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Copula modeling has become ubiquitous in modern statistics. Here, the problem of nonparametrically es-
timating a copula density is addressed. Arguably the most popular nonparametric density estimator, the
kernel estimator is not suitable for the unit-square-supported copula densities, mainly because it is heavily
affected by boundary bias issues. In addition, most common copulas admit unbounded densities, and kernel
methods are not consistent in that case. In this paper, a kernel-type copula density estimator is proposed.
It is based on the idea of transforming the uniform marginals of the copula density into normal distribu-
tions via the probit function, estimating the density in the transformed domain, which can be accomplished
without boundary problems, and obtaining an estimate of the copula density through back-transformation.
Although natural, a raw application of this procedure was, however, seen not to perform very well in the
earlier literature. Here, it is shown that, if combined with local likelihood density estimation methods, the
idea yields very good and easy to implement estimators, fixing boundary issues in a natural way and able to
cope with unbounded copula densities. The asymptotic properties of the suggested estimators are derived,
and a practical way of selecting the crucially important smoothing parameters is devised. Finally, extensive
simulation studies and a real data analysis evidence their excellent performance compared to their main
competitors.

Keywords: boundary bias; copula density; local likelihood density estimation; transformation kernel
density estimator; unbounded density

1. Introduction

For the last two decades copula modeling has emerged as a major research area of statistics.
A bivariate copula function C is the joint cumulative distribution function (c.d.f.) of a bivari-
ate random vector whose marginals are Uniform over [0,1], that is, C : I .= [0,1]2 → [0,1] :
(u, v) → C(u, v) = P(U ≤ u,V ≤ v), where U ∼ U[0,1], V ∼ U[0,1]. Copulas arise naturally as
a mere consequence of two well-known facts. First, the probability-integral transform result: if
X ∼ FX is continuous, then FX(X) ∼ U[0,1]; and second, Sklar’s theorem [49]: for any continu-
ous bivariate c.d.f. FXY , there exists a unique function C such that

FXY (x, y) = C
(
FX(x),FY (y)

) ∀(x, y) ∈ R
2, (1.1)

where FX and FY are the marginals of FXY . From the above, this function C is, indeed, a copula,
called the copula of FXY . It describes how FX and FY ‘interact’ to produce the joint FXY and
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clearly disjoints the marginal behaviors of X and Y from their dependence structure. See Joe [33]
and Nelsen [42] for book length treatment of the foregoing ideas. More compact reviews include
[30] and [16]. Today, copulas are used extensively in statistical modeling in all areas, including
quantitative finance and insurance. Therefore, empirically estimating a copula function from a
bivariate sample {(Xi, Yi)}ni=1 drawn from FXY has become an important problem of modern
statistical modeling.

Of course, estimating C essentially amounts to fitting a bivariate distribution, for what many
parametric families have been suggested and studied: Gaussian, Student-t , Clayton, Frank or
Gumbel copulas among others (see again [33] or [42] for details). These parametric models have
formed the main body of the literature in the field so far. However, they suffer from the usual lack
of flexibility of parametric approaches and the induced risk of misspecification. For instance, it
has been argued that the main reason behind the 2009 global financial crisis was a reckless usage
of the Gaussian copula [45]. There is, therefore, a tremendous need for flexible nonparametric
copula models, making no rigid assumptions on the underlying distributions. An early step in
that direction was the empirical copula devised by Deheuvels [12]. The related empirical copula
process was studied further in [19,47,50] and [6], and turns out to be the cornerstone of a variety
of nonparametric copula-based procedures, see e.g. [25,26,29] or [37], to cite only a few. More-
over, Fermanian and Scaillet [20], Chen and Huang [10] and Omelka, Gijbels and Veraverbeke
[43] studied kernel methods to obtain flexible smooth estimates of the bivariate c.d.f. C.

Usually, though, a distribution is more readily interpretable in terms of its density function
than directly through its c.d.f., and a copula is no different. Assume that the bivariate c.d.f. C is
absolutely continuous. Then, its associated copula density is

c(u, v) = ∂2C

∂u∂v
(u, v)

for (u, v) ∈ I . This paper addresses the problem of nonparametrically estimating c, for what
kernel methods again appear natural. This approach was pioneered in [2] and [28], and arguably
remains very attractive compared to its competitors, such as splines [35,48], wavelets [1,24],
Bernstein polynomials [4,5,32] or others [44], for its simplicity.

Three factors make kernel estimation of c not standard, though. First, a major concern is
that kernel estimators suffer from boundary bias problems. Given the bivariate sample {(Ui =
FX(Xi),Vi = FY (Yi))}ni=1, the standard kernel estimator for c, say ĉ∗, at (u, v) ∈ I would be
[51], Chapter 4

ĉ∗(u, v) = 1

n|HUV |1/2

n∑
i=1

K
(

H−1/2
UV

(
u − Ui

v − Vi

))
, (1.2)

where K : R2 →R is a kernel function and HUV is a bandwidth matrix. However, estimator (1.2)
is known not to be consistent along boundaries of I: standard arguments show that E(ĉ∗(u, v)) =
1
4c(u, v)+O(h) at corners and E(ĉ∗(u, v)) = 1

2c(u, v)+O(h) on the borders. In fact, ĉ∗ does not
‘feel’ the boundaries and places through K positive mass beyond them. Although some papers
ignored these issues [18,20,46], it is clear that accurate estimation of c calls for some boundary
correction. Such corrections have indeed been proposed, e.g. mirror reflection [28] or the usage
of boundary kernels [10], but with mixed results.
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Secondly, kernel estimators are not consistent for unbounded densities. Yet, many copula den-
sities of interest are unbounded: even in the apparently easy case of a bivariate Normal vector
with moderate correlation, the copula density is unbounded in two of the corners of I . There-
fore, any good estimator of c should be able to cope with such unboundedness. Finally, estimat-
ing c cannot be made from a genuine random sample from its c.d.f. C, as C is the distribution
of (U,V ) = (FX(X),FY (Y )) and FX and FY are typically unknown. Hence, the observations
(Ui,Vi) are unavailable, and estimator (1.2) is, in fact, infeasible. Let F̂Xn(x) = 1

n

∑n
j=1 1{Xj ≤x}

be the empirical c.d.f. of X, and similarly for F̂Yn. Define

Ûi = n

n + 1
F̂Xn(Xi) and V̂i = n

n + 1
F̂Yn(Yi) (1.3)

the ‘pseudo-observations’ (the rescaling by n/(n+1), aiming at keeping Ûi and V̂i in the interior
of [0,1], is customary). Then, it is common practice to treat the pseudo-sample {(Ûi , V̂i)}ni=1 as
a sample from C and to use it instead of the ‘true’ sample {(Ui,Vi)}ni=1, although this may affect
the statistical properties of the ensuing estimators [8,27].

This paper proposes and studies a new, kernel-type estimator of the copula density c. It is
based on the idea recently suggested in [22] for estimating univariate densities supported on
the unit interval. Based on the transformation method, it takes the constrained nature of the
support into account from the outset, that is, without relying on ad hoc boundary corrections
(reflection, boundary kernels, etc.). In short, the initial [0,1]-supported variables U and V are
transformed through the probit function into variables whose supports are unconstrained, the
density in the transformed domain is estimated free from boundary issues via local likelihood
methods and an estimate of the initial density on [0,1]2 is obtained by back-transformation. This
method appears very natural and, in Geenens’s [22] univariate case, lead to estimators superior
to their main competitors in the simulation studies for a wide range of density shapes, including
for unbounded densities. The idea seems, therefore, suitable for estimating copula densities as
well.

This paper does not just study a bivariate extension of Geenens’s [22] idea to the copula setting,
though. The novel contribution is triple. First, it is explained why the probit transformation is the
most appropriate in the copula setting, whereas it was just a convenient choice in the univariate
framework. Second, when deriving the asymptotic properties of the estimators, the effect of re-
sorting to pseudo-observations is carefully analyzed through Segers’s [47] recent developments
on the empirical copula process (of course, the effect of pseudo-observations was not relevant to
Geenens’s [22] estimators). One of the main conclusion of the paper is that using the pseudo-
observations (1.3) instead of genuine observations does not affect the statistical properties of the
kernel copula density estimators. This holds true under general bandwidth conditions, including
the optimal order, unlike previous papers in the field which required sub-optimal bandwidths
(see, e.g., Fermanian’s [18] Assumption (B0)) to annihilate the effect of using (1.3). Third, an
innovative and effective data-driven bandwidth selection procedure is derived for bivariate den-
sity estimation. It does not assume a constrained form (e.g., diagonal) for the bandwidth matrix,
and the idea can be used as-is for any multivariate kernel density estimation (it is not specific to
copula modeling).

