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Abstract

In this paper, we consider point estimation in a multi-sample principal components setup,

in a situation where it is suspected that the hypothesis of common principal components

(CPC) holds. We propose preliminary test estimators of the various principal eigenvectors.

We derive their asymptotic distributions (i) under the CPC hypothesis, (ii) under sequences

of hypotheses that are contiguous to the CPC hypothesis, and (iii) away from the CPC

hypothesis. We conduct a Monte-Carlo study that shows that the proposed estimators

perform well, particularly so in the Gaussian case.

Keywords: Preliminary test estimation, Common Principal Components

1. Introduction

Principal Component Analysis (PCA) is arguably one of the most popular multivariate

methods. In this paper, we consider PCA in a multi-sample context. Consider m(> 1)

mutually independent samples of p -vectors Xi1, . . . ,Xini
, i = 1, . . . ,m , with respective

sample sizes n1, . . . , nm , such that for any i , the Xij ’s form a random sample from a

distribution with mean θθθi and covariance matrix ΣΣΣi . In the ith population, the r th

principal component scores are

(βββ
(r)
i )′Xi1, . . . , (βββ

(r)
i )′Xini

, (1.1)

where βββ
(r)
i is the unit eigenvector associated with the r th largest eigenvalue of ΣΣΣi . In other

words, βββ
(r)
i is the r th column vector in the matrix βββi from the factorization ΣΣΣi = βββiΛΛΛiβββ

′
i ,

where βββi ∈ SOp := {O ∈ Rp×p : det(O) = 1 and O−1 = O} and ΛΛΛi := diag(λi1, . . . , λip)

(with λi1 ≥ λi2 ≥ . . . ≥ λip ).

If no extra assumptions are adopted, then m eigenvectors matrices, namely βββ1, . . . ,βββm ,

are to be estimated, each on the basis of the observations from the corresponding population,
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which typically leads to running m PCAs independently. However, it is quite common that

the covariance matrices ΣΣΣi , i = 1, . . . ,m are linked in some way. Possible links include

(i) Homogeneity : ΣΣΣ1 = . . . = ΣΣΣm , (ii) Proportionality : ΣΣΣi = ρiΣΣΣ1 , i = 2, . . . ,m for

some positive scalar factors ρ1, . . . , ρm , or (iii) Common Principal Components (CPC):

ΣΣΣi = βββΛΛΛiβββ
′ , i = 1, . . . ,m , with a common βββ ∈ SOp . In (i)-(iii), the ΣΣΣi ’s share the same

eigenvectors, leading to a common eigenvectors matrix βββ ∈ SOp ; therefore, it is natural to

base estimation of βββ on the pooled sample collecting all Xij ’s, i = 1, . . . ,m , j = 1, . . . , ni .

The CPC model introduced by Flury (1984) is the most flexible model among those

in (i)-(iii) above. This flexibility has made the model quite popular in the past decades :

Flury (1984, 1986) considered Gaussian maximum likelihood estimators and derived the

likelihood ratio test for the CPC structure. Estimation of common subspaces was considered

in Schott (1988) and Fujioka (1993). Boente and Orellana (2001), Boente (2002, 2006)

proposed inference methods that are robust to possible outliers, whereas Hallin et al. (2008,

2010a,b, 2013, 2014) proposed various parametric (pseudo-Gaussian) and nonparametric

(rank-based) procedures that combine validity- and efficiency-robustness. Inference for

functional CPC has recently been considered in Benko (2009).

In this paper, we tackle the problem of estimating βββ1, . . . ,βββm in a situation where it is

suspected (but not certain) that the CPC hypothesis holds. In such a setup, one may be

tempted to estimate βββ1, . . . ,βββm by a constrained estimator β̂ββ of the common eigenvectors

matrix βββ := βββ1 = . . . = βββm under the CPC hypothesis. While this will increase efficiency

over the unconstrained estimator β̂ββ1, . . . , β̂ββm if the CPC hypothesis indeed holds, it will

introduce some bias if this hypothesis does not hold. We propose here a preliminary test

estimator (PTE) of βββ1, . . . ,βββm , that achieves a trade-off between the constrained and

unconstrained estimators. PTEs were first introduced by Bancroft (1944) in an ANOVA

setup. Since then, PTEs have been used in various contexts, including covariance matrices

estimation, linear regression models, and time series analysis; see Toyoda and Wallace (1975),

Sen and Saleh (1987), and Maeyama (2011), respectively. We refer to the monograph Saleh

(2006) for a modern account on PTEs.

