewrites

Wn =
pn − 1∑n
i=1 v

2
ni

n∑
i,j=1

vnivnjS
′
niSnj =

pn − 1∑n
i=1 v

2
ni

(
n∑
i=1

v2ni + 2
∑

1≤i<j≤n

vnivnjS
′
niSnj

)

= (pn − 1) +
2(pn − 1)∑n

i=1 v
2
ni

∑
1≤i<j≤n

vnivnjS
′
niSnj .

The standardized Watson statistic in (2.2) then takes the form

W̃n =

√
2(pn − 1)∑n
i=1 v

2
ni

∑
1≤i<j≤n

vnivnjS
′
niSnj . (3.3)

The following result provides the (n, p)-asymptotic null distribution of W̃n (see the

Appendix for the proof).

Theorem 3.1. Let Xni , i = 1, . . . , n , n = 1, 2, . . . , form a triangular array of random

vectors satisfying the following conditions : (i) for any n , Xn1,Xn2, . . . ,Xnn are mutually

independent and share a common rotationally symmetric distribution on Spn−1 with loca-

tion θθθ0 ; (ii) pn →∞ as n→∞ ; (iii) E[v2n1] > 0 for any n ; (iv) E[v4n1]/(E[v2n1])2 = o(n)

as n→∞ . Then W̃n is asymptotically standard normal.

The assumptions of Theorem 3.1 are extremely mild. Note in particular that it is not

assumed that the common distribution of the Xni ’s is absolutely continuous with respect

to the surface area measure on Spn−1. Assumption (iii) only excludes the degenerate case

for which Xn1 = θθθ0 almost surely, which would imply that Wn — hence also W̃n — is

not well-defined. Most importantly, it should be noted that Assumption (ii) allows pn to

go to infinity in an arbitrary way with n , so that Theorem 3.1 provides a “(n, p)-universal”

asymptotic distribution result for the standardized Watson statistic.

Assumption (iv) possibly looks more stringent. However, a sufficient (yet not necessary)

condition for (iv) is that
√
nE[v2n1]→∞ as n→∞ . In other words, if (iv) does not hold,

we must then have that, for some constant C > 0,

E[(X′n1θθθ0)2] ≥ 1− C√
n

(3.4)

for infinitely many n . In the high-dimensional setup considered, (3.4) is extremely

pathological, since it corresponds to the distribution of Xn1 concentrating in one particular

direction — namely, the direction θθθ0 — in the expanding Euclidean space Rpn . Moreover,

there are parametric classes of distributions on the sphere for which Assumption (iv) always

holds. An important example is the class of FvML distributions. To show this, note that
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the integral representation

Iν(z) =
(z/2)ν

√
π Γ(ν + 1

2 )

∫ 1

−1
(1− s2)ν−

1
2 exp(zs) ds

of the modified Bessel function of the first kind Iν(z) (see, e.g., Watson (1944), Page 79)

readily yields

cp,κ(`) :=

∫ 1

−1
(1− s2)(p+`−3)/2 exp(κs) ds =

√
π Γ(p+`−12 )I p+`

2 −1
(κ)

(κ/2)
p+`
2 −1

·

for any nonnegative integer ` . If X1n follows an FvML distribution with a concentration κn

that is allowed to depend on the sample size n , then

E[v`n1] = E[(1− (X′n1θθθ0)2)`/2] =
cpn,κn

(`)

cpn,κn(0)
=

Γ(pn+`−12 )I pn+`
2 −1(κn)

(κn/2)
`
2 Γ(pn−12 )I pn

2 −1(κn)
,

which, by using the log-concavity (for any fixed κ) of ν 7→ Iν(κ) (see, e.g., Baricz and

Ponnusamy (2013)) and the identity Γ(z + 1) = zΓ(z), yields

E[v4n1]

(E[v2n1])2
=

(pn + 1)I pn
2 +1(κn)I pn

2 −1(κn)

(pn − 1)(I pn
2

(κn))2
≤ pn + 1

pn − 1
≤ 3.

Consequently, Assumption (iv) is fulfilled in the FvML case, irrespective of the dependence

of (κn, pn) in n—hence, also if κn goes to infinity arbitrarily fast. On all counts, thus,

Assumption (iv) is extremely mild, too.

Theorem 3.1 states that the standardized Watson test statistic W̃n is asymptotically

standard normal under the null. It is natural to try and control how much the cumulative

distribution function of W̃n deviates from normality. This can be achieved by using the main

result from Heyde and Brown (1970) and leads to the following theorem (see the Appendix

for the proof).