Exploring the probit transformation idea in the context of copula density estimation is the
topic of Section 2, and several versions of the estimator will be suggested. Their asymptotic
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properties will be derived in Section 3, and the above mentioned bandwidth matrix selection rule
will be detailed in Section 4. Simulation studies evidencing the very good practical behavior of
the probit-transformation estimators (Section 5), a real data analysis (Section 6) and some final
remarks (Section 7) conclude the paper.

2. Probit transformation kernel copula density estimation

2.1. Probit transformation

Direct kernel estimation of c is made difficult mainly by the constrained nature of its support
I = [0,1]2. Now, define S = �−1(U) and T = �−1(V ), where � is the standard normal c.d.f.
and �−1 is its quantile (probit) function. Given that both U and V are U[0,1], S and T are
both standard normal, which, of course, does not make the vector (S,T ) bivariate normal. That
will only be the case if the copula of FST , that is, C itself (copulas are invariant to increasing
transformations of their margins [42], Theorem 2.4.3), is the Gaussian copula. The idea is that,
if c(u, v) > 0 Lebesgue-a.e. over I , (S,T ) has unconstrained support R2 and estimating its
density, say fST , cannot suffer from boundary issues. In addition, due to its normal margins,
one can expect fST to be very smooth and well-behaved, and its estimation easy. In particular,
under mild assumptions, fST and its partial derivatives up to the second order will be seen to be
uniformly bounded on R2, even in the case of unbounded copula density c (Lemma A.1 in the
Appendix [23]).

As the copula of FST is C, S ∼ N (0,1) and T ∼ N (0,1), one has, for all (s, t) ∈ R
2,

FST (s, t) = P(S ≤ s, T ≤ t) = C(�(s),�(t)) ((1.1) for (S,T )). Differentiating with respect
to s and t , one gets

fST (s, t) = c
(
�(s),�(t)

)
φ(s)φ(t), (2.1)

where φ is the standard normal density. Inverting this expression, one obtains, for any (u, v) ∈
(0,1)2,

c(u, v) = fST (�−1(u),�−1(v))

φ(�−1(u))φ(�−1(v))
. (2.2)

So, any estimator f̂ST of fST on R
2 automatically produces an estimator of the copula density

on int(I):

ĉ(τ )(u, v) = f̂ST (�−1(u),�−1(v))

φ(�−1(u))φ(�−1(v))
, (2.3)

where the superscript (τ ) refers to the idea of transformation. When necessary, ĉ(τ ) can
also be defined at the boundaries of I by continuity. This transformation-based estimator
enjoys many nice properties. Clearly, ĉ(τ ) cannot allocate any probability outside I , since
(�−1(u),�−1(v)) is not defined for (u, v) /∈ I . Also, if f̂ST is a bona fide density function,
in the sense that f̂ST (s, t) ≥ 0 for all (s, t) and

∫∫
R2 f̂ST (s, t) ds dt = 1, then automatically,

through the changes of variable u = �(s) and v = �(t), ĉ(τ )(u, v) ≥ 0 for all (u, v) ∈ I and
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∫∫
I ĉ(τ )(u, v) dudv = 1. Finally, if f̂ST is a uniformly (weak or strong) consistent estimator for

fST , that is, sup(s,t)∈R2 |f̂ST (s, t) − fST (s, t)| P/a.s.→ 0 as n → ∞, ĉ(τ ) inherits that uniform con-
sistency on any compact proper subset of I . As fST is uniformly continuous on R

2 (Lemma A.1),
the estimators suggested for it in the next subsections are all uniformly consistent on R

2. Hence,
all the estimators for c suggested in this paper are uniformly consistent on any compact proper
subset of I .

2.2. The naive estimator

A first natural idea would be to use, as f̂ST in (2.3), the standard kernel density estimator:

f̂ ∗
ST (s, t) = 1

n|HST |1/2

n∑
i=1

K
(

H−1/2
ST

(
s − Si

t − Ti

))
, (2.4)

where K is a kernel function and HST is a bandwidth matrix, and {(Si = �−1(Ui), Ti =
�−1(Vi))}ni=1 is the transformed sample. However, as the (Ui,Vi)’s are unavailable, so are the
(Si, Ti)’s, and one has to use

{(
Ŝi = �−1(Ûi), T̂i = �−1(V̂i)

)}n

i=1, (2.5)

the pseudo-transformed sample, instead. The feasible version of (2.4) is, therefore,

f̂ST (s, t) = 1

n|HST |1/2

n∑
i=1

K
(

H−1/2
ST

(
s − Ŝi

t − T̂i

))
. (2.6)

Through (2.3), this directly leads to the following probit transformation kernel copula density
estimator:

ĉ(τ )(u, v) = 1

n|HST |1/2φ(�−1(u))φ(�−1(v))

n∑
i=1

K
(

H−1/2
ST

(
�−1(u) − �−1(Ûi)

�−1(v) − �−1(V̂i)

))
. (2.7)

This is essentially the estimator suggested in [8], also used as-is in [40], although it was not
studied in any details in those two papers. Omelka, Gijbels and Veraverbeke [43] derived the
theoretical properties of an estimator for the copula C (not its density) based on the same trans-
formation.

This idea was, however, called ‘naive’ in [22] in the univariate case, and the same qualifier
could be used for (2.7): although designed to fix boundary issues, it does not provide good results
close to the borders, as will be seen later. Geenens [22] explained the reasons for that failure, and
suggested some remedies. In particular, estimating the density in the transformed domain via
local likelihood offers a promising alternative while keeping the intuitive appeal of the probit-
transformation estimator.
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2.3. Improved probit-transformation copula density estimators

Loader [39] and Hjort and Jones [31] proposed two similar yet different formulations of the local
likelihood density estimator. Loader [39] locally approximates the logarithm of the density by
a polynomial, whereas Hjort and Jones [31] consider local parametric density modeling. This
paper will only make use of Loader’s [39] idea, mainly because the asymptotic theory is more
transparent. In any case, both formulations share the same advantages and typically yield very
similar estimates.

In this setting of estimating fST from the pseudo-sample {(Ŝi , T̂i)}ni=1, Loader’s [39] local
likelihood estimator is defined as follows. Around (s, t) ∈ R

2, logfST is assumed to be well
approximated by a polynomial of order p = 1 (local log-linear) or p = 2 (local log-quadratic).
Specifically, it is assumed that

logfST (š, ť ) 
 a1,0(s, t) + a1,1(s, t)(š − s) + a1,2(s, t)(ť − t)
(2.8).= Pa1(š − s, ť − t)

for (š, ť ) ‘close’ to (s, t) in the first case (p = 1), while in the second case (p = 2)

logfST (š, ť ) 
 a2,0(s, t) + a2,1(s, t)(š − s) + a2,2(s, t)(ť − t)

+ a2,3(s, t)(š − s)2 + a2,4(s, t)(ť − t)2 + a2,5(s, t)(š − s)(ť − t) (2.9)
.= Pa2(š − s, ť − t).

The vectors a1(s, t) = (a1,0(s, t), a1,1(s, t), a1,2(s, t)) and a2(s, t)
.= (a2,0(s, t), . . . , a2,5(s, t))

are then estimated by solving a weighted maximum likelihood problem. For either p = 1,2,

ãp(s, t) = arg max
ap

{
n∑

i=1

K
(

H−1/2
ST

(
s − Ŝi

t − T̂i

))
Pap (Ŝi − s, T̂i − t)

(2.10)

− n

∫ ∫
R2

K
(

H−1/2
ST

(
s − š

t − ť

))
exp

(
Pap (š − s, ť − t)

)
dš dť

}
,

where, as previously, K is a kernel function and HST is a bandwidth matrix. The estimate of
fST at (s, t) is then f̃

(p)
ST (s, t) = exp(ãp,0(s, t)), for p = 1,2. ‘Improved’ probit-transformation

kernel copula density estimators for c(u, v) follow from (2.3):

c̃(τ,p)(u, v) = f̃
(p)
ST (�−1(u),�−1(v))

φ(�−1(u))φ(�−1(v))
(2.11)

for p = 1 and p = 2. The motivation and the advantages of estimating fST by local likelihood
methods instead of raw kernel density estimation are related to the detailed discussion in [22].
Essentially, the boundary behavior of the estimator of c on I is dictated by the tail behavior of the
estimator of fST on R

2. But, raw kernel estimators are known to work poorly in the tails of den-
sities, with frequent occurrences of ‘spurious bumps’. These fluctuations being greatly magnified
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by the back-transformation (2.3), the so-produced estimator of c shows a very erratic behavior
at the boundaries. On the contrary, local likelihood estimators have favorable tail behavior, with
very smooth tail estimates. This translates into accurate and well-behaved estimates for c close
to the boundaries when back into the initial domain I . These observations will be confirmed in
the next section, where the asymptotic properties of the estimators (‘naive’ and ‘improved’) are
derived.

