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Abstract We consider asymptotic inference for the concentration of directional data. More precisely, we

propose tests for concentration (i) in the low-dimensional case where the sample size n goes to infinity and

the dimension p remains fixed, and (ii) in the high-dimensional case where both n and p become arbitrarily

large. To the best of our knowledge, the tests we provide are the first procedures for concentration that

are valid in the (n, p)-asymptotic framework. Throughout, we consider parametric FvML tests, that are

guaranteed to meet asymptotically the nominal level constraint under FvML distributions only, as well

as “pseudo-FvML” versions of such tests, that meet asymptotically the nominal level constraint within

the whole class of rotationally symmetric distributions. We conduct a Monte-Carlo study to check our

asymptotic results and to investigate the finite-sample behavior of the proposed tests.

1 Introduction

The present paper deals with directional data; that is multivariate data for which only the directions (and

not the magnitudes) are measured and which therefore belong to the unit sphere S p−1 := {x∈Rp : ‖x‖2 =

x′x= 1} of Rp. Such data arise in many different disciplines and in particular are often encountered in earth

sciences such as astrophysics ([4]) and meteorology ([10]). Since the seminal paper of [11], they have been

extensively studied; we refer to [17] for a general overview of the topic.

More and more applications involve data whose dimension can be large compared to the sample size.

This is also the case for directional data : high-dimensional data can indeed be found in magnetic resonance
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(see [9]), gene-expression (see [2]), or in text mining (see [3]). Such data cannot be analyzed via standard

statistical techniques and require developing new appropriate methods. In this vein, tests of hypotheses for

high-dimensional directional data have been recently proposed in [5], [6], [8], [15] and [18]. While [5], [6],

[8] and [18] focussed on the null hypothesis of uniformity on high-dimensional unit spheres, [15] tackled

the high-dimensional spherical location problem.

In this paper, we consider another testing problem in directional statistics, namely the problem of testing

the null hypothesis that the underlying concentration is equal to some given value. A distributional setup

where concentration has been classically considered is related to the celebrated Fisher-von Mises-Langevin

(FvML) distributions, that have received a lot of attention in the literature; see, e.g., Sections 10.4-10.6 in

[17]. FvML distributions on S p−1 admit probability density functions (with respect to the surface area

measure) that are of the form

x→ f (x) := cp,κ exp(κ x′θθθ) ,

where cp,κ(> 0) is a normalization constant, θθθ ∈S p−1 is a location parameter, and κ(> 0) is a concentra-

tion parameter. The larger the value of κ , the more concentrated about θθθ the distribution is. In the fixed-p

case, the problem of developing inferential procedures on θθθ and/or κ has been extensively studied in the

literature. When testing H0 : θθθ = θθθ 0 against H1 : θθθ 6= θθθ 0, for instance, one of the most classical tests is

the score test from Watson [24]. This test was shown in [19] to be locally and asymptotically optimal, and

is furthermore robust to high-dimensionality (see [15]).

Besides the tests described in [17], tests of hypotheses that specifically address problems on the con-

centration parameter can mainly be found in [14], [21] and [23]. These tests are fixed-p FvML likelihood

ratio or score tests. Such tests are asymptotically efficient in the FvML case, but are not robust to depar-

tures from FvML distributions (as we explain in Section 2, concentration can be defined away from the

FvML case). Fixed-p robust procedures for concentration have therefore been proposed by [12] and [13]

in the one-sample case and recently by [22] in the multi-sample case. In all cases, however, fixed-p tests

for concentration fail to be robust to high-dimensionality. The objective of the present paper is therefore to

provide high-dimensional tests for concentration.

The paper is organized as follows. In Section 2, we first define the problem of testing for concentration.

Then we propose a new robust fixed-p test and investigate its asymptotic properties. In Section 3, we

develop a high-dimensional test for concentration and we study its (n, p)-asymptotic properties under the

null hypothesis. Finally, in Section 4, we conduct low-dimensional and high-dimensional Monte-Carlo

simulations to confirm our theoretical results and investigate the finite-sample properties of the proposed

tests.

2 Testing for concentration in low dimensions

Let X1, . . . ,Xn be independent random p-vectors sharing an FvML distribution with location θθθ and con-

centration κ . We consider the problem of testing the null hypothesis H0 : κ = κ0 against H1 : κ 6= κ0,

where κ0 > 0 is fixed. Of course, κ is then the parameter of interest, while θθθ plays the role of a nuisance

parameter. The null hypothesis H0 is clearly invariant with respect to the group of rotations, so that the in-

variance principle yields to resorting to tests that are invariant under this group. Since the group of rotations



Tests of concentration for low-dimensional and high-dimensional directional data 3

is actually generating the null hypothesis H0, invariant tests are distribution-free under H0. All tests we

will consider in this paper are invariant, so that we may throughout, without any loss of generality, restrict

to the case where θθθ coincides with the first vector of the canonical basis of Rp.