Theorem 3.2. Let Xni , i = 1, . . . , n , n = 1, 2, . . . , form a triangular array of random

vectors satisfying the following conditions : (i) for any n , Xn1,Xn2, . . . ,Xnn are mutu-

ally independent and share a common rotationally symmetric distribution on Spn−1 with

location θθθ0 ; (ii) E[v2n1] > 0 for any n ; (iii) E[v4n1]/(E[v2n1])2 = o(n) as n→∞ . Let

˜̃Wn =

(
n

n− 1

)1/2

W̃n.

Then there exists a positive constant C such that, for n large enough,

sup
z∈R

∣∣P[ ˜̃Wn ≤ z
]
− Φ(z)

∣∣ ≤ C( E[v4n1]

n(E[v2n1])2
+

1

pn

)1/5

,

where Φ denotes the cumulative distribution function of the standard normal distribution.

Of course, if it is further assumed that pn →∞ as n→∞ , then this yields Theorem 3.1
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(uniformity is no reinforcement here since the limiting distribution is continuous). More

importantly, if more stringent assumptions are imposed on E[v4n1]/(E[v2n1])2 and pn ,

then Theorem 3.2 further provides (uniform) rates of convergence. For instance, if it is

assumed that E[v4n1]/(E[v2n1])2 = O(1) and 1/pn = O(1/n), then Theorem 3.2 yields that

supz∈R
∣∣P[ ˜̃Wn ≤ z] − Φ(z)

∣∣ = O(n−1/5) as n → ∞ . Clearly, non-trivial convergence rates

can only be obtained by imposing a minimal rate at which pn should go to infinity, which is

incompatible with the “universal asymptotics phenomenon” we describe in this paper. We

therefore do not pursue this direction in the sequel.

Theorems 3.1-3.2 lead to the test announced at the end of Section 2, namely the test,

φ̃Wn say, that rejects the null hypothesis H0 : θθθ = θθθ0 in favor of H1 : θθθ 6= θθθ0 at asymptotic

level α whenever

W̃n > Φ−1(1− α).

As usual, these tests can be inverted to obtain a confidence zone for the symmetry center θθθ .

More precisely, denoting by W̃n(θθθ0) the high-dimensional Watson test statistic for the

null H0 : θθθ = θθθ0 , the region

Rn =
{
θθθ ∈ Spn−1 : W̃n(θθθ) ≤ Φ−1(1− α)

}
is an (n, p)-asymptotically valid confidence zone for θθθ . Of course, from a practical point

of view, one needs to be able to determine Rn , which may be computationally challenging.

This problem, that was not even considered for small p , is beyond the scope of this paper.

We stress that both the high-dimensional tests and confidence zones above are asymptot-

ically valid in a “universal” way, that is, irrespective of the way pn goes to infinity with n .

In particular, this implies that the original (fixed-p) test φWn , that is asymptotically equiv-

alent to φ̃Wn , is asymptotically valid in the high-dimensional case, hence is robust to high

dimensionality.

Finally, for the testing problem considered above, Paindaveine and Verdebout (2015a)

introduced the high-dimensional sign statistic

Q̃n :=

√
2(pn − 1)

n

∑
1≤i<j≤n

S′niSnj (3.5)

and showed that the (n, p)-universal asymptotic null distribution of Q̃n is standard normal.

In the next result (that is also proved in the Appendix), we identify assumptions on the

sequence (vn1) under which W̃n and Q̃n are ((n, p)-universally) asymptotically equivalent

in probability under the null.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold and further assume that

(v) E[v2n1]/(E[vn1])2 → 1 as n→∞ . Then, W̃n − Q̃n = oP(1) as n→∞ .

This result shows that, quite intuitively, if vn1 becomes constant asymptotically (in the

sense that Var[vn1]/(E[vn1])2 → 0), then the high-dimensional Watson test φ̃Wn coincides

with the sign test based on (3.5). Note, however, that there is no particular reason why the

distribution of Xn1 should concentrate on the intersection of the sphere with (a possibly

translated version of) the orthogonal complement of θθθ0 .
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4. Spiked covariance matrices

Let Yn1, . . . ,Ynn be a random sample from the pn -dimensional multinormal distribu-

tion with mean zero and covariance matrix ΣΣΣ. For fixed θθθ0 ∈ Spn−1 , we consider here the

problem of testing the null hypothesis that ΣΣΣ has a “θθθ0 -spiked” structure, that is, is of the

form

Hspi
0 : ΣΣΣ = σ2(Ipn + λθθθ0θθθ

′
0), for some σ2 > 0 and λ ≥ 0.