3. Asymptotic properties

For simplicity, it will be assumed that K is a product Gaussian kernel, that is, K(z1, z2) =
φ(z1)φ(z2), and HST = h2I for some h > 0. Note that, in practice, there are reasons to keep
an unconstrained, non-diagonal bandwidth matrix HST . In particular, the copula density is typ-
ically stretched along one of the diagonals of I when X and Y are dependent, which provides
a density fST likewise stretched along one of the 45 degrees lines in R

2. Hence, using a band-
width matrix directing smoothing in that particular direction is sensible [15], as discussed further
in Section 4. That said, theoretical results for that general case would be less tractable than,
while qualitatively equivalent to, the simpler case presented below. Note that for that particu-
lar kernel K,

∫∫
K2(z1, z2) dz1 dz2 = (4π)−1 and

∫∫
z2
kK(z1, z2) dz1 dz2 = 1, k = 1,2. These

quantities frequently arise in the properties of kernel estimators, and direct use of these par-
ticular numerical values will be made in the results below. All proofs are to be found in the
Appendix [23].

3.1. The naive estimator and an amended version

Consider the naive estimator (2.7) which, with the above specifications of K and HST , reduces
to

ĉ(τ )(u, v) = 1

nh2φ(�−1(u))φ(�−1(v))
(3.1)

×
n∑

i=1

φ

(
�−1(u) − �−1(Ûi)

h

)
φ

(
�−1(v) − �−1(V̂i)

h

)
.

Given (2.3), it is clear that its statistical properties will entirely depend on those of (2.6), here

f̂ST (s, t) = 1

nh2

n∑
i=1

φ

(
s − Ŝi

h

)
φ

(
t − T̂i

h

)
. (3.2)

If fST admits continuous second-order partial derivatives, expressions for the bias and the vari-
ance of the ideal, infeasible estimator f̂ ∗

ST (2.4), as well as its asymptotic normality, are well
known [51], Chapter 4. Proposition 3.1 below ascertains that using the pseudo-observations (2.5)
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instead of genuine ones does not affect those properties. Note that (3.2) can be written

f̂ST (s, t) = 1

h2

∫ ∫
R2

φ

(
s − �−1(u)

h

)
φ

(
t − �−1(v)

h

)
dĈn(u, v), (3.3)

where Ĉn is the empirical copula

Ĉn(u, v) = 1

n

n∑
i=1

1{Ûi≤u,V̂i≤v}. (3.4)

Hence, the behavior of f̂ST (s, t) will mostly be driven by the properties of Ĉn on I . Assume the
following.

Assumption 3.1. The sample {(Xi, Yi)}ni=1 is an i.i.d. sample from the joint distribution FXY , a
bivariate distribution with continuous marginals FX and FY .

Assumption 3.2. The copula C of FXY is such that (∂C/∂u)(u, v) and (∂2C/∂u2)(u, v) exist
and are continuous on {(u, v) : u ∈ (0,1), v ∈ [0,1]}, and (∂C/∂v)(u, v) and (∂2C/∂v2)(u, v)

exist and are continuous on {(u, v) : u ∈ [0,1], v ∈ (0,1)}. In addition, there are constants K1
and K2 such that ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣∣∣∂2C

∂u2
(u, v)

∣∣∣∣ ≤ K1

u(1 − u)
, for (u, v) ∈ (0,1) × [0,1];

∣∣∣∣∂2C

∂v2
(u, v)

∣∣∣∣ ≤ K2

v(1 − v)
, for (u, v) ∈ [0,1] × (0,1).

Assumption 3.3. The density c of C exists, is positive and admits continuous second-order par-
tial derivatives on the interior of the unit square I . In addition, there is a constant K00 such
that

c(u, v) ≤ K00 min

(
1

u(1 − u)
,

1

v(1 − v)

)
∀(u, v) ∈ (0,1)2. (3.5)

Assumption 3.1 guarantees the existence and the uniqueness of the copula C of FXY . As-
sumptions 3.2–3.3 mostly reduce to Conditions 2.1 and 4.1 in [47], who claims that they are
not restrictive. In particular, they were designed for relaxing to a large extent some of the as-
sumptions previously commonplace in the copula literature, but which were violated by most of
the usual copula models used in practice. Specifically, Segers [47] shows that they hold for many
copula families, such as Gaussian and extreme-value copulas (subject to some conditions on their
Pickands dependence function), and Omelka, Gijbels and Veraverbeke [43] explicitly show that
they are satisfied for some common Archimedean copulas such as Clayton and Gumbel, and for
Student copulas as well. Compared to [47], Assumption 3.3 only requires further the existence
and continuity of second-order partial derivatives of c, which is natural in kernel estimation. It is
worth noting that c is allowed to grow unboundedly in some of the corners of I , provided (3.5)
remains valid.
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Proposition 3.1. Assume that K(z1, z2) = φ(z1)φ(z2) and HST = h2I with h ∼ n−a for some
a ∈ [1/6,1/4). Under Assumptions 3.1–3.3, the estimator (3.2) at any (s, t) ∈R

2 is such that

√
nh2

(
f̂ST (s, t) − fST (s, t) − h2bST (s, t)

) L−→ N
(
0, σ 2

ST (s, t)
)
, (3.6)

where bST (s, t) = 1
2 (

∂2fST

∂s2 (s, t) + ∂2fST

∂t2 (s, t)) and σ 2
ST (s, t) = fST (s,t)

4π
.

An important observation is that this result holds true for h ∼ n−a , a ∈ [1/6,1/4), which in-
cludes the optimal bandwidth order h ∼ n−1/6 for bivariate density estimation. Now, as recalled
in Section 1, resorting to pseudo-observations is known to usually affect the properties of most
estimators in copula modeling. In particular, an overriding result in the field is the weak conver-
gence of the empirical copula process

Cn(u, v)
.= √

n
(
Ĉn(u, v) − C(u, v)

)
� GC(u, v)

(3.7)
.= BC(u, v) − ∂C

∂u
(u, v)BC(u,1) − ∂C

∂v
(u, v)BC(1, v),

where BC(u, v) is the tight centered Gaussian process whose covariance function is
E(BC(u, v)BC(u′, v′)) = C(u∧u′, v∧v′)−C(u, v)C(u′, v′) [19,47]. In fact, BC(u, v) would be
the limiting process if the margins were known, i.e. if true Ui ’s and Vi ’s were used in (3.4). The
extra two terms in the right-hand side of (3.7) are, therefore, often interpreted as ‘the price to pay’
for using pseudo-observations – although this effect may be advantageous [27]. Yet, the proof of
Proposition 3.1 reveals that the effect of those two terms asymptotically vanishes within (3.3).
As a result, the rate of convergence, as well as the asymptotic bias and variance, are the same as
those of the ideal estimator f̂ ∗

ST using true (Ui,Vi)’s. This is because a kernel density estimator
converges slower than an empirical distribution function. Resorting to pseudo-observations may
disturb the

√
n-convergence of the latter, but it goes unnoticed compared to the nonparametric

convergence rate O((nh2)−1/2) of the former.
Now, differentiating (2.1) yields⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂fST

∂s
(s, t) = ∂c

∂u

(
�(s),�(t)

)
φ2(s)φ(t) − sc

(
�(s),�(t)

)
φ(s)φ(t),

∂2fST

∂s2
(s, t) = ∂2c

∂u2

(
�(s),�(t)

)
φ3(s)φ(t) − 3s

∂c

∂u

(
�(s),�(t)

)
φ2(s)φ(t)

+ (
s2 − 1

)
c
(
�(s),�(t)

)
φ(s)φ(t)

(3.8)

(and similar for ∂fST

∂t
, ∂2fST

∂t2 and ∂2fST

∂s ∂t
). Hence, combining (2.1), (2.3), (3.6) and (3.8), one can

state:

Theorem 3.1. Under the assumptions of Proposition 3.1, the ‘naive’ probit transformation ker-
nel copula density estimator (3.1) at any (u, v) ∈ (0,1)2 is such that

√
nh2

(
ĉ(τ )(u, v) − c(u, v) − h2b(u, v)

) L−→ N
(
0, σ 2(u, v)

)
,
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where

b(u, v) = 1

2

{
∂2c

∂u2
(u, v)φ2(�−1(u)

) + ∂2c

∂v2
(u, v)φ2(�−1(v)

)

− 3

(
∂c

∂u
(u, v)�−1(u)φ

(
�−1(u)

) + ∂c

∂v
(u, v)�−1(v)φ

(
�−1(v)

))
(3.9)

+ c(u, v)
({

�−1(u)
}2 + {

�−1(v)
}2 − 2

)}

and σ 2(u, v) = c(u,v)

4πφ(�−1(u))φ(�−1(v))
.