Denoting by Iν(·) the order-ν modified Bessel function of the first kind, it is easy to show that

e1 := E[X′iθθθ ] = hp(κ), i = 1, . . . ,n, (1)

where the mapping

hp : R+ → (0,1) (2)

z 7→
Ip/2(z)

Ip/2−1(z)

is one-to-one. Consequently, concentration, for fixed-p, may equivalently be measured through e1, and one

may rephrase the null hypothesis H0 : κ = κ0 as H0 : e1 = e10, with e10 := hp(κ0). In the sequel, we rather

adopt the latter formulation of the null hypothesis, since this formulation, unlike the former, makes sense

away from the FvML case.

As mentioned in the introduction, the tests for concentration available in the literature are mainly of a

likelihood ratio or score nature. The most classical test for the null hypothesis H0 : e1 = e10 is the Watamori

and Jupp ([23]) score test φ
(n)
WJ that rejects the null hypothesis at asymptotic level α whenever

T (n)
WJ :=

n(‖X̄n‖− e10)
2

1− p−1
κ0

e10− e2
10

> χ
2
1,1−α ,

where X̄n := n−1
∑

n
i=1 Xi and χ2

`,1−α
stands for the α-upper quantile of the chi-square distribution with `

degrees of freedom. This test is asymptotically equivalent to the corresponding FvML likelihood ratio test,

hence is locally and asymptotically optimal in the FvML case; see [16]. Because of its parametric nature,

however, φ
(n)
WJ relies crucially on the FvML assumption, in the sense that there is no guarantee that it meets

the asymptotic level constraint away from the FvML case.

In this section, we show that an appropriate robustification of φ
(n)
WJ is valid under the class of rotationally

symmetric distributions. A random vector X, taking values on the unit sphere S p−1 of Rp, is said to be

rotationally symmetric about θθθ(∈ S p−1) if and only if, for all orthogonal p× p matrices O satisfying

Oθθθ = θθθ , the random vectors OX and X are equal in distribution. If, further, X is absolutely continuous

(still with respect to the surface area measure on S p−1), then the corresponding density is of the form

x→ cp, f f (x′θθθ), (3)

where cp, f (> 0) is a normalization constant and f : [−1,1]→ R is some nonnegative function. In the

general (possibly non-absolutely continuous) case, rotationally symmetric distributions are characterized

by the location parameter θθθ and the cumulative distribution function F of X′θθθ ; such distributions are

therefore of a semiparametric nature. The rotationally symmetric distribution associated with θθθ and F will

be denoted as Rp(θθθ ,F). For identifiability purposes, it will be tacitly assumed throughout that F belongs

to the collection F of cumulative distribution functions F : [−1,1]→ [0,1] such that e1 = E[X′θθθ ]> 0 (the

assumption that e1 6= 0 makes the pair {±θθθ} identifiable and imposing further that e1 > 0 makes θθθ itself
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identifiable). When a null hypothesis of the form H : e1 = e10 is considered, F0 will stand for the subset

of F corresponding to the null hypothesis.

FvML distributions are (absolutely continuous) rotationally symmetric distributions, and correspond

to f (t) = exp(κt), or, equivalently, to

Fp,κ(t) = cp,κ

∫ t

−1
(1− s2)(p−3)/2 exp(κs)ds (t ∈ [−1,1]),

where cp,κ is the same normalization constant as in the introduction. According to the equivalence be-

tween κ and e1 in (1)-(2), the FvML cumulative distribution function Fp,κ belongs to F (resp., to F0) if

and only if κ > 0 (resp., if and only if κ = κ0 := h−1
p (e10)).

Assume now that a random sample X1, . . . ,Xn from a rotationally symmetric distribution is available.

We then consider the robustified test φ
(n)
WJm that rejects the null hypothesis H0 : e1 = e10 at asymptotic

level α whenever

T (n)
WJm :=

n(‖X̄n‖− e10)
2

ên2− e2
10

> χ
2
1,1−α ,

where we let ên2 := X̄′nSnX̄n/‖X̄n‖2, with Sn := n−1
∑

n
i=1 XiX′i. In the FvML case, φ

(n)
WJm is asymptoti-

cally equivalent to φ
(n)
WJ under the null hypothesis (hence also under sequences of contiguous alternatives),

but φ
(n)
WJm is further asymptotically valid (in the sense that it meets asymptotically the nominal level con-

straint) under any rotationally symmetric distribution. This is made precise in the following result (see the

appendix for a proof).