Consider the projections Xni := Yni/‖Yni‖ , i = 1, . . . , n , of the observations on the

unit hypersphere, and let

Sni :=
Xni − (X′niθθθ0)θθθ0
‖Xni − (X′niθθθ0)θθθ0‖

·

Under Hspi
0 , (i) the Sni ’s are mutually independent and are uniformly distributed

over Spn−1(θθθ⊥0 ) := {x ∈ Spn−1 |x′θθθ0 = 0} ; moreover, (ii) the X′niθθθ0 ’s are independent

and identically distributed, and they are independent of the Sni ’s. It is well-known that

(i)-(ii) imply that the common distribution of the projected observations Xni is rotationally

symmetric about θθθ0 . Consequently, a high-dimensional test for θθθ0 -spikedness is the test,

φ̃spin say, that rejects the null Hspi
0 , at asymptotic level α , whenever

W̃ spi
n (Yn1, . . . ,Ynn) := W̃n(Xn1, . . . ,Xnn) > Φ−1(1− α).

Theorem 3.1 ensures that φ̃spin has asymptotic null size α as soon as pn goes to infinity

with n (universal (n, p)-asymptotics), which is illustrated in the simulations of the next

section. Typically, this test will show large powers against θθθ -spiked alternatives, with θθθ 6= θθθ0

and λ > 0.

5. Monte Carlo simulation study

5.1. Null behavior

In this section, our aim is to check the validity of our universal asymptotic results

related to both W̃n and W̃ spi
n . To do so, we generated, for every (n, p) ∈ C × C , with

C = {5, 30, 200, 1 000} , and with θθθ0 the first vector of the canonical basis of Rp , M = 2 500

independent random samples from each of the following p -dimensional distributions :

(i) the FvML distribution R(θθθ0, Fp,2) (see Section 2);

(ii) the Purkayastha distribution R(θθθ0, Gp,1), associated with

Gp,κ(t) = dp,κ

∫ t

−1
(1− s2)(p−3)/2 exp(−κ arccos(s)) ds (t ∈ [−1, 1]),

where dp,κ is a normalizing constant;

(iii) the multinormal distribution with mean zero and covariance matrix ΣΣΣ = Ip +

(1/2)θθθ0θθθ
′
0 .

The standardized Watson statistic W̃n was evaluated on the samples from (i)-(ii) (rotational

symmetry about θθθ0 ), while the statistic W̃ spi
n was computed for each sample from (iii) (θθθ0 -

spikedness). For each (n, p)-regime considered, we report the corresponding histograms
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of W̃n in Figures 1-2 and those of W̃ spi
n in Figure 3 (each histogram is based on M = 2 500

values of these statistics).

Figure 1: Histograms, for various values of n and p , of the standardized Watson statistic W̃n evaluated on
M = 2 500 random samples of size n from the p -dimensional FvML distribution with concentration κ = 2;
see Section 5.1 for details.

From Theorem 3.1 and the discussion in Section 4, histograms are expected to be

approximately standard normal as soon as min(n, p) is large, in a universal way (that

is, irrespective of the relative sizes of n and p). Inspection of the results shows that, for

all three setups, the standard normal approximation is valid for moderate-to-large values

of n and p , irrespective of the value of p/n , which confirms our universal asymptotic

results. Note also that, for small p and moderate-to-large n (that is, p = 5 and n ≥ 30),

histograms are approximately (standardized) chi-square, which is consistent with classical

fixed-p asymptotic results; see Section 2.
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Figure 2: Histograms, for various values of n and p , of the standardized Watson statistic W̃n evaluated
on M = 2 500 random samples of size n from the p -dimensional Purkayastha distribution with concentra-
tion κ = 1; see Section 5.1 for details.
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Figure 3: Histograms, for various values of n and p , of the test statistic W̃ spi
n for θθθ0 -spikedness evaluated

on M = 2 500 random samples of size n from the p -dimensional multinormal distribution with mean zero
and covariance matrix ΣΣΣ = Ip + (1/2)θθθ0θθθ

′
0 ; see Section 5.1 for details.
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To further assess the quality of the standard normal approximation at some relatively

moderate dimensions p and sample sizes n , we conducted a second simulation, where we

investigate how well the asymptotic Gaussian critical values approximate the (unknown)

fixed-(n, p) corresponding quantiles of the Watson statistic under the null (this is of course of

primary importance in the hypothesis context considered). To do so, for every (n, p) ∈ C×C ,

with C = {10, 30, 100, 200} , we generated M = 10 000 independent random samples from

the FvML distributions R(θθθ0, Fp,1), where θθθ0 is still the first vector of the canonical basis

of Rp . In line with the high-dimensional FvML distributions of Dryden (2005), we also

conducted this simulation with the FvML distributions R(θθθ0, Fp,√p).

