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Abstract We present a discussion of [2] — hereafter, HRS15 — that splits
into two parts. In the first one, we argue that some structural properties of
depth may, in some cases, limit its relevance for outlier detection. We also
propose an alternative to bagdistances, which, while still based on depth, does
not suffer from the same limitations. In the second part of the discussion, we
investigate the possible uses of the weight functions that may enter the various
integral functionals considered in HRS15.
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1 Introduction

Building on a world renowned expertise in robustness and statistical depth,
HRS15 proposes a systematic approach to outlier detection for univariate and
multivariate functional data. We regard the proposed methodology as a major
improvement over existing approaches and we would like to sincerely congrat-
ulate the authors for their work. As announced in the abstract, our discussion
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splits into two parts. After commenting on some classical limitations of depth,
Section 2 proposes an alternative to bagdistances overcoming some of those
limitations, while Section 3 studies how useful weighting mechanisms may be
for functional outlier detection.

2 Depth and outlier detection

In [5] and [6], a Depth-Outlyingness-Quantile-Rank (D-O-Q-R) paradigm is
introduced and discussed. Under this paradigm, depth, outlyingness, quantile,
and rank functions are seen as strictly equivalent objects; in particular, depth
and outlyingness are inversely linked through, e.g., relations of the form D =
1/(1 + O) or D = 1 − O; see also [7]. This scheme allows to associate with
any depth function a resulting outlyingness function, on the basis of which
one may expect to perform (depth-based) outlier detection.

One of the merits of HRS15 is to clearly articulate that some depth concepts
may, however, not be suitable for outlier detection. For instance, in a sample
of observations X1, . . . , Xn on the real line, many classical depths, including
halfspace depth ([8]) and simplicial depth ([3]), will assign a common, small,
depth value to the first order statistic X(1) and last order statistic X(n), despite
the fact that one of these order statistics may be close to the other n − 2
observations while the other may be arbitrarily far from them. This clearly
shows that, for such depths, it is inadequate to perform outlier detection on
the basis of depth only, and that depth should then be complemented with
other functionals, typically of a distance nature.

The bagdistance considered in HRS15 goes in this direction. The bagdis-
tance allows to detect outliers according to their distance to a location that
is considered as most central in the data set. Depth plays a key role in the
definition of the bagdistance, as it provides (a) the most central location (that
is simply the deepest point, or more generally, the barycenter of the collection
of deepest points) and (b) the bag, on the basis of which appropriate, direc-
tional, standardization can be achieved. The bagdistance is therefore strongly
based on depth.

The axiomatic approach of [9] makes it clear, however, that depth is suit-
able only for distributions that are unimodal with a convex, or at least star-
shaped, support. Therefore, for (i) non-convexly supported distributions or
for (ii) multimodal distributions, depth may fail properly reflecting central-
ity1. We now show that this may affect outlier detection based on the bagdis-
tance, by considering two bivariate examples that correspond to (i) and (ii),
respectively :

(i) In the first example, we consider a sample of mutually independent observa-
tions Xi =

(
Xi1

Xi2

)
, i = 1, . . . , n = 205. For the first 200 observations, Xi1 ∼

Unif(−1, 1) and Xi2|[Xi1 = u] ∼ Unif(1.5(1−u2), 2(1−u2)) (moon-shaped
support). The last five (outlying) observations are drawn from the bivariate

1 This can be partly addressed by introducing local versions of depth; see [1] and [4].
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normal distribution with mean vector
(

0
0.5

)
and covariance matrix I2/25,

where I2 is the 2× 2 identity matrix.
(ii) In the second example, a sample of size n = 205 made of mutually indepen-

dent observations is still considered. Here, the first 100 observations (resp.,
100 next observations) are drawn from the bivariate normal distribution
with mean vector −

(
8
0

)
(resp., mean vector

(
8
0

)
) and covariance matrix I2.

The last five (outlying) observations are drawn from the bivariate normal
distribution with mean vector −

(
0
1.5

)
and covariance matrix I2/2.