Theorem 1. Fix p ∈ {2,3, . . .}, θθθ ∈ S p−1, and F ∈ F0, and denote by R
(n)
p (θθθ ,F) the hypothesis un-

der which the random p-vectors X1, . . . ,Xn are mutually independent and share the distribution Rp(θθθ ,F).

Then, (i) under R
(n)
p (θθθ ,F), T (n)

WJm converges weakly to the χ2
1 distribution as n→∞; (ii) under R

(n)
p (θθθ ,Fp,κ0),

with κ0 = h−1
p (e10), T (n)

WJm−T (n)
WJ = oP(1) as n→ ∞, so that φ

(n)
WJm is locally and asymptotically optimal in

the FvML case.

This result shows that the robustified test φ
(n)
WJm enjoys nice properties. Like any fixed-p test, however, it

requires the sample size n to be large compared to the dimension p. Figure 1 below indeed confirms that,

parallel to the classical test φ
(n)
WJ , the robustified test φ

(n)
WJm fails to maintain the proper null size in high

dimensions. In the next section, we therefore define high-dimensional tests for concentration.

3 Testing for concentration in high dimensions

3.1 The FvML case

We start with the high-dimensional FvML case. To this end, it is natural to consider triangular arrays of

observations Xni, i = 1, . . . ,n, n = 1,2, . . . such that, for any n, the FvML random vectors Xn1,Xn2, . . . ,Xnn

are mutually independent from Rpn(θθθ n,Fpn,κ), where the sequence (pn) goes to infinity with n and

where θθθ n ∈ S pn−1 for any n (we will denote the resulting hypothesis as Rpn(θθθ n,Fpn,κ)). In the present

high-dimensional framework, however, considering a fixed, that is p-independent, value of κ is not ap-

propriate. Indeed, for any fixed κ > 0, Proposition 1(i) below shows that X′niθθθ n, under R
(n)
pn (θθθ n,Fpn,κ),
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Fig. 1 For any p = 2,3, . . . ,100, the left panel reports null rejection frequencies of the fixed-p FvML test φ
(n)
WJ for H0 : κ = p

(at nominal level 5%), obtained from M = 1,500 independent random samples of size n = 100 from the FvML distribution

with a location θθθ equal to the first vector of the canonical basis of Rp. The right panel reports the corresponding rejection

frequencies of the robustified test φ
(n)
WJm.

converges in quadratic mean to zero. In other words, irrespective of the value of κ , the sequence of FvML

distributions considered eventually puts mass on the “equator” {x ∈S pn−1 : x′θθθ n = 0} only, which leads

to a common concentration scheme across κ-values. For p-independent κ-values, the problem of test-

ing H0 : κ = κ0 versus H1 : κ 6= κ0 for a given κ0 is therefore ill-posed in high dimensions.

We then rather consider null hypotheses of the form H0 : en1 = e10, where we let en1 := E[X′n1θθθ n] and

where e10 ∈ (0,1) is fixed. Such hypotheses, in the FvML case, are associated with triangular arrays as

above but where the concentration parameter κ assumes a value that depends on n in an appropriate way.

The following result makes precise the delicate relation between the resulting concentration sequence κn

and the alternative concentration parameter e1n in the high-dimensional case (see the appendix for a proof).

Proposition 1. Let (pn) be a sequence of positive integers diverging to ∞, (θθθ n) be an arbitrary sequence

such that θθθ n ∈S pn−1 for any n, and (κn) be a sequence in (0,∞). Under the resulting sequence of hypothe-

ses R
(n)
pn (θθθ n,Fpn,κn), write en1 := E[X′n1θθθ n] and ẽn2 := Var[X′n1θθθ n]. Then we have the following (where all

convergences are as n→ ∞) :

(i) κn/pn→ 0⇔ en1→ 0;

(ii) κn/pn→ c ∈ (0,∞)⇔ en1→ g1(c), where g1 : (0,∞)→ (0,1) : x 7→ x/( 1
2 +(x2 + 1

4 )
1/2);

(iii) κn/pn→ ∞⇔ en1→ 1.

In cases (i) and (iii), ẽn2→ 0, whereas in case (ii), ẽn2→ g2(c), for some function g2 : (0,∞)→ (0,1).
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Parts (i) and (iii) of this proposition are associated with the null hypotheses H0 : en1 = 0 and H0 : en1 = 1,

respectively. The former null hypothesis has already been addressed in [8], while the latter is extremely

pathological since it corresponds to distributions that put mass on a single point on the sphere, namely θθθ n.