For every (n, p) and each concentration considered, we evaluated

1

M

M∑
i=1

I[W̃n > Φ−1(1− α)]

(I[A] stands for the indicator function of A), which is the empirical null size of the proposed

high-dimensional Watson test. These rejection frequencies are reported in Table 1, which

reveals that (i) the Gaussian approximation for W̃n indeed is reliable for relatively moderate

values of n and p , and that (ii) the concentration does not have an important impact in

practice.

p
n 10 30 100 200
10 0.0622 0.0619 0.0634 0.0643

κ = 1 30 0.0529 0.0591 0.0616 0.0647
100 0.0523 0.0563 0.0540 0.0554
200 0.0483 0.0517 0.0557 0.0537
10 0.0574 0.0630 0.0694 0.0655

κ =
√
k 30 0.0550 0.0592 0.0645 0.0590

100 0.0471 0.0545 0.0577 0.0565
200 0.0478 0.0532 0.0582 0.0560

Table 1: For various values of n and p , null rejection frequencies of the high-dimensional Watson test
computed from M = 10 000 independent samples of size n generated according to the p -dimensional FvML
distributions R(θθθ0, Fp,1) or R(θθθ0, Fp,

√
p) ; see Section 5.1 for details.

5.2. Behavior under the alternative

We conducted a last Monte-Carlo study to illustrate the non-null behavior of the

proposed high-dimensional Watson test. To do so, we generated, for any (n, p) ∈ C×C , with

C = {20, 200, 1 000} , independent random samples from the mixture-of-FvML distribution

1

`
R
(
θθθ0, Fp,√p

)
+
(

1− 1

`

)
R
(
θθθ1, Fp,√p

)
, ` = 1, 2, 3, 4; (5.6)

denoting by ep,r the r th vector of the canonical basis of Rp , we took above θθθ0 = ep,1

and θθθ1 = (ep,1+ep,p/4−2ep,p/2)/
√

6. Clearly, ` = 1 corresponds to the null hypothesis H0 :

θθθ = θθθ0 (FvML distribution with location θθθ0 ), whereas ` = 2, 3, 4 provide increasingly severe

12



alternatives. For each (n, p)-value considered, Figure 4 reports the rejection frequencies of

the high-dimensional Watson test based on W̃n (empirical rejection frequencies are based

on M = 2 500 replications). Clearly, this test exhibits non-trivial powers under the type of

alternatives considered, irrespective of the value of (n, p).
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Figure 4: For various values of n and p , non-null rejection frequencies of the high-dimensional Watson
test computed from M = 2 500 independent samples of size n generated according to the p -dimensional
mixture-of-FvML distributions in (5.6); see Section 5.2 for details.
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Appendix A. Proofs

We start with the proof of the main result, that is, Theorem 3.1. The proof will follow

by applying the Slutsky Lemma to

W̃n =

(√
2(pn − 1)

nE[v2n1]

∑
1≤i<j≤n

vnivnjS
′
niSnj

)/( 1
n

∑n
i=1 v

2
ni

E[v2n1]

)
=: Rn/Ln. (A.1)

The stochastic convergence of the denominator is taken care of in the following result.

Proposition A.1. Under the assumptions of Theorem 3.1, Ln → 1 in quadratic mean as

n→∞ .
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Proof of Proposition A.1. Since

E
[
(Ln − 1)2

]
= E

[( 1
n

∑n
i=1 v

2
ni

E[v2n1]
− 1

)2
]

=
1

(E[v2n1])2
E

[(
1

n

n∑
i=1

v2ni − E[v2n1]

)2]

=
1

(E[v2n1])2
Var

[
1

n

n∑
i=1

v2ni

]
=

Var[v2n1]

n(E[v2n1])2
≤ E[v4n1]

n(E[v2n1])2
, (A.2)

the result follows from Condition (iv) in Theorem 3.1.

To establish Theorem 3.1, it is therefore sufficient to prove the following result.

Proposition A.2. Under the assumptions of Theorem 3.1, Rn is asymptotically standard

normal.