Quite naturally, the proposed PTE will select the constrained estimator of βββ1, . . . ,βββm

or an unconstrained one based on the outcome of a test for the null hypothesis of CPC.

In the sequel, the unconstrained estimator will be the eigenvectors matrices (β̂ββ1, . . . , β̂ββm)

obtained from the various empirical covariance matrices S1, . . . ,Sm , the constrained one

will be based on the Flury (1984, 1986) Gaussian maximum likelihood estimator β̂ββ of the

common eigenvectors matrix βββ , and the CPC hypothesis will be tested by using a pseudo-

Gaussian test φ(n) that is similar in spirit to the one proposed in Hallin (2010a); see Section

2 for details. Writing I[A] for the indicator function associated with the event A and using
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the classical notation for test functions (that is, φ(n) = 1 corresponds to rejection of the

null, while φ(n) = 0 indicates non-rejection), the proposed PTE is of the form

(β̂ββ
PT

1 , . . . , β̂ββ
PT

m ) := (β̂ββ, . . . , β̂ββ)I[φ(n) = 0] + (β̂ββ1, . . . , β̂ββm)I[φ(n) = 1]. (1.2)

In other words, the PTE coincides with the unconstrained estimator when the null of CPC

is rejected and with the constrained estimator when the null is not rejected.

Below, we study the asymptotic properties of this PTE in various elliptically symmetric

scenarios, namely (i) under the CPC hypothesis, (ii) under sequences of hypotheses that are

contiguous to the CPC hypothesis, and (iii) under fixed distributions that do not satisfy the

CPC structure. As we show through simulations, the proposed PTE provides a nice trade-

off, in terms of efficiency, between the popular constrained and unconstrained estimators.

The outline of the paper is as follows. In Section 2, we describe the Gaussian and pseudo-

Gaussian procedures for fitting a CPC model and for testing the CPC hypothesis. We also

define the proposed PTE there. In Section 3, we derive the asymptotic properties of this

PTE under various scenarios. In Section 4, we report the results of Monte-Carlo simulations

that compare the performances of the PTE with those of the constrained and unconstrained

estimators. Finally, an appendix collects the proofs of the technical results.

2. Preliminary test estimator

2.1. Gaussian and Pseudo-Gaussian inference for CPC

Let (Xi1, . . . ,Xini
), i = 1, . . . ,m , be mutually independent random samples from the p -

variate normal distribution with respective mean vectors θθθi and positive definite covariance

matrices ΣΣΣi , i = 1, . . . ,m . Flury (1984) derived the corresponding (Gaussian) maximum

likelihood estimators of the common eigenvectors matrix βββ in the CPC model described

in the introduction, as well as the (Gaussian) likelihood ratio test (LRT) for the null

hypothesis HCPC of CPC.

For point estimation in the CPC model, the likelihood equations for βββ = (βββ(1), . . . ,βββ(p))

and the corresponding eigenvalues λir = (βββ(r))′ΣΣΣiβββ
(r) , i = 1, . . . ,m , r = 1, . . . , p , are

(βββ(r))′
( m∑
i=1

ni
λir − λis
λirλis

Si

)
βββ(s) = 0, r, s = 1, . . . , p with r 6= s, (2.3)

(βββ(r))′Siβββ
(r) = λir, i = 1, . . . ,m, r = 1, . . . , p, (βββ(r))′βββ(s) = δrs, r, s = 1, . . . , p, (2.4)
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where δrs is the usual Kronecker symbol and

Si :=
1

ni − 1

ni∑
j=1

(Xij − X̄i)(Xij − X̄i)
′, with X̄i :=

1

ni

ni∑
j=1

Xij ,

is the empirical covariance matrix associated with the ith sample, i = 1, . . . ,m . The

likelihood equations (2.3)-(2.4) cannot be solved explicitly, but an algorithm for solving

them numerically has been proposed by Flury and Gautschi (1986).

For hypothesis testing, the LRT, in the present Gaussian setup, rejects the null of CPC

for small values of

Λ(n) =

m∏
i=1

(
det(β̂ββ

′
Siβ̂ββ)

det(diag(β̂ββ
′
Siβ̂ββ))

)ni/2

, (2.5)

where β̂ββ denotes the Gaussian maximum likelihood estimator of the common eigenvectors

matrix under the null and diag(A) is the diagonal matrix having the same diagonal as A .