As already announced above, we therefore focus throughout on the null hypothesis H0 : en1 = e10, where

e10 ∈ (0,1) is fixed. Part (ii) of Proposition 1 shows that, in the FvML case, this can be obtained only when

κn goes to infinity at the same rate as pn; more precisely, the null hypothesis H0 : en1 = e10 is associated

with sequences (κn) such that κn/pn→ c0, with c0 = g−1
1 (e10).

As shown in Figure 1, the fixed-p tests φ
(n)
WJ/φ

(n)
WJm fail to be robust to high-dimensionality, which calls

for corresponding high-dimensional tests. The following result, that is proved in the appendix, shows that,

in the FvML case, such a high-dimensional test is the test φ
(n)
CPV that rejects H0 : en1 = e10 whenever

|Q(n)
CPV|> zα/2,

where

Q(n)
CPV :=

√
pn
(
n‖X̄n‖2−1− (n−1)e2

10
)

√
2
(

pn
(
1− e10

c0
− e2

10

)2
+2npne2

10

(
1− e10

c0
− e2

10

)
+
( e10

c0

)2)1/2 , with c0 = g−1
1 (e10),

and where zβ stands for the β -upper quantile of the standard normal distribution.

Theorem 2. Let (pn) be a sequence of positive integers diverging to ∞, (θθθ n) be an arbitrary sequence

such that θθθ n ∈ S pn−1 for any n, and (κn) be a sequence in (0,∞) such that, for any n, en1 = e10 un-

der R
(n)
pn (θθθ n,Fpn,κn). Then, under the sequence of hypotheses R

(n)
pn (θθθ n,Fpn,κn), Q(n)

CPV converges weakly to

the standard normal distribution as n→ ∞.

As in the fixed-p case, the test φ
(n)
CPV is a parametric test whose (n, p)-asymptotic validity requires stringent

FvML assumptions. In the next section, we therefore propose a robustified version of this test, that is robust

to both high-dimensionality and departures from the FvML case.

3.2 The general rotationally symmetric case

We intend to define a high-dimensional test for concentration that is valid in the general rotationally sym-

metric case. To this end, consider triangular arrays of observations Xni, i = 1, . . . ,n, n = 1,2, . . . such that,

for any n, the random pn-vectors Xn1,Xn2, . . . ,Xnn are mutually independent and share a rotationally sym-

metric distribution with location parameter θθθ n and cumulative distribution Fn, where the sequence (pn)

goes to infinity with n and where θθθ n ∈ S pn−1 for any n (in line with Section 2, Fn is the cumulative

distribution function of X′n1θθθ n). As above, the corresponding hypothesis will be denoted as R
(n)
pn (θθθ n,Fn).

As in the FvML case, we consider the problem of testing the null hypothesis H0 : en1 = e10, where e10 ∈
(0,1) is fixed. In the present rotationally symmetric case, we propose a robustified version of the test φ

(n)
CPV

above. This robustified test, φ
(n)
CPVm say, rejects the null hypothesis at asymptotic level α whenever

|Q(n)
CPVm|> zα/2,

where
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Q(n)
CPVm :=

√
pn
(
n‖X̄n‖2−1− (n−1)e2

10
)

√
2
(

pn
(
ên2−‖X̄n‖2

)2
+2npne2

10

(
ên2−‖X̄n‖2

)
+(1− ên2)2

)1/2 ;

recall from Section 2 that ên2 = X̄′nSnX̄n/‖X̄n‖2, with Sn := n−1
∑

n
i=1 XiX′i. The following result shows

that, under mild assumptions, this test is asymptotically valid in the general rotationally symmetric case

(see the appendix for a proof).

Theorem 3. Let (pn) be a sequence of positive integers diverging to ∞, and (θθθ n) be an arbitrary sequence

such that θθθ n ∈S pn−1 for any n. Let (Fn) be a sequence of cumulative distribution functions over [−1,1]

such that, under R
(n)
pn (θθθ n,Fn), one has en1 = e10 for any n, and

(i) nẽn2→ ∞, (ii) min
( pnẽ2

n2

f 2
n2

,
ẽn2

n

)
= o(1), (iii) ẽn4/ẽ2

n2 = o(n), and (iv) fn4/ f 2
n2 = o(n), (4)

where we let ẽn` := E[(X′niθθθ n− en1)
`] and fn` := E[(1− (X′niθθθ n)

2)`/2]. Then, under the sequence of hy-

potheses R
(n)
pn (θθθ n,Fn), Q(n)

CPVm converges weakly to the standard normal distribution as n→ ∞.