When (u, v) approaches one of the boundaries, both the (asymptotic) bias and variance of
the estimator tend to grow unboundedly. Indeed, σ 2(u, v) ∝ c(u, v)/(φ(�−1(u))φ(�−1(v)))

and b(u, v) includes the term c(u, v)({�−1(u)}2 + {�−1(v)}2 − 2), and the functions �−1(·)
and 1/φ(�−1(·)) are unbounded. Thus, along the boundaries, ĉ(τ ) will work properly only over
areas, if any, where c approaches 0 very smoothly. Otherwise, ĉ(τ ) will typically show a very
erratic behavior (large variance) and will be prone to exploding (large positive bias), especially
in the corners. Figure 1 illustrates these problems, from a typical sample of size n = 1000 drawn
from the Gaussian copula with correlation ρ = 0.3 (left panel). The corresponding naive probit-
transformation kernel estimator is shown in the middle panel. An unconstrained matrix HST

was used in (2.6)–(2.7) and chosen by the multivariate Normal Reference rule [7]. Here, this is
optimal: C being a Gaussian copula, fST is a bivariate normal density. Over the middle of I ,
the estimator works decently, but towards the boundaries the estimate shows coarse folds and,
indeed, hypertrophies the peaks at (0,0) an (1,1). Clearly, this estimator is not acceptable as-is.
It is, therefore, not surprising that it has been reported not to perform well, see, for example,
Bouezmarni, El Ghouch and Taamouti’s [4] simulations.

Figure 1. True Gaussian copula density with ρ = 0.3 (left), its naive probit-transformation kernel estimator
from a typical random sample of size n = 1000 (middle) and its amended naive probit-transformation kernel
estimator from the same sample (right). The (unconstrained) bandwidth matrix HST was chosen by the
Normal Reference rule in the (S,T )-domain.
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The third, unbounded term in (3.9) can, however, be easily adjusted for. Instead of (2.3), take

ĉ(τ am)(u, v) = f̂ST (�−1(u),�−1(v))

φ(�−1(u))φ(�−1(v))
(3.10)

× 1

1 + (h2/2)({�−1(u)}2 + {�−1(v)}2 − 2)
.

For this ‘amended’ version of ĉ(τ ), one can see that the asymptotic bias becomes proportional to

b(am)(u, v) = 1

2

{
∂2c

∂u2
(u, v)φ2(�−1(u)

) + ∂2c

∂v2
(u, v)φ2(�−1(v)

)

− 3

(
∂c

∂u
(u, v)�−1(u)φ

(
�−1(u)

) + ∂c

∂v
(u, v)�−1(v)φ

(
�−1(v)

))}
.

In fact, the deterministic, multiplicative amendment in (3.10) exactly makes it up for the third
term in (3.9) in the asymptotic development, given that (1 + h2)−1 = 1 − h2 + o(h2) as h → 0.
The improvement is illustrated in Figure 1 (right panel), where ĉ(τ am) for the same data set as in
the middle panel is shown. The peaks at (0,0) and (1,1) are now roughly of the right height. The
wiggly appearance of the estimate along boundaries mostly remains, though, as the (asymptotic)
variance is not affected by the amendment. On a side note, the amendment implies that the
estimator ĉ(τ am)(u, v) does not integrate to 1 over I any more, which calls for a renormalization
such as ĉ(τ am)(u, v) ← ĉ(τ am)(u, v)/

∫∫
I ĉ(τ am)(u, v) dudv. This is, however, frequent in other

nonparametric density estimation procedures, and is not really a problem.

3.2. Improved probit-transformation kernel copula density estimators

Now the properties of the ‘improved’ probit-transformation kernel copula density estimators are
derived. Again, the results are stated for K a product of two univariate Gaussian kernels and
HST = h2I, for some h > 0, in (2.11). The first version estimates the joint density fST by the
local log-linear estimator f̃

(1)
ST . Consider first the ‘ideal’ version f̃

∗(1)
ST of this estimator, using the

true sample {(Si, Ti)}ni−1. From [39], one gets, for all (s, t) ∈ R
2 at which fST (s, t) is positive

and admits continuous second-order partial derivatives,

√
nh2

(
f̃

∗(1)
ST (s, t) − fST (s, t) − h2b

(1)
ST (s, t)

) L−→N
(
0, σ

(1)
ST

2
(s, t)

)
, (3.11)

where

b
(1)
ST (s, t) = 1

2

{(
∂2fST

∂s2
+ ∂2fST

∂t2

)
(s, t) − 1

fST (s, t)

({
∂fST

∂s

}2

+
{

∂fST

∂t

}2)
(s, t)

}
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and σ
(1)
ST

2
(s, t) = fST (s,t)

4π
. If fST (s, t) = 0 at some (s, t), the singularity of the log-density can-

not be accurately approximated by (2.8), but this is ruled out here by Assumption 3.3 which
requires c to be positive all over the interior of the unit square. By (2.1), this implies that fST is
positive over R2.

Define the ‘ideal’ local log-linear probit-transformation kernel copula density estimator
c̃∗(τ,1)(u, v) = f̃

∗(1)
ST (�−1(u),�−1(v))/(φ(�−1(u))φ(�−1(v))). Using (2.1), (2.3) and (3.8) in

(3.11), one obtains

√
nh2

(
c̃∗(τ,1)(u, v) − c(u, v) − h2b(1)(u, v)

) L−→ N
(
0, σ (1) 2

(u, v)
)
, (3.12)

where

b(1)(u, v) = 1

2

{
∂2c

∂u2
(u, v)φ2(�−1(u)

) + ∂2c

∂v2
(u, v)φ2(�−1(v)

)

− 1

c(u, v)

({
∂c

∂u
(u, v)

}2

φ2(�−1(u)
) +

{
∂c

∂v
(u, v)

}2

φ2(�−1(v)
))

(3.13)

−
(

∂c

∂u
(u, v)�−1(u)φ

(
�−1(u)

) + ∂c

∂v
(u, v)�−1(v)φ

(
�−1(v)

)) − 2c(u, v)

}

and σ (1) 2
(u, v) = c(u,v)

4πφ(�−1(u))φ(�−1(v))
.

The next result ascertains that, like for the ‘naive’ estimator, the asymptotic properties of c̃(τ,1)

are not affected by using pseudo-observations, and are consequently identical to those of the ideal
version c̃∗(τ,1).

Theorem 3.2. Under the assumptions of Proposition 3.1, the ‘improved’ local log-linear probit-
transformation kernel copula density estimator c̃(τ,1) at any (u, v) ∈ (0,1)2 is such that

√
nh2

(
c̃(τ,1)(u, v) − c(u, v) − h2b(1)(u, v)

) L−→N
(
0, σ (1) 2

(u, v)
)
,

where b(1)(u, v) and σ (1) 2
(u, v) are given above.

The variance is the same as that of the ‘naive’ estimator, but the bias is significantly different.
It is now automatically free from any unbounded terms. In fact, Hjort and Jones [31] showed
(their expression (7.3)) that the local log-linear estimator f̃

(1)
ST and the standard kernel estimator

f̂ST satisfy, for all (s, t),

f̃
(1)
ST (s, t) = f̂ST (s, t) exp

{
−1

2
h2

[(
∂f̂ST (s, t)/∂s

f̂ST (s, t)

)2

+
(

∂f̂ST (s, t)/∂t

f̂ST (s, t)

)2]}
. (3.14)

This shows that f̃
(1)
ST improves on f̂ST (s, t) by adjusting for the local slopes. From (2.3), (2.11)

and an analogue of (3.8) for hat versions, one obtains a similar result for the copula density
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estimators:

c̃(τ,1)(u, v) = ĉ(u, v)

× exp

{
−1

2
h2

[(
∂ĉ(u, v)/∂u

ĉ(u, v)

)2

φ2(�−1(u)
) +

(
∂ĉ(u, v)/∂v

ĉ(u, v)

)2

φ2(�−1(v)
)

− 2

{(
∂ĉ(u, v)/∂u

ĉ(u, v)

)
�−1(u)φ

(
�−1(u)

) +
(

∂ĉ(u, v)/∂v

ĉ(u, v)

)
�−1(v)φ

(
�−1(v)

)}

+ {
�−1(u)

}2 + {
�−1(v)

}2
]}

.