The intuition behind (2.5) is clear : under the null of CPC, β̂ββ
′
Siβ̂ββ should be close to diagonal,

so that det(β̂ββ
′
Siβ̂ββ) and det(diag(β̂ββ

′
Siβ̂ββ)) should be approximately equal, leading to a large

(that is, close to one) value of the likelihood ratio statistic Λ(n) . On the contrary, small

values of Λ(n) provide evidence against the null of CPC. Flury (1986) shows that, under the

null, −2 log Λ(n) is asymptotically chi-square with (m − 1)s degrees of freedom, where we

let s := p(p − 1)/2. Consequently, the LRT rejects the null of CPC at asymptotic level α

whenever

−2 log Λ(n) > χ2
(m−1)s,1−α,

where χ2
`,1−α denotes the α -upper quantile of the chi-square distribution with ` degrees of

freedom. It follows from the results in Hallin et al. (2013) that, in the Gaussian case, this

test is asymptotically optimal in the Le Cam sense.

As it is often the case, however, this Gaussian LRT unfortunately is highly sensitive

to violations of the Gaussian assumptions. Away from the multinormal case, this test

may be either overly conservative or extremely liberal. As a reaction to this lack of

validity-robustness, we propose using the following pseudo-Gaussian test φ(n) . Writing

dij(θθθ,ΣΣΣ) :=
(
(X

(n)
ij − θθθ)′ΣΣΣ

−1(X
(n)
ij − θθθ)

)1/2
for the Mahalanobis distance between X

(n)
ij

and θθθ in the metric associated with ΣΣΣ, let

κ̂i :=
p

p+ 2

1
ni

∑ni

j=1 d
4
ij(X̄i,Si)(

1
ni

∑ni

j=1 d
2
ij(X̄i,Si)

)2 − 1, i = 1, . . . ,m

(note that κ̂i is a consistent estimator of the kurtosis coefficient κp(fi) :=

pE[d4
i1(θθθi,ΣΣΣi)]/((p + 2)E2[d2

i1(θθθi,ΣΣΣi)]) − 1 associated with the ith population). Further
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define Λ̂ΛΛi = diag(λ̂i1, . . . , λ̂ip), i = 1, . . . ,m , based on the eigenvalues of Si , i = 1, . . . ,m ,

and put ν̂ννi := diag(ν̂
(i)
12 , ν̂

(i)
23 , . . . , ν̂

(i)
(p−1)p), i = 1, . . . ,m , with

ν̂
(i)
j` :=

n(1 + κ̂i)λ̂ij λ̂i`

ni(λ̂ij − λ̂i`)2
·

Then the test φ(n) rejects the null of CPC at asymptotic level α whenever

Qn :=

m∑
i,i′=1

(ovec(Ti))
′
[
δii′Is − ν̂νν−1/2

i ν̂ννν̂νν
−1/2
i′

]
ovec(Ti′) > χ2

(m−1)s,1−α, (2.6)

where Ti := n
1/2
i (1 + κ̂i)

−1/2Λ̂ΛΛ
−1/2

i β̂ββ
′
Siβ̂ββΛ̂ΛΛ

−1/2

i , ν̂νν := (
∑m
i=1 ν̂νν

−1
i )−1 and ovec(A) is the

p(p − 1)/2-vector stacking the upper-diagonal elements of the p × p matrix A on top of

each other. Under the CPC hypothesis, the upper-triangular elements of β̂ββ
′
Siβ̂ββ should be

close to zero for any i = 1, . . . ,m , so that Qn should then be small. On the contrary, large

values of Qn indicate deviations from the CPC hypothesis.

Hallin et al. (2010a) considered a slightly different version Q̃n of Qn , that is obtained

by replacing in Qn the unconstrained estimators of the eigenvalues λ̂ij above by the ML

eigenvalue estimators under the null of CPC, that is, by the eigenvalues solutions of (2.3)-

(2.4). By using the same techniques as in Hallin et al. (2010a), one can easily show that,

in the Gaussian case, Qn = Q̃n + oP(1) = −2 log Λ(n) + oP(1) as n → ∞ under the null

of CPC (hence, also under sequences of contiguous alternatives), but that, away from the

Gaussian case, both Qn and Q̃n remain asymptotically chi-square with (m − 1)s degrees

of freedom under the null; more precisely, they remain chi-square with (m− 1)s degrees of

freedom provided that observations are sampled from m elliptical distributions with finite

fourth-order moments. It readily follows that φ(n) is, as announced, a pseudo-Gaussian

version of the Gaussian LRT, in the sense that it is asymptotically equivalent to the latter

(hence, is asymptotically optimal in the Le Cam sense) in the Gaussian case, while extending

the validity of the Gaussian LRT much beyond the Gaussian case.