The proof of this proposition is more delicate and will be based on the following

martingale Central Limit Theorem; see Theorem 35.12 in Billingsley (1995).

Theorem A.1. Assume that, for each n , Zn1, Zn2, . . . is a martingale relative to the

filtration Fn1,Fn2, . . . and define Yn` = Zn` − Zn,`−1 . Suppose that the Yn` ’s have finite

second-order moments and let σ2
n` = E[Y 2

n` | Fn,`−1] (with Fn0 = {∅,Ω}). Assume that∑∞
`=1 Yn` and

∑∞
`=1 σ

2
n` converge with probability 1. Then, if, for n→∞ ,

∞∑
`=1

σ2
n` = σ2 + oP(1), (A.3)

where σ is a positive real number, and

∞∑
`=1

E
[
Y 2
n` I[|Yn`| ≥ ε]

]
→ 0 ∀ε > 0, (A.4)

we have that σ−1
∑∞
`=1 Yn` is asymptotically standard normal.

In order to apply this result, we need to identify the distinct quantities in the present

setting. Let Fn` be the σ -algebra generated by Xn1, . . . ,Xn` and denote by En`[.] the

conditional expectation with respect to Fn` . Then, letting

Yn` := En`[Rn]− En,`−1[Rn] =

√
2(pn − 1)

nE[v2n1]

`−1∑
i=1

vnivn`S
′
niSn`

for ` = 1, . . . , n and (as in Billingsley, 1995) Yn` = 0 for ` > n , we clearly have that Rn =∑n
`=2 Yn` , where the Yn` ’s have finite second-order moments. Also,

∑∞
`=2 Yn` =

∑n
`=2 Yn`

and
∑∞
`=2 σ

2
n` =

∑n
`=2 σ

2
n` , with σ2

n` = En,`−1[Y 2
n`] as in Theorem A.1, and both converge

with probability 1, as required. Now, the crucial conditions (A.3) and (A.4) are shown to

hold in the subsequent lemmas.

Lemma A.1. Under the assumptions of Theorem 3.1,
∑n
`=2 σ

2
n` → 1 in quadratic mean

as n→ ∞ .
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Lemma A.2. Under the assumptions of Theorem 3.1,
∑n
`=2 E[Y 2

n` I[|Yn`| > ε]] → 0

as n→∞ for any ε > 0 .

Before proving these lemmas, we recall that, under the assumptions of Theorem 3.1, the

signs Sni are uniformly distributed over Spn−1(θθθ⊥0 ) (see Section 4) and that the vni ’s are

independent of the Sni ’s, i = 1, . . . , n . From Lemma A.1 in Paindaveine and Verdebout

(2015a) it directly follows that, for fixed n , the quantities ρn,ij := S′niSnj are pairwise

independent and satisfy E[ρn,ij ] = 0, E[ρ2n,ij ] = 1/(pn − 1), and E[ρ4n,ij ] = 3/(p2n − 1).

Proof of Lemma A.1. Rotational symmetry about θθθ0 readily yields

E[Sn`S
′
n`] =

1

pn − 1
(Ipn − θθθ0θθθ

′
0).

The independence between the vni ’s and Sni ’s then provides

σ2
n` = En,`−1[Y 2

n`] =
2(pn − 1)

n2(E[v2n1])2

`−1∑
i,j=1

vnivnjE[v2n`]S
′
niE[Sn`S

′
n`]Snj

=
2

n2E[v2n1]

`−1∑
i,j=1

vnivnjρn,ij .

Hence we obtain

E

[
n∑
`=2

σ2
n`

]
=

2

n2E[v2n1]

n∑
`=2

`−1∑
i,j=1

E[vnivnj ]E[ρn,ij ] =
2

n2

n∑
`=2

(`− 1) =
n− 1

n
. (A.5)

Moreover, the pairwise independence of the ρn,ij ’s entails

Var

[
n∑
`=2

σ2
n`

]
=

4

n4(E[v2n1])2
Var

[
n∑
`=2

`−1∑
i,j=1

vnivnjρn,ij

]
=

4

n4(E[v2n1])2

{
T

(n)
1 + 4T

(n)
2

}
,

with

T
(n)
1 := Var

[
n∑
`=2

`−1∑
i=1

v2ni

]
= Var

[
n−1∑
i=1

(n− i)v2ni

]
=

n−1∑
i=1

(n− i)2 Var[v2n1] ≤ n3 Var[v2n1]

and

T
(n)
2 := Var

[
n∑
`=2

∑
1≤i<j≤`−1

vnivnjρn,ij

]
= Var

[ ∑
1≤i<j≤n−1

(n− j)vnivnjρn,ij

]