Scatter plots of the resulting data points are provided in Figures 1(i-a)
and (ii-a), respectively. In each case, the Tukey median is marked as a blue
dot and the (halfspace) bag is drawn. To make visualization of the bagdistances
easier, the segment from the Tukey median to each data point is plotted in
grey and in red, for the 200 regular observations and for the five outlying
observations, respectively. Figures 1(i-b) and (ii-b) report histograms of the
corresponding bagdistances, with the bagdistances of the five outliers marked
with vertical red lines. For convenience, the outliers were renumbered from one
to five, according to their bagdistance. In both cases (i)-(ii), bagdistances of
outlying observations are not particularly large nor small2, hence do not reflect
outlyingness properly. For the multimodal distribution in (ii), distances to a
unique center are not adequate to measure outlyingness, while, for the non-
convexly supported distribution in (ii), halfspace depth provides a center that
is outside the moon-shaped support. In both cases, the structural properties
of depth affect the efficiency of the outlier detection procedure considered.

As example (ii) shows, measuring distances to a unique center may hurt.
Instead, one may think of (a) measuring “distances” to a subset of “closest”
observations. Also, detecting outliers through bagdistances is based on the
assumption that outlying observations are far from the bulk of the data (or
at least from the center). Outliers, however, can be found at an arbitrary
distance from the center, e.g. under the form of a few isolated points. To detect
such outliers, (b) density ideas should be used. Interestingly, (a)-(b) can be
addressed through depth, by replacing bagdistances with the β-distances we
now define.

Fix a sample of observations X1, . . . , Xn and a given location x in Rd. First
consider the symmetrized sample X1, . . . , Xn, 2x−X1, . . . , 2x−Xn, where 2x−
Xi is the reflection of Xi about x. For any depth satisfying the axioms of [9],
the depth regions associated with this symmetrized sample provide nested
neighborhoods of x. For any β ∈ (0, 1), the β-distance of x to X1, . . . , Xn is
then defined as the Lebesgue measure of the smallest such depth region that
contains at least a proportion β of the original observations X1, . . . , Xn. If
β is not too small, the β-distances of a few isolated outliers are expected to
be large, since the corresponding depth region will need to expand to include
observations that are far away from the outliers.

To briefly illustrate the use of these alternative distances, we provide his-
tograms of β-distances for examples (i)-(ii) above, both for β = 0.25; see

2 A few, isolated, small bagdistances arguably also may be a sign of “outlyingness”.
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Fig. 1 Panels (i-a) and (ii-a) report scatter plots of the 205 data points generated in se-
tups (i) and (ii), respectively (see Page 2). In each case, the Tukey median is marked as a blue
dot, the bag is plotted, and the five outliers are numbered according to their bagdistance.
Panels (i-b) and (ii-b) provide histograms of the resulting 205 bagdistances; bagdistances
of the five outliers are marked in red. Panels (i-c) and (ii-c) provide the corresponding
histograms of β-distances, for β = 0.25.

Figures 2(i-c) and (ii-c), respectively. It is seen that the rankings of the five
outlying observations, within those five observations only, are essentially the
same for β-distances as for bagdistances (only outliers 2 and 3 are exchanged
in the multimodal example). When ranking the five outliers among the full
sample, however, β-distances clearly tend to flag outliers better than bagdis-
tances : not only β-distances of outlying observations are given very high (over-
all) ranks, but β-distances of non-outlying observations are much less spread
than bagdistances, so that outliers more clearly stand out in the collection of
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β-distances than in the collection of bagdistances. At least for cases (i)-(ii),
these alternative (affine-equivariant) distances are tools that nicely comple-
ment bagdistances.

Of course, this is a single numerical exercise only, and a proper comparison
between both types of distances should be conducted. One could of course
object that an appropriate β has to be selected when computing β-distances.
But actually, considering β-distances for a whole range of β-values may also
be of interest — for a group of isolated outliers, one may indeed expect a
“break point” at β = β0, where β0 is the relative size of the group within the
full sample. Finally, note that β-distances can be extended to the (possibly
multivariate) functional case, by just integrating β-distances over “time” t, in
the same way as bagdistances in HRS15.