2.2. The proposed preliminary test estimator

As explained in the Introduction, we consider here the estimation of βββ :=

((vecβββ1)′, . . . , (vecβββm)′)′ , where βββi is the eigenvectors matrix associated with ΣΣΣi ,

i = 1, . . . ,m . If the various covariance matrices do not share a particular structure, the

Gaussian maximum likelihood estimator of βββ is β̂ββ
U

:= ((vec β̂ββ1)′, . . . , (vec β̂ββm)′)′ , where β̂ββi

is the eigenvectors matrix associated with the empirical covariance matrix Si , i = 1, . . . ,m .

We refer to this estimator as the unconstrained estimator. Under the CPC hypothesis, βββ is

of the form βββ = ((vecβββ)′, . . . , vecβββ)′)
′

for some βββ ∈ SOp , and the corresponding Gaussian
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MLE is the constrained estimator β̂ββ
C

:= ((vec β̂ββ)′, . . . , (vec β̂ββ)′)′ , where the eigenvectors

matrix β̂ββ is the solution of the likelihood equations (2.3)-(2.4).

If one suspects that the CPC hypothesis may hold, then it is natural to adopt, in the spirit

of Saleh (2006), a preliminary test estimator (PTE) of βββ , that will be the unconstrained

(rep., constrained) estimator when a test for CPC does (resp., does not) lead to rejection of

the null. When based on the test φ(n) above, the proposed PTE is thus

β̂ββ
PT

= ((vec β̂ββ
PT

1 )′, . . . , (vec β̂ββ
PT

m )′)′ (2.7)

= β̂ββ
C
I[Qn ≤ χ2

(m−1)s,1−α] + β̂ββ
U
I[Qn > χ2

(m−1)s,1−α].

In Section 3, we study the asymptotic properties of this PTE under elliptical distributions

with finite fourth-order moments, while in Section 4, we compare the finite-sample perfor-

mances of β̂ββ
U

, β̂ββ
C

and β̂ββ
PT

via Monte-Carlo simulations.

3. Asymptotics

The aim of the present section is to investigate the asymptotic behavior of the estima-

tor β̂ββ
PT

in (2.7). To do so, we consider triangular arrays of observations of the form

(X
(n)
11 , ...,X

(n)

1n
(n)
1

,X
(n)
21 , ...,X

(n)

2n
(n)
2

, ...,X
(n)
m1, ...,X

(n)

mn
(n)
m

),

where the sequences ni = n
(n)
i are such that ni →∞ as n→∞ for all i = 1, . . . ,m . The

following distributional assumption will be required.

Assumption (A). (i) The p -variate observations X
(n)
ij , j = 1, . . . , ni , i = 1, . . . ,m are

mutually independent. (ii) For any i = 1, . . . ,m , X
(n)
i1 , . . . ,X

(n)
ini

have a common elliptical

distribution with location θθθi , positive-definite covariance matrix ΣΣΣi and radial density fi

such that E[‖X(n)
i1 ‖4] <∞ . (iii) The m -tuple of radial densities f := (f1, . . . , fm) is satisfies

κp(f1) = . . . = κp(fm)(=: κp(f)).

Assumption (A)(iii) implies that we restrict to the homokurtic case. This assumption is

adopted for ease of presentation only, as the results of the paper could be extended to the

more general heterokurtic case in a rather straightforward way.

The eigenvectors in each βββi , i = . . . ,m have to be properly identified, which is

guaranteed by the following assumption.

Assumption (B). For any i = 1, . . . ,m , the eigenvalues of ΣΣΣi are pairwise different.
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This assumption properly identifies, for any i = 1, . . . ,m , the eigenvalues matri-

ces ΛΛΛi = diag(λi1, . . . , λip), with λi1 > . . . > λip , and the corresponding eigenvectors

matrices βββi = (βββ
(1)
i , . . . ,βββ

(p)
i ) ∈ SOp (up to unimportant sign changes in each column).

While Assumption (B) is classical in (multi-sample) PCA, it is not in the CPC model;

(there, the common eigenvectors will indeed be identified as soon as for any r, s = 1, . . . , p

(r 6= s), there is at least one i such that λir 6= λis , which leaves space for equality of the

corresponding eigenvalues in some populations). However, since preliminary test estimation

requires considering both types of eigenstructures (CPC and unconstrained multi-sample

PCA), we need to adopt Assumption (B) throughout.

Finally, our asymptotic results also require controlling the sample sizes n
(n)
i .

Assumption (C). For any i = 1, . . . ,m , r
(n)
i := n

(n)
i /n→ ri ∈ (0, 1) as n→∞ .