=
∑

1≤i<j≤n−1

(n− j)2Var[vnivnjρn,ij ] =
∑

1≤i<j≤n−1

(n− j)2E[v2niu
2
njρ

2
n,ij ]

=
(E[v2n1])2

pn − 1

∑
1≤i<j≤n−1

(n− j)2 ≤ n4(E[v2n1])2

pn − 1
.
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Hence,

Var

[
n∑
`=2

σ2
n`

]
≤ 4Var[v2n1]

n(E[v2n1])2
+

16

pn − 1

≤ 4E[v4n1]

n(E[v2n1])2
+

16

pn − 1
(A.6)

→ 0, (A.7)

in view of Conditions (ii) and (iv) from Theorem 3.1. Using (A.5) and (A.7) in

E

[(
n∑
`=2

σ2
n` − 1

)2]
= Var

[
n∑
`=2

σ2
n`

]
+

(
E

[
n∑
`=2

σ2
n` − 1

])2

then establishes the result.

Proof of Lemma A.2. Applying first the Cauchy-Schwarz inequality, then the Chebyshev

inequality, yields

n∑
`=2

E[Y 2
n` I[|Yn`| > ε]] ≤

n∑
`=2

√
E[Y 4

n`]
√

P[|Yn`| > ε] ≤ 1

ε

n∑
`=2

√
E[Y 4

n`]
√

Var[Yn`].

Noting that Var[Yn`] ≤ E[Y 2
n`] = 2(`− 1)/n2 , we obtain

n∑
`=2

E[Y 2
n` I[|Yn`| > ε]] ≤

√
2

εn

n∑
`=2

√
`E[Y 4

n`]. (A.8)

Using the fact that 0 ≤ vni ≤ 1 almost surely and the independence between the vni ’s and

the Sni ’s, we get

E

[( `−1∑
i=1

vnivn`ρn,i`

)4
]

=

`−1∑
i,j,r,s=1

E
[
v4n`vnivnjvnrvnsρn,i`ρn,j`ρn,r`ρn,s`

]
= (`− 1)(E[v4n1])2E

[
ρ4n,1`

]
+ 3(`− 1)(`− 2)E[v4n1](E[v2n1])2E

[
ρ2n,1`ρ

2
n,2`

]
=

3(`− 1)

p2n − 1
(E[v4n1])2 +

3(`− 1)(`− 2)

(pn − 1)2
E[v4n1](E[v2n1])2

≤ 3

(pn − 1)2

[
`(E[v4n1])2 + `2E[v4n1](E[v2n1])2

]
,
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which yields

E
[
Y 4
n`

]
≤ 4(pn − 1)2

n4(E[v2n1])4
× 3

(pn − 1)2

[
`(E[v4n1])2 + `2E[v4n1](E[v2n1])2

]

≤ 12

n4

[
`

(E[v4n1])2

(E[v2n1])4
+ `2

E[v4n1]

(E[v2n1])2

]
. (A.9)

Plugging into (A.8), we conclude that

n∑
`=2

E[Y 2
n` I[|Yn`| > ε]] ≤

√
24

εn3

n∑
`=2

√
`2

(E[v4n1])2

(E[v2n1])4
+ `3

E[v4n1]

(E[v2n1])2

≤
√

24

εn3

n∑
`=2

(
`

E[v4n1]

(E[v2n1])2
+ `3/2

√
E[v4n1]

(E[v2n1])2

)

≤ O(n−1)
E[v4n1]

(E[v2n1])2
+O(n−1/2)

√
E[v4n1]

(E[v2n1])2
,

which, in view of Condition (iv) from Theorem 3.1, is indeed o(1).

It remains to prove Theorem 3.2 and Theorem 3.3.