3 Weight functions

On several occasions, HRS15 mentions the possibility to use — at least for
depth-based procedures — a weight function w(t) to emphasize or downweight
particular regions of the time interval U . Surprisingly, no non-trivial (i.e.,
non-constant) weight functions are considered in the paper and the potential
benefits of such weight functions are not discussed. In this second part of our
discussion, we therefore comment on this point.

While such weighted integrated depth will not change drastically for per-
sistent outliers (i.e., for observations whose marginal depth is low everywhere
on U), it will prove useful for isolated outliers, provided, of course, that the
weight function correctly focuses on the region supporting the abnormal be-
havior. Typically, outliers will contribute — when deviating from the bulk
of the data — to a higher local variability3. It therefore seems reasonable to
base w(t) on (marginal) dispersion measures. Focusing on regions with high
dispersion might decrease the isolated outliers’ depths that would otherwise
be averaged up due to regions in which the observations are not abnormal.

Even if one restricts to weights based on marginal dispersion measures,
the possible weight functions are still numerous, and a rationale needs to be
provided to favour one over the other. For functional halfspace depth, the in-
tegrand is bounded and, from affine-invariance, is insensitive to the variability
within the data. Basing weight functions on robust dispersion measures (such
as, e.g., the volume of the bag, which is the natural multivariate extension
of the interquartile range) would provide a weighted depth that will not be
influenced by most extreme data. It is therefore preferable to adopt a disper-
sion measure which, on the contrary, is sensitive to outliers. In the univariate
functional case, we then propose using weight functions of the form

wα(t) ∼ (Var[X(t)])α, α ≥ 0, (1)

3 This is not only the case for shift outliers, but also for shape outliers, provided that the
multivariate functional data considered contains derivatives of the original curves.
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where “∼” indicates that wα(t) is normalized to integrate to one over U .
Clearly, the boundary case α = 0 corresponds to the unweighted functional
depth, while increasing values of α will put more and more emphasis on regions
with high marginal variances.

We briefly illustrate the use of the weights in (1) on the Octane data set.
Figure 2 plots the wα(t)-weighted integrated (halfspace) depths of the n = 39
observations of this data set as a function of α ∈ [0, 3]. The six shape outliers
considered in HRS15 are plotted in red. The weight function wα(t) = w1(t)
is displayed as a black curve in the left panel (since the “time” span is very
large in this example, the actual values of w1(t) are small, and this weight
function was thus rescaled for illustration purposes so as to have its maximal
value equal to 0.3). Clearly, emphasis is put on the end of the time region.
Doing so clearly decreases the depth of the outliers but also their ranks within
the depth values (going from 16, 3, 12, 10, 5 and 15 at α = 0 to 11, 1, 7, 6, 4
and 5 at α = 3, respectively).
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Fig. 2 The Octane data set. (Left:) Data, with the six shape outliers plotted in red. The
black curve is, up to a positive multiplicative constant, the weight function associated
with α = 1; see Section 3 for details. (Right:) Weighted functional halfspace depths, as
a function of α ∈ [0, 3].

One of the other advantages of varying the weights is the possibility to
discover possible masking effects. Varying the weights (which would then con-
centrate on areas in which few outliers are masking some others) might allow
to recover some part of the hidden behavior, as we now illustrate on the basis of
a simulated data example. We generated n = 100 curves Xi(t), t ∈ U = [0, 1],
according to Xi(

j
100 ) = f( j

100 ) + Zij , where j = 0, 1, . . . , 100 and the Zij ’s
are mutually independent standard normal variables. For 80 curves (standard
observations), the function f is the zero function. For the remaining 20 curves,
10 were based on f(t) = 1/5 exp(−100(t − 0.3)2) (mild outliers) and 10 were