Clearly, the asymptotic behavior of β̂ββ
PT

, equivalently of

√
nR(n)(β̂ββ

PT
− βββ), with R(n) := diag

(√
r

(n)
1 , . . . ,

√
r

(n)
m

)
⊗ Ip2

(⊗ denotes the classical Kronecker product and I` is the `×` identity matrix), will crucially

depend on the asymptotic behaviors of
√
nR(n)(β̂ββ

U
− βββ) and

√
n(β̂ββ

C
− βββ), which are

summarized in Theorem 1 below. Stating this result requires introducing the following

notation. For any βββ = (βββ(1), . . . ,βββ(p)) ∈ SOp , let Gβββ
p;rs := er ⊗ βββ(s) − es ⊗ βββ(r) and

Gβββ
p := (Gβββ

p;12 Gβββ
p;13 . . .G

βββ
p;(p−1)p), where e` stands for the `th vector of the canonical basis

of Rp . Letting ν
(i)
rs := (1 + κp(f))−1λirλis/(λir − λis)2 , further define

ννν(i) := diag(ν
(i)
12 , ν

(i)
13 , . . . , ν

(i)
(p−1)p) and ννν :=

(
m∑
i=1

ri(ννν
(i))−1

)−1

.

For the sake of readability, the joint distribution of the X
(n)
ij ’s, under Assump-

tions (A)-(B), will throughout be denoted as P
(n)
βββ,f (rather than the more correct

P
(n)
θθθ1,...,θθθm,βββ1,...,βββm,ΛΛΛ1,...,ΛΛΛm,f

). In the sequel, the notation “βββ ∈ HCPC ” will mean that βββ

is of the form βββ = (βββ, . . . ,βββ) for some βββ in SO(p). The following result then readily follows

from Hallin (2008).

Proposition 1. Let Assumptions (A), (B) and (C) hold. Then,

(i) under P
(n)
βββ,f with βββ ∈ HCPC ,

√
n vec(β̂ββ − βββ) converges weakly to a Gaussian random

vector with mean zero and covariance matrix Gβββ
pννν(Gβββ

p )′ (so that
√
n(β̂ββ

C
−βββ) converges

weakly to a Gaussian random vector with mean zero and covariance matrix ΓΓΓC
f (βββ,ΛΛΛ) :=

diag(Gβββ
pννν

(1)(Gβββ
p )′, . . . ,Gβββ

pννν
(m)(Gβββ

p )′)) ;
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(ii) under P
(n)
βββ,f ,

√
nR(n)(β̂ββ

U
−βββ) converges weakly to a Gaussian random vector with mean

zero and covariance matrix ΓΓΓU
f (βββ,ΛΛΛ) := diag(G

βββ1
p ννν(1)(G

βββ1
p )′, . . . ,G

βββm
p ννν(m)(G

βββm
p )′).

The asymptotic behavior of β̂ββ
PT

does not only depend on the asymptotic behaviors of

β̂ββ
U

and β̂ββ
C

, but also on that of the test statistic Qn in (2.6). It follows from Section 6 of

Hallin et al. (2013) that, as n→∞ under P
(n)
βββ,f with βββ ∈ HCPC ,

Qn = (S(n))′
(
(ΓΓΓU
f (βββ,ΛΛΛ))− −RΥΥΥ(ΥΥΥ′RΓΓΓU

f (βββ,ΛΛΛ)RΥΥΥ)−ΥΥΥ′R
)
S(n) + oP(1), (3.8)

where ΥΥΥ := 1m ⊗ Ip2 with 1m := (1, . . . , 1)′ ∈ Rm , R := limn→∞R(n) , A− denotes

the Moore-Penrose pseudo-inverse of A , and where S(n) is the central sequence associated

with the model defined in Proposition 5.1 of Hallin et al. (2013). Still under P
(n)
βββ,f with

βββ ∈ HCPC , this central sequence is asymptotically normal with mean zero and covariance

matrix ΓΓΓU
f (βββ,ΛΛΛ), so that, in view of Theorem 9.2.1 in Rao and Mitra (1971), Qn is then

asymptotically chi-square with (m− 1)s degrees of freedom.