Proof of Theorem 3.2. In this proof, C will stand for a generic constant that may change

from line to line. Applying (with δ = 1) the theorem in Heyde and Brown (1970) to the

martingale Rn =
∑n
`=2 Yn` considered in the previous proof readily provides

sup
z∈R

∣∣P[Rn ≤ snz]− Φ(z)
∣∣ ≤ C( n∑

`=2

E
[
Y 4
n`

]
+ Var

[ n∑
`=2

σ2
n`

])1/5

,

with s2n =
∑n
`=2 E

[
σ2
n`

]
= (n − 1)/n (see (A.5)). Using (A.6) and (A.9) then yields that,

for n large enough,

sup
z∈R

∣∣P[Rn ≤ snz]− Φ(z)
∣∣ ≤ C(cn + c2n + p−1n

)1/5 ≤ C(cn + p−1n
)1/5

, (A.10)

where we let

cn :=
E[v4n1]

n(E[v2n1])2
·

It therefore only remains to show that, for n large enough,

sup
z∈R

∣∣P[W̃n ≤ snz]− P[Rn ≤ snz]
∣∣ ≤ C(cn + p−1n

)1/5
. (A.11)
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To do so, recall (A.1) and write∣∣P[W̃n ≤ z]− P[Rn ≤ z]
∣∣ =

∣∣P[Rn ≤ Lnz]− P[Rn ≤ z]
∣∣

= P[min(z, Lnz) ≤ Rn ≤ max(z, Lnz)]

≤ P[|Ln − 1| > c2/5n ] + P[min(z, Lnz) ≤ Rn ≤ max(z, Lnz), |Ln − 1| ≤ c2/5n ]

=: En + Fn,

say. Using the Markov inequality and (A.2), we readily obtain

En ≤
E
[
|Ln − 1|2

]
c
4/5
n

≤ cn

c
4/5
n

= c1/5n .

As for Fn , applying (A.10) to

Fn ≤ P[min((1± c2/5n )z) ≤ Rn ≤ max((1± c2/5n )z)]

≤ P[Rn ≤ max((1± c2/5n )z)]− P[Rn ≤ min((1± c2/5n )z)]

yields

Fn ≤ C
(
cn + p−1n

)1/5
+ Φ(max((1± c2/5n )z)/sn)− Φ(min((1± c2/5n )z)/sn)

≤ C
(
cn + p−1n

)1/5
+

2c
2/5
n |z|

sn
√

2π
exp

(
− (1 + ξn,zc

2/5
n )2z2

2s2n

)
for some ξn,z ∈ (−1, 1). For n large enough, we therefore have

Fn ≤ C
(
cn + p−1n

)1/5
+

2c
2/5
n |z|

sn
√

2π
exp

(
− (1/2)2z2

2s2n

)
≤ C

(
cn + p−1n

)1/5
+ Cc1/5n ,

so that

En + Fn ≤ C
(
cn + p−1n

)1/5
+ Cc1/5n ≤ C

(
cn + p−1n

)1/5
.

We conclude that, still for n large enough,

sup
z∈R

∣∣P[W̃n ≤ snz]− P[Rn ≤ snz]
∣∣ = sup

z∈R

∣∣P[W̃n ≤ z]− P[Rn ≤ z]
∣∣ ≤ C(cn + p−1n

)1/5
,

which is (A.11). This establishes the result.

Proof of Theorem 3.3. Decompose W̃n − Q̃n into An +Bn , with

An =

(
E[v2n1]

1
n

∑n
i=1 v

2
ni

− 1

) √
2(pn − 1)

nE[v2n1]

∑
1≤i<j≤n

vnivnjS
′
niSnj
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and

Bn =

√
2(pn − 1)

n

∑
1≤i<j≤n

(
vnivnj
E[v2n1]

− 1

)
S′niSnj .

Propositions A.1 and A.2 readily entail that An = oP(1) as n → ∞ . As for Bn , we have

(see the beginning of the Appendix for a recall on some results regarding expectations of

the signs Sni )

E[B2
n] =

2(pn − 1)

n2

∑
1≤i<j≤n

E

[(
vnivnj
E[v2n1]

− 1

)2

(S′niSnj)
2

]
=

2

n2

∑
1≤i<j≤n

E

[(
vnivnj
E[v2n1]

− 1

)2
]

=
n− 1

n
E

[(
vn1vn2
E[v2n1]

− 1

)2
]

=
2(n− 1)

n
E

[
1− vn1vn2

E[v2n1]

]
=

2(n− 1)

n

(
1− (E[vn1])2

E[v2n1]

)
,

which, in view of Condition (v), is o(1) as n→∞ . The result follows.

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S., 2003. Generative model-based clustering of

directional data. In Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, 19–28.

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S., 2005. Clustering on the unit hypersphere using

von mises-fisher distributions. J. Mach. Learn. Res. 6, 1345–1382.

Banerjee, A., Ghosh, J., 2002. Frequency sensitive competitive learning for clustering on

high-dimensional hyperspheres. In Proceedings International Joint Conference on Neural

Networks, 1590–1595.