As explained in [8], Conditions (ii)-(iv) are extremely mild. In particular, they hold in the FvML case,

irrespective of the sequences (κn) and (pn) considered, provided, of course, that pn→ ∞ as n→ ∞. Con-

dition (i) is a little more restrictive. In the FvML case, for instance, it imposes that pn/n = o(1) as n→ ∞.

Such a restriction originates in the need to estimate the quantity ẽn2, which itself requires estimating θθθ n in

an appropriate way.

4 Simulations

In this section, our objective is to study the small-sample behavior of the tests proposed in this paper. More

precisely, we investigate whether or not the asymptotic critical values, for moderate-to-large sample sizes n

(and dimensions p, in the high-dimensional case), lead to null rejection frequencies that are close to the

nominal level.

4.1 The low-dimensional case

We first consider the low-dimensional case. For each combination of κ ∈ {1,3} and p ∈ {3,4,5}, we gen-

erated M = 2,500 independent random samples X1, . . . ,Xn of size n = 50 from the Purkayastha rotationally

symmetric distribution Rp(θθθ ,Gp,κ), based on

Gp,κ(t) = dp,κ

∫ t

−1
(1− s2)(p−3)/2 exp(−κ arccos(s))ds (t ∈ [−1,1]),

where dp,κ is a normalizing constant; for θθθ , we took the first vector of the canonical basis of Rp. In each

case, we considered the testing problem H0 : e1 = e10 vs H1 : e1 6= e10, where e10 is taken as the underlying

value of E[X′1θθθ ] (which depends on n and p). On each sample generated above, we then performed (i) the

FvML test φ
(n)
WJ and (ii) its robustified version φ

(n)
WJm, both at nominal level 5%. Figure 2 provides the
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resulting empirical — by construction, null — rejection frequencies. Inspection of this figure reveals that,

unlike the FvML test φ
(n)
WJ , the robustified test φ

(n)
WJm meets the level constraint in all cases.

WJ WJm

0.0
0
0.0
2
0.0
4
0.0
6
0.0
8
0.1
0

κ = 1

p=
3

WJ WJm

0.0
0
0.0
2
0.0
4
0.0
6
0.0
8
0.1
0

κ = 3

WJ WJm

0.0
0
0.0
2
0.0
4
0.0
6
0.0
8
0.1
0

p=
4

WJ WJm
0.0
0
0.0
2
0.0
4
0.0
6
0.0
8
0.1
0

WJ WJm

0.0
0
0.0
2
0.0
4
0.0
6
0.0
8
0.1
0

p=
5

WJ WJm

0.0
0
0.0
2
0.0
4
0.0
6
0.0
8
0.1
0

Fig. 2 Empirical null rejection frequencies of (i) the low-dimensional FvML test φ
(n)
WJ and of (ii) its robustified version φ

(n)
WJm,

under various p-dimensional Purkayastha rotationally symmetric distributions involving two different concentrations κ . Re-

jection frequencies are obtained from 2,500 independent samples of size 50, and all tests are performed at asymptotic level 5%;

see Section 4.1 for details.

4.2 The high-dimensional case

To investigate the behavior of the proposed high-dimensional tests, we performed two simulations. In the

first one, we generated, for every (n, p) ∈C1×C1, with C1 = {30,100,400}, M = 2,500 independent ran-

dom samples of size n from the FvML distributions Rp(θθθ ,Fp,κ), where θθθ is the first vector of the canonical

basis of Rp and where we took κ = p. In the second simulation, we generated, for every (n, p) ∈C2×C2,

with C2 = {30,100}, M = 2,500 independent random samples of size n from the Purkayastha distribu-

tions Rp(θθθ ,Gp,κ), still with κ = p and the same θθθ as above. The Purkayastha distribution is numerically

hard to generate for dimensions larger than 150, which is the only reason why the dimensions considered

in this second simulation are smaller than in the first one.

Parallel to the simulations conducted for fixed p, we considered the testing problem H0 : e1 = e10

vs H1 : e1 6= e10, where e10 is the underlying value of E[X′1θθθ ]. On all samples that were generated, we
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then performed the four following tests at nominal level 5%: (i) the low-dimensional FvML test φ
(n)
WJ ,

(ii) its robustified version φ
(n)
WJm, (iii) the high-dimensional FvML test φ

(n)
CPV, and (iv) its robustified ver-

sion φ
(n)
CPVm. The resulting empirical (null) rejection frequencies are provided in Figures 3-4, for the FvML

and Purkayastha cases, respectively. The results show that

(a) the low-dimensional tests φ
(n)
WJ and φ

(n)
WJm clearly fail to be robust to high-dimensionality;

(b) at the FvML, φ
(n)
CPV is asymptotically valid when n and p are moderate to large;

(c) away from the FvML, the high-dimensional test φ
(n)
CPV is not valid, but its robustified version Q(n)

CPVm is

when n≥ p.