Our goal is to obtain asymptotic results in three different scenarios :

(i) the CPC hypothesis HCPC , that is, βββ ∈ HCPC , or equivalently, βββ ∈ M(ΥΥΥ) ∩

(vecSOp)m (throughout, M(A) stands for the vector subspace spanned by the

columns of A);

(ii) the vicinity of HCPC , characterized by eigenvectors matrices of the form

βββ(n) := βββ + (
√
nR(n))−1b(n) (∈ (vecSOp)m), with βββ ∈ HCPC, (3.9)

where b(n) is a bounded sequence such that βββ(n) /∈ M(ΥΥΥ). It follows from the

ULAN result in Hallin et al. (2013) that the corresponding distributions are actually

contiguous to the CPC hypothesis;

(iii) away from HCPC , characterized by eigenvectors matrices of the form

βββ(n) := βββ + b(n) (∈ (vecSOp)m), with βββ ∈ HCPC, (3.10)

where b(n) is a bounded sequence such that βββ(n) /∈M(ΥΥΥ);

The following result describes the asymptotic behavior of β̂ββ
PT

away from HCPC (see

the appendix for the proof).

Theorem 1. Let Assumptions (A), (B) and (C) hold. Then, under P
(n)

βββ(n),f
with βββ(n) away

from HCPC (as in (3.10)) ,
√
nR(n)(β̂ββ

PT
−βββ(n)) =

√
nR(n)(β̂ββ

U
−βββ(n))+oP(1) as n→∞ .
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As expected, since the test φ(n) is consistent away from HCPC , the preliminary test

estimator β̂ββ
PT

, still away from HCPC , is asymptotically equivalent to the unconstrained

estimator β̂ββ
U

. The other main results of the paper concern the asymptotic behavior of β̂ββ
PT

under HCPC and in the vicinity of HCPC . To state those results, we let

D(n) :=
(
Imp2 − proj

(
(ΓΓΓU
f (βββ,ΛΛΛ))1/2RΥΥΥ

))
((ΓΓΓU

f (βββ,ΛΛΛ))−)1/2S(n)

=: P(βββ,ΛΛΛ)((ΓΓΓU
f (βββ,ΛΛΛ))−)1/2S(n), (3.11)

with proj(A) := A(A′A)−A . Since (ΓΓΓU
f (βββ,ΛΛΛ))−ΓΓΓU

f (βββ,ΛΛΛ) = 1
2 (Im ⊗ Gβββ

p (Gβββ
p )′) and

1
2 (Im ⊗ Gβββ

p (Gβββ
p )′)S(n) = S(n) under P

(n)
βββ,f with βββ ∈ HCPC (see Hallin et al. (2013)), it

follows from (3.8) that, as n→∞ under P
(n)
βββ,f with βββ ∈ HCPC ,

Qn = ‖D(n)‖2 + oP(1).

Putting γ(Q) := I[Q ≤ χ2
(m−1)s,1−α] , we then have the following result

Theorem 2. Let Assumptions (A), (B) and (C) hold. Then, under P
(n)

βββ(n),f
with βββ(n) in the

vicinity of HCPC (as in (3.9)) ,
√
nR(n)(β̂ββ

PT
−βββ(n)) , conditional on D(n) = D , converges

weakly to a Gaussian random vector with mean vector

µµµPT
Vic(D) := (1− γ(‖D‖2))((ΓΓΓU

f (βββ,ΛΛΛ))−)1/2P(βββ,ΛΛΛ)(D− (ΓΓΓU
f (βββ,ΛΛΛ))1/2b)

+γ(‖D‖2)(RΥΥΥΓΓΓ
(βββ,ΛΛΛ)ΓΓΓ

U
f (βββ,ΛΛΛ)− Imp2)b

and covariance matrix

ΓΓΓPT
Vic(D) := (1− γ(‖D‖2))2

(
(ΓΓΓU
f (βββ,ΛΛΛ))− − ((ΓΓΓU

f (βββ,ΛΛΛ))−)1/2P(βββ,ΛΛΛ)((ΓΓΓU
f (βββ,ΛΛΛ))−)1/2

)
+

1

2
γ(‖D‖2)(1− γ(‖D‖2))(RΥΥΥΓΓΓ

(βββ,ΛΛΛ)(Im ⊗Gβββ
p (Gβββ

p )′) + (Im ⊗Gβββ
p (Gβββ

p )′))(ΥΥΥΓΓΓ
(βββ,ΛΛΛ))

′R)

+γ2(‖D‖2)RΥΥΥΓΓΓ
(βββ,ΛΛΛ)ΓΓΓ

U
f (βββ,ΛΛΛ)(ΥΥΥΓΓΓ

(βββ,ΛΛΛ))
′R,

with ΥΥΥΓΓΓ
(βββ,ΛΛΛ) := ΥΥΥ(ΥΥΥ′RΓΓΓU

f (βββ,ΛΛΛ)RΥΥΥ)−ΥΥΥ′R , R := limn→∞R(n) and b := limn→∞ b(n) .