So, not only the local log-linear estimator c̃(τ,1) adjusts for the slopes of c like in (3.14), it
actively acts on the boundary behavior as well. Given that φ2(�−1(·)) and �−1(·)φ(�−1(·))
tend to 0 towards 0 and 1, the first four terms in the bracket will have little influence towards the
boundaries (provided c does not tend to 0 too sharply there). On the other hand, {�−1(u)}2 +
{�−1(v)}2 tends to +∞ very fast along boundaries (and all the more in the corners), hence
ĉ(u, v) is multiplied by something quickly tending to 0 there and this prevents it from exploding.
This is similar to what the amendment in (3.10) attempted, but is now automatic. Figure 2 (middle
panel) shows the estimate c̃(τ,1) for the data set used in Figure 1. It used the cross-validation
criterion discussed in Section 4 to select the matrix HST in (2.11).

The second improved probit-transformation estimator is obtained when taking p = 2 in (2.11).
Again, consider first the ‘ideal’ estimator f̃

∗(2)
ST , computed on the true sample {(Si, Ti)}ni=1. Lo-

cally fitting a polynomial of a higher degree is known to reduce the asymptotic bias of the esti-
mator, here from order O(h2) to order O(h4) [31,39], sufficient smoothness of fST permitting.
Specifically, if fST admits continuous fourth-order partial derivatives and is positive at (s, t),

Figure 2. True Gaussian copula density with ρ = 0.3 (left), its local log-linear (middle) and log-quadratic
(right) improved probit-transformation kernel estimators from the same sample (n = 1000) as in Fig-
ure 1. Both estimates use an unconstrained bandwidth matrix HST chosen by cross-validation in the
(S,T )-domain, see Section 4.
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then √
nh2

(
f̃

∗(2)
ST (s, t) − fST (s, t) − h4b

(2)
ST (s, t)

) L−→ N
(
0, σ

(2)
ST

2
(s, t)

)
, (3.15)

where σ
(2)
ST

2
(s, t) = 5

2
fST (s,t)

4π
and

b
(2)
ST (s, t) = −1

8
fST (s, t)

{(
∂4g

∂s4
+ ∂4g

∂t4

)
+ 4

(
∂3g

∂s3

∂g

∂s
+ ∂3g

∂t3

∂g

∂t
+ ∂3g

∂s2 ∂t

∂g

∂t
+ ∂3g

∂s ∂t2

∂g

∂s

)

+ 2
∂4g

∂s2 ∂t2

}
(s, t),

with g(s, t) = logfST (s, t). Starting from g(s, t) = log c(�(s),�(t)) + logφ(s) + logφ(t), te-
dious algebraic differentiation provides all partial derivatives of g up to order four in terms of
c and its partial derivatives up to order four. Naturally, c will be assumed to admit continuous
fourth-order partial derivatives.

Assumption 3.4. The copula density c(u, v) = (∂2C/∂u∂v)(u, v) admits continuous fourth-
order partial derivatives on the interior of the unit square I .

As previously, it readily follows from (3.15) that

√
nh2

(
c̃∗(τ,2)(u, v) − c(u, v) − h4b(2)(u, v)

) L−→ N
(
0, σ (2) 2

(u, v)
)
,

where σ (2) 2
(u, v) = 5

2
c(u,v)

4πφ(�−1(u))φ(�−1(v))
and b(2)(u, v) is an expression of the same type as

(3.13), but involving the partial derivatives of c up to the fourth order. Again, resorting to pseudo-
observations will not affect these properties, under a condition on the bandwidth slightly stronger
than previously. However, given that the bias order is reduced to O(h4), the optimal bandwidth
order is now seen to be h ∼ n−1/10, so that the bandwidth requirement does still include that
optimal order.

Theorem 3.3. Under the assumptions of Proposition 3.1 and Assumption 3.4, if h ∼ n−a with
a ∈ [1/10,1/6) as n → ∞, the ‘improved’ local log-quadratic probit-transformation kernel cop-
ula density estimator c̃(τ,2) at any (u, v) ∈ (0,1)2 is such that

√
nh2

(
c̃(τ,2)(u, v) − c(u, v) − h4b(2)(u, v)

) L−→N
(
0, σ (2) 2

(u, v)
)
,

where b(2)(u, v) and σ (2) 2
(u, v) are described above.

The asymptotic variance is the same as that for ĉ(τ )(u, v) and c̃(τ,1)(u, v), except that it is
inflated by a factor 5/2. This inflation factor is a well-known feature when locally fitting a
higher-degree polynomial [17], Section 3.3.1. The expression of b(2)(u, v) is not given explic-
itly here, as it is made up of several dozens of terms. All of them, though, are proportional
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to {�−1(u)}α{�−1(v)}βφγ (�−1(u))φδ(�−1(v)), for some non-negative integers α,β, γ, δ. As
these functions all tend to 0 as u,v → 0/1, b(2)(u, v) may actually tend to 0 towards the bound-
aries, and the bias there be of order o(h4). Again, this will be the case where c does not tend to 0
too sharply when approaching the boundary.

Interestingly, ad-hoc techniques for bias reduction from O(h2) to O(h4), e.g. higher-order
kernels or multiplicative adjustment, have long been an active research topic in kernel estimation
[34]. Yet, few of those methods have actually taken hold, owing to interpretability issues (e.g.
negative density estimates when using higher-order kernels) or computational burden. Besides,
the demonstrated improvement was asymptotic and usually went unnoticed for typical sample
sizes. Here, besides fixing boundary issues, combining transformation and local log-quadratic
density estimation achieves that bias reduction with no real extra computational complications.
These improvements are visible even in moderately large sample size, as the simulation study in
Section 5 will show. A material effect of this is that a larger bandwidth can be used without over-
smoothing. This results in smoother estimates, visually more pleasant. This is clear in Figure 2
(right panel), where c̃(τ,2) is shown for the same data set as previously. Again, the bandwidth
matrix in (2.11) was chosen via the cross-validation method suggested in Section 4.

The above results also justify the choice of the probit transformation in this framework. Ba-
sically, the double probit transformation (S,T ) = (�−1(U),�−1(V )) has for only purpose to
send the boundaries of I away to ±∞, so that the estimation of fST is free from boundary
issues. Therefore, one could also define (S,T ) = (G1(U),G2(V )) for any two other smooth,
monotonic transformations G1,G2 : [0,1] → R, for example, logit or the quantile function of
any R-supported distribution. However, �−1 transforms the uniformly distributed U and V into
normally distributed S and T . These two marginal densities will be estimated with bias of or-
der o(h4) from the local log-quadratic approximation (2.9), as the ‘local parametric model’ is
right, in the words of Hjort and Jones [31]. Of course, without providing any real guarantee,
accurate marginal estimation is an appealing feature that can only be beneficial for estimating
the bivariate fST . In addition, in the particular (but common) case of a Gaussian copula, the
probit-transformed density fST is in fact a bivariate normal density, which can be fully estimated
with o(h4) bias through (2.9). Thus, for Gaussian copula densities (or close thereto), important
amount of smoothing may be applied without large bias. It is in consequence of this that the
nice, smooth estimate of the Gaussian copula in Figure 2 (right panel) was obtained, see also
Figure 3 (right panel) below. Of course, this would not be possible if S and T were not normally
distributed, that is, if another transformation than probit was used.

3.3. Improved copula density estimators with k-NN bandwidth

Theorems 3.2 and 3.3 reveal that the copula density estimators c̃(τ,p), p = 1,2, have advanta-
geous boundary behavior in terms of their bias. However, the fact remains that their variance
behaves like

Var
(
c̃(τ,p)(u, v)

) = Cp

c(u, v)

4πnh2φ(�−1(u))φ(�−1(v))
+ o

((
nh2)−1)

, (3.16)
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Figure 3. True Gaussian copula density with ρ = 0.3 (left), its local log-linear (middle) and log-quadratic
(right) improved probit-transformation kernel estimators from the same sample (n = 1000) as in Figure 1.
Both estimates use an unconstrained bandwidth matrix of type k-NN chosen by cross-validation in the
(S,T )-domain, see Section 4.

where C1 = 1 and C2 = 5/2, as n → ∞, growing unboundedly when (u, v) approaches any of
the boundaries (except where c(u, v) → 0 very smoothly). Note that this is also the case for other
copula density estimators attempting boundary bias correction, see, for instance, [3], Chapter 4
and [32] for similar unbounded boundary variance for the Beta kernel and the Bernstein esti-
mators. In the univariate case, Geenens [22] explained why using a k-Nearest-Neighbor (k-NN)
bandwidth in the transformed domain can stabilize the variance of the final estimate towards
the boundaries. This idea also appears totally appropriate in the copula setting, which can be
understood heuristically as follows.