In order to illustrate the asymptotic normality result in Theorems 2-3, we computed, for each (n, p)

configuration and each distribution considered (FvML or Purkayastha), kernel estimators for the densities

of Q(n)
CPV and Q(n)

CPVm, based on the various collections of 2,500 values of these test statistics obtained above.

In all cases, we used Gaussian kernels with a bandwidth obtained from the “rule of thumb” in [20]. The

resulting kernel density estimators are plotted in Figures 5-6, for FvML and Purkayastha distributions, re-

spectively. Clearly, Figure 5 supports the results that both test statistics are asymptotically standard normal

under the null hypothesis, whereas Figure 6 illustrates that this asymptotic behavior still holds for Q(n)
CPVm

(but not for Q(n)
CPV) away from the FvML case.

Appendix

Proof of Theorem 1. (i) All expectations and variances when proving Part (i) of the theorem are taken

under R
(n)
p (θθθ ,F) and all stochastic convergences are taken as n→ ∞ under R

(n)
p (θθθ ,F). Since

n1/2(X̄n− e10θθθ) = OP(1), (5)

the delta method (applied to the mapping x 7→ x/‖x‖) yields

n1/2(Yn−θθθ) = e−1
10 [Ip−θθθθθθ

′]n1/2(X̄n− e10θθθ)+oP(1), (6)

where we wrote Yn := X̄n/‖X̄n‖. This, and the fact that

Sn
P→ E[X1X′1] = E[(X′1θθθ)2]θθθθθθ

′+
1−E[(X′1θθθ)2]

p−1
(Ip−θθθθθθ

′),

where Ip denotes the p-dimensional identity matrix, readily implies that

σ̂
2
n :=

X̄′nSnX̄n

‖X̄n‖2 − e2
10 = Y′nSnYn− e2

10
P→ E[(X′1θθθ)2]− e2

10 = Var[X′1θθθ ]. (7)

Now, write

n1/2(‖X̄n‖− e10)

σ̂n
=

n1/2X̄′n(Yn−θθθ)

σ̂n
+

n1/2(X̄′nθθθ − e10)

σ̂n
=: S1n +S2n, (8)

say. It directly follows from (5)-(7) that S1n = oP(1) as n→ ∞. As for S2n, the central limit theorem and

Slutsky’s lemma yield that S2n is asymptotically standard normal. This readily implies that
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Fig. 3 Empirical null rejection frequencies, from 2,500 independent samples, of (i) the low-dimensional FvML test φ
(n)
WJ , (ii)

its robustified version φ
(n)
WJm, (iii) the high-dimensional FvML test φ

(n)
CPV, and (iv) its robustified version φ

(n)
CPVm (all performed at

asymptotic level 5%), under p-dimensional FvML distributions for various dimensions p and sample sizes n; see Section 4.2

for details.

T (n)
WJm =

(
n1/2(‖X̄n‖− e10)

σ̂n

)2
L→ χ

2
1 .

(ii) In view of the derivations above, the continuous mapping theorem implies that, for any θθθ ∈ S p−1

and F ∈F0,

T (n)
WJm =

n(‖X̄n‖− e10)
2

Var[X′1θθθ ]
+oP(1)

as n→ ∞ under R
(n)
p (θθθ ,F). The result then follows from the fact that, under R

(n)
p (θθθ ,Fp,κ0), with κ0 =

h−1
p (e10), Var[X′1θθθ ] = 1− p−1

κ0
e10− e2

10; see, e.g., Lemma S.2.1 from [7]. �
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Fig. 4 Empirical null rejection frequencies, from 2,500 independent samples, of (i) the low-dimensional FvML test φ
(n)
WJ , (ii)

its robustified version φ
(n)
WJm, (iii) the high-dimensional FvML test φ

(n)
CPV, and (iv) its robustified version φ

(n)
CPVm (all performed

at asymptotic level 5%), under p-dimensional Purkayastha distributions for various dimensions p and sample sizes n; see

Section 4.2 for details.

Proof of Proposition 1. From Lemma S.2.1 in [7], we have that, under R
(n)
pn (θθθ n,Fpn,κn),

en1 =
Ipn/2(κn)

Ipn/2−1(κn)
and ẽn2 = 1− pn−1

κn
en1− e2

n1.