Discussion of “Multivariate Functional Outlier Detection” 7

based on f(t) = 1/2 exp(−200(t− 0.3)2) (severe outliers). Figure 3 shows the
resulting data, along with the ranks, as functions of α ∈ [0, 1], of the 100 corre-
sponding wα(t)-weighted integrated (halfspace) depths — only 30 (randomly
selected) of the 80 non-outlying curves are shown in order to avoid overcrowd-
ing the pictures. For α = 0, severe outliers (in red) clearly mask mild outliers
(in orange), since the rank of most mild outliers exceeds 20. As α increases,
this masking effect is lifted (the depths (resp. the ranks) of the orange curves
decrease).
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Fig. 3 (Left:) Simulated data, where the severe (resp., mild) outliers are plotted in red
(resp., orange). (Right:) Ranks, as a function of α ∈ [0, 3], of the wα(t)-weighted integrated
(halfspace) depths; see Section 3 for details.

Note that, in this simulated example, the non-outlying curves will not be
assigned a small depth value, since the randomness at each time points pre-
vents these curves to lie persistently on the edge of the data. This is in contrast
with what occurs in the Octane data (Figure 2). There, while the depth of the
outliers decreases, some non-outlying curves keep very low integrated depth
even for large values of α. Indeed, albeit not as drastic as before, weighted
integrated depth still suffers from some limitations. For example, a severe per-
sistent (shift) outlier and a curve lying, uniformly in U , on the opposite border
of the data will be assigned a common weighted halfspace depth value of 1/n,
irrespective of their very different marginal distances to the n − 2 remaining
observations.

As already mentioned in Section 2, HRS15 argued, convincingly, that depth
alone is not enough to perform outlier detection and, as a result, used dis-
tance measures to complement the purely depth-based methods. Although
the integrated quantities (bagdistance or adjusted outlyingness) in the result-
ing outlyingness measures are not bounded anymore, the same argumentation
as above remains valid and a weighted functional bagdistance (resp., weighted
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functional adjusted outlyingness) might provide extra insight on the data. We
will illustrate this in the multivariate case, where weight functions can still
be chosen to reflect the marginal dispersion while being sensitive tooutliers.
Natural weight functions are then

wα(t) ∼ (det(Var[X(t)]))α, α ≥ 0,

where Var[X(t)] denotes the variance-covariance matrix of X(t) and “∼” still
refers to normalization of the weight function considered.

As an example, we consider the tablets data set, consisting of n = 90 curves
measured at 404 different wavenumbers (inverse of wavelengths). The first 70
curves (90 mg pills) contain 10 shift outliers lying on the lower edge of the data
(in orange) while the remaining 20 (randomly selected amongst 80 250mg pills)
are shape outliers (in red). We treat this functional data set as a bivariate one,
where the absorbance curves are coupled with their first derivatives (baseline
corrections, that typically allow to detect shift outliers, were not considered
since such outliers are detected anyway). As can be seen from Figure 4, both
orange and red outliers have large integrated bagdistances at α = 0. Larger
values of α, however, allow to discriminate between both groups. Indeed, while
the shift outliers keep roughly the same bagdistances for all α, the weighted
functional bagdistances increase for the shape outliers, revealing the fact that
their behavior exhibits variations in time. This is further illustrated on the
rank plot, where all (but one) red outliers increase in rank as α grows.

The examples provided in this section suggest that weight functions may be
useful for depth-based functional outlier detection. Of course, much remains to
be investigated and further comparison between the various methods should
be conducted. Natural questions include, but are not limited to : (i) what other
dispersion measures could be used in the weight function? (ii) Are dispersion
measures the best bases for weight functions? (iii) How sensitive to outliers
should weight functions be?
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Fig. 4 The tablets data set. (Top left:) Absorbance curves. Shift outliers (resp., shape
outliers) are shown in orange (resp., in red). (Top right:) The corresponding derivatives.
(Bottom left:) wα(t)-weighted integrated (halfspace) bagdistances, as a function of α ∈
[0, 30]. (Bottom right:) Ranks of these bagdistances, still as a function of α ∈ [0, 30].
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