Banerjee, A., Ghosh, J., 2004. Frequency sensitive competitive learning for scalable balanced

clustering on high-dimensional hyperspheres. IEEE T. Neural Networ. 15, 702–719.

Baricz, A., Ponnusamy, S., 2013. On turán type inequalities for modified bessel functions.

Proc. Amer. Math. Soc. 141 (523–532).

Billingsley, P., 1995. Probability and Measure, 3rd Edition. Wiley, New York, Chichester.

Cai, T., Fan, J., Jiang, T., 2013. Distributions of angles in random packing on spheres. J.

Mach. Learn. Res. 14, 1837–1864.

Cai, T., Jiang, T., 2012. Phase transition in limiting distributions of coherence of high-

dimensional random matrices. J. Multivariate Anal. 107, 24–39.

Chen, S., Qin, Y., 2010. A two-sample test for high-dimensional data with applications to

gene-set testing. Ann. Statist. 38, 808–835.

Chen, S. X., Zhang, L.-X., Zhong, P.-S., 2010. Tests for high-dimensional covariance

matrices. J. Amer. Statist. Assoc. 105, 810–819.

Dryden, I. L., 2005. Statistical analysis on high-dimensional spheres and shape spaces. Ann.

Statist. 33, 1643–1665.

19



Heyde, C. C., Brown, B. M., 1970. On the departure from normality of a certain class of

martingales. Ann. Mathem. Statist. 41, 2161–2165.

Jiang, T., Yang, F., 2013. Central limit theorems for classical likelihood ratio tests for high-

dimensional normal distributions. Ann. Statist. 41, 2029–2074.

Johnstone, I. M., 2001. On the distribution of the largest eigenvalue in principal components

analysis. Ann. Statist. 29, 295–327.

Ledoit, O., Wolf, M., 2002. Some hypothesis tests for the covariance matrix when the

dimension is large compared to the sample size. Ann. Statist. 30, 1081–1102.

Li, J., Chen, S. X., 2012. Two sample tests for high-dimensional covariance matrices. Ann.

Statist. 40, 908–940.

Mardia, K. V., Jupp, P. E., 2000. Directional Statistics. John Wiley & Sons.

Onatski, A., Moreira, M., Hallin, M., 2013. Asymptotic power of sphericity tests for high-

dimensional data. Ann. Statist. 41, 1204–1231.

Paindaveine, D., Verdebout, T., 2015a. On high-dimensional sign tests. Bernoulli, to appear.

Paindaveine, D., Verdebout, T., 2015b. Optimal rank-based tests for the location parameter

of a rotationally symmetric distribution on the hypersphere. In: M. Hallin, D. Mason,

D. Pfeifer, J. Steinebach (Eds.), Mathematical Statistics and Limit Theorems: Festschrift

in Honor of Paul Deheuvels. Springer, to appear.

Saw, J. G., 1978. A family of distributions on the m -sphere and some hypothesis tests.

Biometrika 65, 69–73.

Schott, J., 2007. Some high-dimensional tests for a one-way manova. J. Multivariate Anal.

98, 1825–1839.

Srivastava, M. S., Fujikoshi, Y., 2006. Multivariate analysis of variance with fewer observa-

tions than the dimension. J. Multivariate Anal. 97, 1927–1940.

Srivastava, M. S., Katayama, S., Kano, Y., 2013. A two sample test in high dimensional

data. J. Multivariate Anal. 114, 349–358.

Srivastava, M. S., Kubokawa, T., 2013. Tests for multivariate analysis of variance in high

dimension under non-normality. J. Multivariate Anal. 115, 204–216.

Stam, A. J., 1982. Limit theorems for uniform distributions on spheres in high-dimensional

euclidean spaces. J. Appl. Probab. 19, 221–228.

Watson, G., 1944. A Treatise on the Theory of Bessel Functions, second edition Edition.

Cambridge University Press.

Watson, G. S., 1983a. Limit theorems on high-dimensional spheres and stiefel manifolds. In:

Karlin, S., Amemiya, T., Goodman, L. A. (Eds.), Studies in Econometrics, Time Series,

and Multivariate Statistics. Academic Press, 559–570, New York, pp. 559–570.

20



Watson, G. S., 1983b. Statistics on Spheres. Wiley, New York.

Watson, G. S., 1988. The langevin distribution on high dimensional spheres. J. Appl. Statist.

15, 123–130.

21


	Introduction
	Rotational symmetry and the Watson test
	A high-dimensional Watson test
	Spiked covariance matrices
	Monte Carlo simulation study
	Null behavior
	Behavior under the alternative