The result then readily follows from

z

ν +1+
√

z2 +(ν +1)2
≤ Iν+1(z)

Iν(z)
≤ z

ν +
√

z2 +ν2
(9)

for any ν ,z > 0; see (9) in [1]. �

Proof of Theorem 2. Writing en2 := E[(X′n1θθθ n)
2], Theorem 5.1 in [8] entails that, under R

(n)
pn (θθθ n,Fpn,κn),

where (κn) is an arbitrary sequence in (0,∞),

√
pn
(
n‖X̄n‖2−1− (n−1)e2

n1
)

√
2
(

pnẽ2
n2 +2npne2

n1ẽn2 +(1− en2)2
)1/2

converges weakly to the standard normal distribution as n→ ∞. The result then follows from the fact that,

under R
(n)
pn (θθθ n,Fpn,κn), where the sequence (κn) is such that, for any n, en1 = e10 under R

(n)
pn (θθθ n,Fpn,κn),

one has



12 Christine Cutting, Davy Paindaveine and Thomas Verdebout

-2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p=
30

n=30

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n=100

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n=400

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p=
10
0

-4 -2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p=
40
0

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fig. 5 Plots of kernel density estimators (based on Gaussian kernels and bandwidths resulting from the “rule of thumb”

in [20]) of the (null) densities of Q(n)
CPV (thick solid line) and Q(n)

CPVm (thick dashed line) for various values of n and p, based on

M = 2,500 random samples of size n from the p-dimensional FvML distribution with concentration κ = p; see Section 4.2

for details. For the sake of comparison, the standard normal density is also plotted (thin solid line).

en2 = 1− pn−1
κn

e10, ẽn2 = 1− pn−1
κn

e10− e2
10, and κn/pn→ c0 as n→ ∞;

see Proposition 1(ii). �

The proof of Theorem 3 requires the three following preliminary results.

Lemma 1. Let Z be a random variable such that P[|Z| ≤ 1] = 1. Then Var[Z2]≤ 4Var[Z].

Lemma 2. Let the assumptions of Theorem 3 hold. Write ên1 = ‖X̄n‖ and ên2 := X̄′nSnX̄n/‖X̄n‖2. Then, as

n→ ∞ under R
(n)
pn (θθθ n,Fpn,κn), (i) (ê2

n1− e2
10)/(en2− e2

10) = oP(1) and (ii) (ê2n− en2)/(en2− e2
10) = oP(1).
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Fig. 6 Plots of kernel density estimators (based on Gaussian kernels and bandwidths resulting from the “rule of thumb”

in [20]) of the (null) densities of Q(n)
CPV (thick solid line) and Q(n)

CPVm (thick dashed line) for various values of n and p, based

on M = 2,500 random samples of size n from the p-dimensional Purkayastha distribution with concentration κ = p; see

Section 4.2 for details. For the sake of comparison, the standard normal density is also plotted (thin solid line).

Lemma 3. Let the assumptions of Theorem 3 hold. Write σ2
n := pn(en2−e2

10)
2+2npne2

10(en2−e2
10)+(1−

en2)
2 and σ̂2

n := pn(ên2− ê2
n1)

2 + 2npne2
10(ên2− ê2

n1)+ (1− ên2)
2. Then (σ̂2

n −σ2
n )/σ2

n = oP(1) as n→ ∞

under R
(n)
pn (θθθ n,Fpn,κn).

Proof of Lemma 1. Let Za and Zb be mutually independent and identically distributed with the same

distribution as Z. Since |x2− y2| ≤ 2|x− y| for any x,y ∈ [−1,1], we have that

Var[Z2] =
1
2

E[(Z2
a −Z2

b)
2]≤ 2E[(Za−Zb)

2] = 4Var[Z],

which proves the result. �

Proof of Lemma 2. All expectations and variances in this proof are taken under the sequence of hy-

potheses R
(n)
pn (θθθ n,Fn) considered in the statement of Theorem 3, and all stochastic convergences are taken

as n→ ∞ under the same sequence of hypotheses.

(i) Proposition 5.1 from [8] then yields

E[ê2
n1] = E[‖X̄n‖2] =

n−1
n

e2
10 +

1
n

(10)

and
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Var[ê2
n1] = Var[‖X̄n‖2] =

2(n−1)
n3 ẽ2

2n +
4(n−1)2

n3 e2
10ẽn2 +

2(n−1)
n3(pn−1)

(1− e2
n2)

2 =
4
n

e2
10ẽn2 +O(n−2)

(11)

as n→ ∞. In view of Condition (i) in Theorem 3, this readily implies

E
[( ê2

n1− e2
10

ẽn2

)2]
= Var

[ ê2
n1− e2

10
ẽn2

]
+
(

E
[ ê2

n1− e2
10

ẽn2

])2
=

4e2
10

nẽn2
+O

( 1
n2ẽ2

n2

)
+
(1− e2

10
nẽn2

)2
= o(1)

as n→ ∞, which establishes Part (i) of the result.