Again, assume that HST in (2.11) is diagonal, but instead of taking HST = h2I for some fixed
value h, take a local smoothing matrix defined as H(k)

ST (s, t) = D2
k (s, t)I, where Dk(s, t) is the

Euclidean distance between (s, t) and the kth closest observation out of the sample (2.5) in R2.
Now it is k, or equivalently α = k/n, that will play the role of the smoothing parameter in lieu
of h. If K had a compact support, α would be the proportion of observations actively entering the
estimation of fST at any (s, t) – this interpretation roughly holds for Gaussian kernels as well.
Of course, Dk(s, t) is a random quantity. Following Mack and Rosenblatt [41], one can show
that E(1/Dk(s, t)) 
 πfST (s,t)

α
and, together with Var(f̃ (p)

ST (s, t)|Dk(s, t)) 
 Cp
fST (s,t)

4πnDk(s,t)
, that

Var(f̃ (p)
ST (s, t)) 
 Cp

f 2
ST (s,t)

4nα
. Now, through (2.3), one directly gets, for all (u, v) ∈ (0,1)2,

Var
(
c̃(τ,p)(u, v)

) 
 Cp

c2(u, v)

4nα
.

The factor 1/{φ(�−1(u))φ(�−1(v))} in (3.16) has been replaced by a factor c(u, v). This
is always beneficial to the estimator, given that c(u, v)φ(�−1(u))φ(�−1(v)) = fST (�−1(u),

�−1(v)) goes to 0 as (u, v) approaches a boundary of I , and results in estimates more stable and
much smoother in those areas. In fact, given that the (long) tails of f̃

(p)
ST in the (S,T )-domain

become the (short) boundary regions of c̃(τ,p) in I through the compressing back-transformation
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(u = �(s), v = �(t)), f̃ (p)
ST must have very smooth tails in R

2 to produce suitably smooth bound-
ary behavior for c̃(τ,p). Local likelihood density estimators using k-NN bandwidth are, indeed,
known to produce smoother estimates in the tails than their fixed-bandwidth counterparts, avoid-
ing the occurrence of ‘spurious bumps’. Hence, the appropriateness of the method here.

This is illustrated in Figure 3. The two ‘improved’ probit-transformation kernel copula density
estimates (local log-linear, middle; local log-quadratic, right), computed on the same data set
as previously, this time use a k-NN-type unconstrained bandwidth matrix H(k)

ST (s, t) (see Sec-
tion 4 for details). Compared to Figure 2, the estimates are much smoother along the boundaries
now, especially c̃(τ,2). The value of α selected for the case p = 1 was 0.1871, that for the case
p = 2 was 0.4976: the bias order reduction implied by local log-quadratic modeling allows a
larger smoothing parameter to be used. As a result, c̃(τ,2) (right panel) has a smooth and visu-
ally pleasant appearance, but without oversmoothing. In fact, it is barely distinguishable from
the true copula density (left panel). An explanation lies in the last lines of Section 3.2, but the
estimator c̃(τ,2) with a k-NN-type bandwidth is strikingly good at recovering the shape of any
underlying copula density while maintaining a visually pleasant amount of smoothness, see also
Section 6.

4. Bandwidth choice

The behavior of kernel estimators crucially depend on their smoothing parameter, whose choice
in practice is a very difficult problem especially in more than one dimension. Here an effective
way for selecting a suitable bandwidth matrix HST in (2.11) is suggested. Importantly, the fol-
lowing methodology does not rely on any copula-specific argument, so can be applied for any
bivariate kernel density estimation. Consider

HST =
(

h2
1 h12

h12 h2
2

)
,

an unconstrained bandwidth matrix. The diagonal elements h2
1 and h2

2 quantify the amount of
smoothing in the directions of the main s- and t -axes, hence their values drive the overall smooth-
ness of the resulting f̃

(p)
ST (and eventually that of c̃(τ,p)). On the other hand, h12 sets the direction

along which that smoothing mostly applies. For instance, if K is the bivariate Gaussian kernel,
the local weights around (s, t) ∈R

2 are set by the elliptical contour lines of the N2((s, t)
t ,HST )-

distribution. If fST stretches along a particular direction of R2 (which is the case if c itself does
on I), it is greatly beneficial that smoothing be applied in that direction [15], and h12 should be
selected accordingly. If this is not the case, in particular if S and T are uncorrelated, then h12
may be set to 0. This motivates to separate the problem of selecting h1 and h2 from that of select-
ing h12. The idea developed here looks for achieving this, in a way close in spirit to pre-sphering
the observations [51], Section 4.6.

Consider the principal components decomposition of the (n×2)-‘data matrix’ 

.= (Ŝi , T̂i )

n
i=1.

The score of the ith observation on the first and second principal components are given by

Q̂i = W11Ŝi + W12T̂i , R̂i = W21Ŝi + W22T̂i , (4.1)
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where W1 = (W11,W12)
t and W2 = (W21,W22)

t are the eigenvectors of 
T 
. Given that the
transformation (

Q

R

)
=

(
W11 W12
W21 W22

)(
S

T

)
.= W

(
S

T

)
(4.2)

is only a linear reparametrization of R
2, an estimate of fST can be readily obtained from an

estimate of the density of (Q,R), say fQR . In addition, by construction the samples {Q̂i} and
{R̂i} are empirically uncorrelated, hence estimating fQR from the sample {(Q̂i, R̂i)}ni=1 can be
based on a diagonal bandwidth matrix HQR = diag(h2

Q,h2
R) with little side effect. An idea is then

to select hQ and hR independently via univariate procedures. Denote f̃
(p)
Q and f̃

(p)
R (p = 1,2),

the local log-polynomial estimators for the densities of Q and R, respectively, based on the
univariate samples {Q̂i} and {R̂i}. Of course, f̃

(p)
Q only requires one bandwidth hQ and f̃

(p)
R

only requires one other hR . Then, hQ can be selected via cross-validation [38], Section 5.3.3, as

hQ = arg min
h>0

{∫ ∞

−∞
{
f̃

(p)
Q (q)

}2
dq − 2

n

n∑
i=1

f̃
(p)

Q(−i)(Q̂i)

}
, (4.3)

where f̃
(p)

Q(−i) is the ‘leave-one-out’ version of f̃
(p)
Q computed on all the observations but Q̂i .

Then hR can be found similarly, and hQ and hR can be plugged into HQR for proceeding to
bivariate estimation. However, optimal bandwidths in one dimension are usually smaller than
those for bivariate density estimation of fQR . For the case p = 1, the asymptotic optimal band-
width order is n−1/5 for univariate density estimation and n−1/6 in two dimensions. For the
case p = 2, the asymptotic optimal bandwidth order is n−1/9 for univariate density estimation
and n−1/10 in two dimensions. Hence, a fair choice of bandwidth matrix for estimating fQR is

HQR = K
(p)
n diag(h2

Q,h2
R), with hQ and hR the two bandwidths found above by (univariate)

cross-validation, and K
(1)
n = n1/15 in the local log-linear case and K

(2)
n = n1/45 in the local log-

quadratic case. The estimate of fST can finally be obtained by linear back-transformation of
the estimate of fQR . In fact, due to (4.2), this exactly amounts to directly estimating fST from

{(Ŝi , T̂i )} using the bandwidth matrix HST = K
(p)
n W−1 diag(h2

Q,h2
R)W−1. There is no need to

explicitly estimate fQR .
For a k-NN-type bandwidth matrix, the procedure is very similar. The sample {(Q̂i, R̂i)}ni=1 is

obtained via (4.1). Then, a suitable value of α in the Q-direction is computed as

αQ = arg min
α∈(0,1)

{∫ ∞

−∞
{
f̃

(p)
Q (q)

}2
dq − 2

n

n∑
i=1

f̃
(p)

Q(−i)(Q̂i)

}
, (4.4)

i.e. exactly as in (4.3) but this time f̃
(p)
Q is the estimator based on the k-NN bandwidth α, and so is

αR . Let κ = αQ/αR and define the squared norm in the (Q,R)-domain as ‖(q, r)‖2 = q2 +κ2r2.
The factor κ2 naturally adjusts, through the obtained close-to-optimal values of αQ and αR , for
the potential discrepancy in local geometry in the q- and r-directions. The bivariate estimation
of fQR at any (q, r) ∈ R

2 is carried out using the k = K
(p)
n ×αQ ×n nearest neighbors of (q, r),
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these being determined by the distance implied by the above norm. Here, K
(1)
n = n−2/15 and

K
(2)
n = n−4/45, again for accounting for the difference in optimal α-orders in one and two dimen-

sions. Finally, the estimate of fST is obtained by inverse linear transformation or, as set out in the
fixed-bandwidth case, directly from the sample {(Ŝi , T̂i)}ni=1 using an appropriate ‘Mahalanobis-
like’ distance. Here, the employed distance makes use through κ of relevant information in terms
of optimal smoothing, not only in terms of the covariance structure of {(Ŝi , T̂i )} like the usual
Mahalanobis distance. In this setting, the ‘smoothing parameters’ vector is, therefore, (αQ,κ).