The corresponding unconditional asymptotic distribution of
√
nR(n)(β̂ββ

PT
− βββ(n)) can

then be obtained from the fact that, under P
(n)

βββ(n),f
with βββ(n) as in (3.9), D(n) is

asymptotically normal with mean vector ξξξ := P(βββ,ΛΛΛ)(ΓΓΓU
f (βββ,ΛΛΛ))1/2b and covariance

matrix P(βββ,ΛΛΛ). It directly follows from Theorem 2 that the asymptotic distribution of

9



√
nR(n)(β̂ββ

PT
− βββ(n)) under P

(n)

βββ(n),f
with βββ(n) as in (3.9) has density

y 7→
∫
Rmp2

φ
(mp2)

µµµPT
Vic(x),ΓΓΓPT

Vic(x)
(y) φ

(mp2)
ξξξ,P(βββ,ΛΛΛ)(x) dx, (3.12)

where φ
(`)
µµµ,ΣΣΣ stands for the probability density function of a Gaussian random ` -vector with

mean µµµ and covariance matrix ΣΣΣ.

It is easy to show that the proof of Theorem 2 covers the case b(n) ≡ 0, which provides

the following conditional asymptotic distribution of the PTE under the CPC hypothesis

(of course, unconditioning can be performed as above, based this time on the central

multinormal asymptotic distribution of D(n) under the CPC hypothesis).

Corollary 1. Let Assumptions (A), (B) and (C) hold. Then, under the CPC hypothesis

(P
(n)
βββ,f , with βββ ∈ HCPC) ,

√
nR(n)(β̂ββ

PT
−βββ) , conditional on D(n) = D , converges weakly to

a Gaussian random vector with mean vector (γ(‖D‖2) − 1)((ΓΓΓU
f (βββ,ΛΛΛ))−)1/2P(βββ,ΛΛΛ)D and

covariance matrix ΓΓΓPT
Vic(D) .

The complicated asymptotic distributions above make it difficult to compare the pro-

posed PTE to its constrained and unconstrained antecedent through asymptotic relative

efficiencies, and we therefore rather focus on finite-sample comparisons based on simula-

tions.

4. Simulations

In this section, we compare the estimators β̂ββ
U

, β̂ββ
C

and β̂ββ
PT

via Monte-Carlo simulations.

First we considered a bivariate setup (p = 2) involving two populations (m = 2), with 200

observations in each group (n1 = n2 = 200). We started with a Gaussian setup for which

• observations in the first group are randomly sampled from the bivariate normal

distribution with mean zero and covariance matrix βββ1ΛΛΛβββ′1 , with ΛΛΛ = diag(2, 1)

and βββ1 = I2 , and

• observations in the second group are randomly sampled from the bivariate normal

distribution with mean zero and covariance matrix βββ2ΛΛΛβββ′2 , with either

βββ2 = I2 (CPC),

βββ2 =

(
cos
(

2π√
n2

)
− sin

(
2π√
n2

)
sin
(

2π√
n2

)
cos
(

2π√
n2

)
)

(vicinity of CPC),

10



and

βββ2 =

(
cos(π3 ) − sin(π3 )

sin(π3 ) cos(π3 )

)
(away from CPC).

We generated 2, 500 independent samples of this form and computed in each replication the

constrained, unconstrained and preliminary test estimators (for the latter, the tests of CPC

were conducted at level 5%). In the q th replication, we evaluated, for each estimator β̂ββ(q) =

((vec β̂ββ1(q))′, (vec β̂ββ2(q))′)′ , the corresponding estimation accuracy measure

ω
(1)

β̂ββ
(q) :=

(
(βββ

(1)
1 )′β̂ββ

(1)

1 (q)
)2

+
(
(βββ

(1)
2 )′β̂ββ

(1)

2 (q)
)2

2
.

Clearly, the average of cosines ω
(1)

β̂ββ
(q) takes value in [0, 1] with large (resp., small) values

indicating good (resp., poor) estimation.

In a second simulation, we considered a four-dimensional setup (p = 4) involving four

populations (m = 4) with 200 observations in each group (ni = 200, i = 1, 2, 3, 4). We

similarly started with the Gaussian case for which

• observations in the first two groups are randomly sampled from the four-

dimensional normal distribution with mean zero and covariance matrix βββ1ΛΛΛβββ′1 ,

with ΛΛΛ = diag(4, 3, 2, 1) and βββ1 = I4 , and

• observations in the third and fourth groups are randomly sampled from the four-

dimensional normal distribution with mean zero and covariance matrix βββ2ΛΛΛβββ′2 , with

either

βββ2 = I4 (CPC),

βββ2 = diag

( cos
(

2π√
n4

)
− sin

(
2π√
n4

)
sin
(

2π√
n4

)
cos
(

2π√
n4

)
)
,

(
cos
(

2π√
n4

)
− sin

(
2π√
n4

)
sin
(

2π√
n4

)
cos
(

2π√
n4

)
) (vicinity of CPC),

βββ2 = diag

( cos(π3 ) − sin(π3 )

sin(π3 ) cos(π3 )

)
,

(
cos(π3 ) − sin(π3 )

sin(π3 ) cos(π3 )

) (away from CPC).