(ii) Write
ên2− en2

ẽn2
=

1
ẽn2

(( 1
ê2

n1
− 1

e2
10

)
X̄′nSnX̄n +

1
e2

10
X̄′nSnX̄n− en2

)
.

Part (i) of the result shows that (ê2
n1 − e2

10)/ẽn2 is oP(1) as n→ ∞. Since (10)-(11) yield that ên1 con-

verges in probability to e10(6= 0), this implies that (ê−2
n1 − e−2

10 )/ẽn2 is oP(1) as n→ ∞. This, and the fact

that X̄′nSnX̄n = OP(1) as n→ ∞, readily yields

ên2− en2

ẽn2
=

1
ẽn2

(
1

e2
10

X̄′nSnX̄n− en2

)
+oP(1) (12)

as n→ ∞. Since

1
e2

10
X̄′nSnX̄n =

1
e2

10
(X̄n− e10θθθ)′Sn(X̄n− e10θθθ)+

2
e10

(X̄n− e10θθθ)′Snθθθ +θθθ
′Snθθθ ,

the result follows if we can prove that

An :=
1

ẽn2
(X̄n− e10θθθ)′Sn(X̄n− e10θθθ), Bn :=

1
ẽn2

(X̄n− e10θθθ)′Snθθθ , and Cn :=
1

ẽn2
(θθθ ′Snθθθ − en2)

all are oP(1) as n→ ∞.

Starting with An, (10) yields

E[|An|]≤
1

ẽn2
E[‖X̄n− e10θθθ‖2] =

1
ẽn2

(n−1
n

e2
10 +

1
n
− e2

10

)
=

1− e2
10

nẽn2
= o(1) (13)

as n→∞. Since convergence in L1 is stronger than convergence in probability, this implies that An = oP(1)

as n→ ∞. Turning to Bn, the Cauchy-Schwarz inequality and (13) provide

E[|Bn|]≤
1

ẽn2
E[‖X̄n− e10θθθ‖2] = o(1),

as n→ ∞, so that Bn is indeed oP(1) as n→ ∞. Finally, it follows from Lemma 1 that

E[C2
n ] =

1
ẽ2

n2
E[(θθθ ′Snθθθ − en2)

2] =
1

nẽ2
n2

Var[(X′n1θθθ)2]≤ 4
nẽn2

= o(1)

as n→ ∞, so that Cn is also oP(1) as n→ ∞. This establishes the result. �

Proof of Lemma 3. As in the proof of Lemma 2, all expectations and variances in this proof are taken

under the sequence of hypotheses R
(n)
pn (θθθ n,Fn) considered in the statement of Theorem 3, and all stochastic

convergences are taken as n→ ∞ under the same sequence of hypotheses.
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Let then σ̃2
n := 2npne2

10(en2− e2
10). Since Condition (i) in Theorem 3 directly entails that σ2

n /σ̃2
n → 1

as n→ ∞, it is sufficient to show that (σ̂2
n −σ2

n )/σ̃2
n is oP(1) as n→ ∞. To do so, write

σ̂
2
n −σ

2
n = An +Bn +Cn, (14)

where

An := pn
(
(ên2− ê2

n1)
2− (en2− e2

10)
2) , Bn := 2npne2

10
(
ên2− ê2

n1− en2 + e2
10
)
,

and

Cn := (1− ên2)
2− (1− en2)

2.

Since
|An|
σ̃2

n
≤ pn

σ̃2
n
=

1
2ne2

10(en2− e2
10)

and
|Cn|
σ̃2

n
≤ 1

σ̃2
n
=

1
2npne2

10(en2− e2
10)

,

almost surely, Condition (i) in Theorem 3 implies that An/σ̃2
n and Cn/σ̃2

n are oP(1) as n→ ∞. The result

then follows from the fact that, in view of Lemma 2,

Bn

σ̃2
n
=

(ên2− en2)− (ê2
n1− e2

10)

en2− e2
10

is also oP(1) as n→ ∞. �

Proof of Theorem 3. Decompose Q(n)
CPVm into

Q(n)
CPVm =

σn

σ̂n
×
√

pn
(
n‖X̄n‖2−1− (n−1)e2

10
)

√
2σn

=:
σn

σ̂n
×Vn, (15)

say. Theorem 5.1 in [8] entails that, under the sequence of hypotheses R
(n)
pn (θθθ n,Fn) considered in the

statement of the theorem, Vn is asymptotically standard normal as n→∞. The result therefore follows from

Lemma 3 and the Slutsky Lemma. �
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