Admittedly, this procedure may lack of theoretical support. For instance, it is known that pre-
sphering the observations in the process of selecting the bandwidth matrix is justified only if
(S,T ) is bivariate normal, that is, in this framework, if c is the Gaussian copula. Likewise,
choosing hQ/αQ and hR/αR independently via univariate procedures is suitable in theory only

if Q and R are independent, not only uncorrelated. The correcting factor K
(p)
n may also seem

like nothing less than a heuristic, ad-hoc correction. Having said this, the procedure gives very
reliable results, as illustrated in Figures 2 and 3. This will be even more obvious in the simu-
lation study and the real data analysis detailed in the next sections. In addition, being based on
a twofold univariate cross-validation optimization problem, the algorithm is more stable numer-
ically than one based on optimizing a full, bivariate cross-validation criterion. This technique
seems, therefore, an acceptable choice for selecting the bandwidth matrix in practice.

5. Simulation study

Here, Monte Carlo simulations results are presented to compare the practical behavior of the
probit-transformation estimators with that of their main competitors. All computations have been
carried out using the R software and its freely available packages. Specifically, 12 estimators were
considered:

• the ‘mirror reflection’ estimator ĉ(m) [28]. It remains a common choice for (ostensibly)
correcting boundary bias and will, therefore, be taken as benchmark. A first bandwidth
matrix was obtained from the ‘augmented’ data set (made up of 9n ‘observations’ spread
over an area 9 times bigger than I) via the Normal reference rule, then the final matrix was
obtained by multiplying the former by (1/9)2/3 
 0.23 for adjusting for the effective sample
size and range;

• the ‘naive’ probit-transformation estimator ĉ(τ ) (2.7) and its amended version ĉ(τ am), whose
idea is exposed in Section 3.1 (for a general, non-diagonal matrix HST , the amendment takes
a slightly more complicated form than (3.10)). The bandwidth matrix HST was selected via
a direct plug-in method [14] in the transformed domain (S,T );

• the improved probit-transformation estimators c̃(τ,1) and c̃(τ,2), given by (2.11), based on a
k-NN-type bandwidth matrix selected via cross-validation as described at the end of Sec-
tion 4. As already observed in [22] in the univariate case, when based on a fixed-bandwidth
matrix these estimators performed a little less well, so the results are not shown here. The
optimization problems (2.11) (local log-polynomial estimation of fST ) and (4.4) (k-NN
bandwidth selection) were solved using the relevant functions of the R package locfit.
An R package directly implementing these improved probit-transformation estimators is in
preparation;
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• the Beta kernel estimator ĉ(β) [8], with Chen’s [9] further bias correction. Two smoothing
parameters were considered: h = 0.02 (ĉ(β)

1 ) and h = 0.05 (ĉ(β)

2 );
• the Bernstein copula density estimator ĉ(B) [4,5]. Two smoothing parameters were consid-

ered: k = 15 (ĉ(B)
1 ) and k = 30 (ĉ(B)

2 );
• the penalized hierarchical B-splines estimator ĉ(p) [35], computed by the function pen-
copula in the eponymous R package. The vector of penalty coefficients was set to
λ = (10,10) (ĉ(p)

1 ), λ = (100,100) (ĉ(p)

2 ), and λ = (1000,1000) (ĉ(p)

3 ). The parameters
d and D were set to 4 and 8, following Kauermann, Schellhase and Ruppert’s [35] results.

M = 1000 independent random samples {(Ui,Vi)}ni=1 of sizes n = 200, n = 500 and n = 1000
were generated from each of the following copulas:

• the independence copula (i.e., Ui ’s and Vi ’s drawn independently);
• the Gaussian copula, with parameters ρ = 0.31, ρ = 0.59 and ρ = 0.81;
• the Student t -copula with 10 degrees of freedom, with parameters ρ = 0.31, ρ = 0.59 and

ρ = 0.81;
• the Student t -copula with 4 degrees of freedom, with parameters ρ = 0.31, ρ = 0.59 and

ρ = 0.81;
• the Frank copula, with parameter θ = 1.86, θ = 4.16 and θ = 7.93;
• the Gumbel copula, with parameter θ = 1.25, θ = 1.67 and θ = 2.5;
• the Clayton copula, with parameter θ = 0.5, θ = 1.67 and θ = 2.5.

For each family of copulas, the considered three values of the parameter roughly correspond
to Kendall’s τ ’s equal to 0.2, 0.4 and 0.6. Of course, all the estimations only made use of the
pseudo-observations, that is, the normalized ranks of the observations in the initially generated
samples {Ui}ni=1 and {Vi}ni=1.

The fit of an estimator ĉ to a given copula density c is assessed by the Mean Integrated
L2-Error E(

∫∫
I(ĉ(u, v) − c(u, v))2 dudv), estimated by the average over the 1000 Monte Carlo

replications of

ISE(ĉ) 
 1

(N + 1)2

N∑
k1=1

N∑
k2=1

{
ĉ

(
k1

N + 1
,

k2

N + 1

)
− c

(
k1

N + 1
,

k2

N + 1

)}2

with N = 64. The approximated MISE can be found in Table 1 for n = 1000. The results for
smaller sample sizes show exactly the same pattern, and are available upon request. For ease of
reading and interpretation, all the values are relative to the (approximated) MISE of the bench-
mark mirror estimator ĉ(m). For reference, the effective MISE of ĉ(m) is reported in italics in the
last column of the table (which is, therefore, not on the same scale as the other values).

The estimators c̃(τ,1) and c̃(τ,2) are clearly the best, overall, on this L2-error criterion. They
always dramatically improve on the Beta and Bernstein estimators, and they also do much better
than the mirror reflection and the penalized B-splines estimators when the dependence is not
close to null. When the dependence is very low, ĉ(m) and ĉ(p) do better, which can be easily
understood. It is known that mirror reflection efficiently deals with boundary effects only when
the partial derivatives of c are 0 there (‘shoulder’). It is, therefore, particularly appropriate for the
independence copula (c ≡ 1) and other very flat copula densities such as Gaussian or Frank with



1868 G. Geenens, A. Charpentier and D. Paindaveine

Table 1. (approximated) MISE relative to the MISE of the mirror-reflection estimator (last column), n =
1000. Bold values show the minimum MISE for the corresponding copula (non-significantly different values
are highlighted as well)

n = 1000 ĉ(τ ) ĉ(τ am) c̃(τ,1) c̃(τ,2) ĉ
(β)
1 ĉ

(β)
2 ĉ

(B)
1 ĉ

(B)
2 ĉ

(p)
1 ĉ

(p)
2 ĉ

(p)
3 ĉ(m)

Indep 3.57 2.80 2.89 1.40 7.96 11.65 1.69 3.43 1.62 0.50 0.14 0.01
Gauss2 2.03 1.52 1.60 0.76 4.63 6.06 1.10 1.82 0.98 0.66 0.89 0.01
Gauss4 0.63 0.49 0.44 0.21 1.72 1.60 0.75 0.58 0.62 0.99 2.93 0.05
Gauss6 0.21 0.20 0.11 0.05 0.74 0.33 0.77 0.37 0.72 1.21 2.83 0.26
Std(10)2 1.36 1.06 1.04 0.55 3.07 3.98 0.96 1.24 0.86 0.87 1.48 0.02
Std(10)4 0.41 0.37 0.28 0.15 1.22 1.00 0.74 0.46 0.68 1.08 2.51 0.08
Std(10)6 0.15 0.18 0.08 0.05 0.71 0.24 0.79 0.41 0.84 1.21 2.36 0.39
Std(4)2 0.61 0.56 0.50 0.40 1.57 1.80 0.78 0.67 0.75 1.01 1.88 0.04
Std(4)4 0.21 0.27 0.17 0.15 0.88 0.51 0.75 0.42 0.75 1.12 2.07 0.16
Std(4)6 0.09 0.17 0.08 0.09 0.70 0.19 0.82 0.47 0.90 1.17 1.90 0.67
Frank2 3.31 2.42 2.57 1.35 7.16 9.63 1.70 2.95 1.31 0.45 0.49 0.01
Frank4 2.35 1.45 1.51 0.99 4.42 4.89 1.49 1.65 0.60 0.72 6.14 0.01
Frank6 0.96 0.52 0.45 0.44 1.51 1.19 1.35 0.76 0.65 1.58 7.25 0.07
Gumbel2 0.65 0.62 0.56 0.43 1.77 1.97 0.82 0.75 0.83 1.03 1.52 0.04
Gumbel4 0.18 0.28 0.16 0.19 0.89 0.41 0.78 0.47 0.81 1.10 1.78 0.21
Gumbel6 0.09 0.21 0.10 0.15 0.78 0.29 0.85 0.58 0.94 1.12 1.63 0.93
Clayton2 0.63 0.60 0.51 0.34 1.78 1.99 0.78 0.70 0.79 1.04 1.79 0.04
Clayton4 0.11 0.26 0.10 0.15 0.79 0.27 0.83 0.56 0.90 1.10 1.50 0.65
Clayton6 0.11 0.28 0.08 0.15 0.82 0.35 0.88 0.67 0.96 1.09 1.36 1.61

low dependence. The penalized B-splines estimator does even better when using a huge penalty
for roughness, for obvious reasons. In all other cases, and particularly when the copula density
becomes unbounded in some corners (but not only), c̃(τ,1) and c̃(τ,2) dramatically outperform
their competitors. In fact, mirror reflection and splines are not appropriate methods for estimating
unbounded copula densities. By construction, the Beta kernel estimator always tends to be zero
along boundaries (see, for instance, Figure 5 below), hence its even worse performance in this
framework. The Bernstein estimator does better than ĉ(β), but cannot really compete with c̃(τ,1)

and c̃(τ,2). Of course, one can argue that the smoothing parameters used for ĉ(β), ĉ(B) and ĉ(p)

have been selected mostly arbitrarily and are not adequate. This may be true, however, there is no
simple, data-driven way of selecting those parameters, hence the choice was made subjectively
exactly as a practitioner should have resolved to act. In addition, the above observations support
that bad smoothing parameter choice is not the only reason for the poor performance of some of
those estimators. Other evidence of that will be given in the next section.

In general, c̃(τ,2) is doing better than c̃(τ,1), which is expected from the theoretical results.
A notable exception, though, is in presence of high tail dependence, i.e. when the copula density
tends very quickly to ∞ at one of the corners of I , such as for Clayton and Gumbel copulas
with high Kendall’s τ . In fact, the extra smoothness guaranteed by local log-quadratic estima-
tion prevents the estimator from growing too quickly in the corners, and this is thus slightly
detrimental in those cases. The same comment holds true when comparing the naive estimator
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Figure 4. Loss-ALAE dataset: suggested parametric copula density (Gumbel with parameter θ̂ = 1.453;
upper-left panel) and probit-transformation estimates with p = 1 (middle column) and p = 2 (right col-
umn). The upper line shows 3-d views and the bottom line shows contour lines, superimposed on the Gum-
bel copula density contour lines. Pseudo-observations are shown in the bottom-left panel.

ĉ(τ ) to its amended version ĉ(τ am). Generally, ĉ(τ am) has lower MISE than ĉ(τ ), except in the
above-mentioned cases of high tail dependence: the amendment prevents the estimate from ex-
ploding, even when the true density does. In any case, these ‘naive’ versions cannot really match
the performance of the ‘improved’ versions c̃(τ,1) and c̃(τ,2) on MISE.

6. Real data analysis

In this section, the well-known ‘Loss-ALAE’ dataset, reporting the indemnity payment (Xi ’s)
and allocated loss adjustment expense (Yi ’s) associated to 1500 losses from an insurance com-
pany, is considered. Analyzed in [21,36] and [13], this dataset is a classic in the copula literature.
In particular, Frees and Valdez [21] mentioned that the Gumbel copula with θ̂ = 1.453 provides
an excellent fit. The data set initially contains 34 censored observations, that were excluded here
as the suggested estimators were not designed to take censorship into account. Using more ad-
vanced model selection ideas, Chen et al. [11] also found that the Gumbel copula (with the same
parameter θ̂ ) fits the dataset (restricted to its complete cases) the best out of most of the usual
parametric copula models. The aim here is to test the probit-transformation estimators c̃(τ,p) (p =
1,2) (and their competitors) against that parametric ‘gold standard’, shown in Figure 4 (up-left).
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Figure 5. Loss-ALAE dataset: suggested Gumbel copula density (θ̂ = 1.456), mirror reflection estimator,
Beta kernel estimators with h = 0.05 and h = 0.02, Bernstein estimators with k = 15 and k = 40 and
penalized B-splines estimators with d = 4,D = 8 and with λ = (25,25) and λ = (2,2).

The two probit-transformation estimators (local log-linear and local log-quadratic) were first
fit to the data set. In both cases, a k-NN bandwidth matrix was used. Using the selection rule
prescribed in Section 4, the parameters (α, κ) = (0.24,1.28) for p = 1 and (α, κ) = (0.51,1.01)

for p = 2 were obtained in an automatic manner. The estimator c̃(τ,2) is, again, very similar
to the parametric fit. In particular, it has that very smooth and pleasant appearance of paramet-
ric estimates, while being based on a fully nonparametric procedure. Reproducing ‘parametric
smoothness’ without sacrificing any flexibility is, of course, a substantial achievement. Naturally,
c̃(τ,1) is less smooth (see discussion in Section 3.2), but is still totally acceptable. Both nonpara-
metric estimates suggest that the true underlying copula density decays towards the (0,1)-corner
quicker than what the Gumbel model shows (this is particularly clear from the contour lines). Ad-
mittedly, there is no way of knowing what is the truth here. However, c̃(τ,1) and c̃(τ,2) are based
only on the data (it is visually obvious that the upper-left corner of I is much less endowed in
data than the bottom-right corner), and not on any prior assumption. On the contrary, the Gumbel
copula density is inherently symmetric in u and v. The peak at (0,0) also appears less high on
the nonparametric estimates than for the Gumbel model.

Figure 5 shows the competitors on the same data set: the mirror reflection estimator, two Beta
kernel estimators, two Bernstein estimators and two penalized B-splines estimators. Of course,
ĉ(m) cannot cope with this unbounded copula density. For the other three methods, producing an
estimate reasonably smooth required a value of the smoothing parameter (h for Beta kernel esti-
mators, k for Bernstein estimators and λ for penalized B-splines) preventing correct estimation
of the peaks at (0,0) and (1,1). To get estimates showing a peak at (1,1) of roughly the right
magnitude, one needed to use smoothing parameters producing unacceptably undersmoothed es-
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timation elsewhere on I , yet not even able to properly catch the peak at (0,0). If the Gumbel
copula density is assumed to be close to the truth for this data set, then there is no question
that c̃(τ,1) and c̃(τ,2) are, by far, the best. This, also, illustrates that the results obtained in the
simulations are not only due to bad smoothing parameter choices.

7. Concluding remarks

Development of efficient kernel-type methods for nonparametric copula modeling have been de-
layed owing mainly to the bounded support of copulas, namely the unit square I . It is, indeed,
well known that kernel estimators heavily suffer from boundary bias issues, which are not trivial
to fix. In this paper, a new kernel-type estimator for the copula density has been proposed. It
is based on the probit-transformation idea suggested in [8] and studied in full in the univariate
case in [22]. This ‘improved probit-transformation estimator’ deals with boundary bias in a very
natural way. In addition, it has been seen to easily cope with potentially unbounded copula den-
sities, which are the common and interesting cases in copula modeling. An easy-to-implement
selection rule for the necessary smoothing parameters has also been proposed. This procedure
has been seen to be very stable and to give very good results in practice. In particular, a version
of the estimator (c̃(τ,2) with k-NN-type bandwidth matrix) is able to reproduce the smooth and
pleasant appearance of parametric models, while keeping the flexibility of fully nonparametric
estimation procedures. A comprehensive simulation study has emphasized the very good prac-
tical performance of that estimator compared to its main competitors. As of now, though, the
theoretical properties of the estimator have been derived under the assumption of i.i.d. sampling,
making use of the strong approximation for the empirical copula process provided by Proposition
4.2 of [47]. To the best of these authors’ knowledge, this result has not been proved in the case of
weakly dependent observations. It would be particularly significant to investigate this in a near
future, given the predominant place recently found by copula modeling in the setting of time se-
ries, notably in finance. Other directions for future research would look for using the new copula
density estimator in a variety of problems, for instance copula goodness-of-fit tests [18,46].

Supplementary Material

Supplement to “Probit transformation for nonparametric kernel estimation of the copula
density” (DOI: 10.3150/15-BEJ798SUPP; .pdf). An appendix consisting of the proofs of the
different theoretical results is available as supplementary material.
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