We also generated 2, 500 independent samples of this form and computed in each replication

the constrained, unconstrained and preliminary test estimators (PTEs are still based on

5%-level tests of CPC). In the q th replication, we evaluated, for each estimator β̂ββ(q) =

((vec β̂ββ1(q))′, (vec β̂ββ2(q))′, (vec β̂ββ3(q))′, (vec β̂ββ4(q))′)′ , the corresponding estimation accuracy

measure

ω
(2)

β̂ββ
(q) :=

∑4
j=1

(
(βββ

(1)
j )′β̂ββ

(1)

j (q)
)2

4
.

11



Figure 1 and Figure 3 provide the resulting boxplots of the ω
(`)

β̂ββ
(q)’s (` = 1, 2),

q = 1, . . . , 2, 500 for the constrained, unconstrained and preliminary test estimators, while

Figure 2 and Figure 4 show the corresponding boxplots for the t6 distribution. Inspection

of these figures reveals that, as expected, the PTE behaves (i) almost like the unconstrained

estimator away from CPC, (ii) almost like the constrained estimator under CPC and (iii)

achieves a balance between both estimators in the vicinity of CPC. Note that in the vicinity

of CPC, the PTE is closer to the unconstrained estimator in the Gaussian case than in the

t6 case. This comes from the fact that the pseudo-Gaussian test φ(n) is more powerful in the

Gaussian case than under Student distributions (see, e.g. Hallin et al. 2010a). Note also that

still in the vicinity of CPC, the constrained estimator performs better in the (m = 4, p = 4)

(second simulation) case than in the (m = 2, p = 2) (first simulation) case. This only comes

from the fact that the chosen local alternatives in the (m = 4, p = 4) case are less severe

than those in the (m = 2, p = 2) case.
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Figure 1: Boxplots of the estimation accuracy measures ω
(1)

β̂ββ
(q) associated with the constrained, preliminary

test estimation, and unconstrained estimators in 2, 500 replications of the bivariate Gaussian setup described
in Section 4; the left panel corresponds to the CPC hypothesis, the middle one to the vicinity of CPC, and
the right one to a distribution that is away from CPC.

Appendix A. Proofs

We start with the following preliminary result.

Lemma 1. Let Assumptions (A), (B) and (C) hold. Then under P
(n)

βββ(n),f
away from HCPC ,

n/Qn = OP(1) as n→∞ .
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Figure 2: Boxplots of the estimation accuracy measures ω
(1)

β̂ββ
(q) associated with the constrained, preliminary

test estimation, and unconstrained estimators in 2, 500 replications of the bivariate t6 setup described in
Section 4; the left panel corresponds to the CPC hypothesis, the middle one to the vicinity of CPC, and the
right one to a distribution that is away from CPC.
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Figure 3: Boxplots of the estimation accuracy measures ω
(2)

β̂ββ
(q) associated with the constrained, preliminary

test estimation, and unconstrained estimators in 2, 500 replications of the 4-dimensional Gaussian setup
described in Section 4; the left panel corresponds to the CPC hypothesis, the middle one to the vicinity of
CPC, and the right one to a distribution that is away from CPC.
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Figure 4: Boxplots of the estimation accuracy measures ω
(2)

β̂ββ
(q) associated with the constrained, preliminary

test estimation, and unconstrained estimators in 2, 500 replications of the 4-dimensional t6 setup described
in Section 4; the left panel corresponds to the CPC hypothesis, the middle one to the vicinity of CPC, and
the right one to a distribution that is away from CPC.

Proof of Lemma 1. Unless otherwise mentioned, all infima/suprema in βββ in this proof are

over SOp . For any βββ ∈ SOp , denote as Qn(βββ) the random variable obtained by replacing β̂ββ

with βββ in Qn ; see (2.6). For any βββ , we have that

Qn(βββ)/n = q(βββ) + oP(1) (A.1)

as n→∞ under P
(n)

βββ(n),f
, where

q(βββ) :=

m∑
i,i′=1

(ovec(ti(βββ)))′
[
δii′Is − ννν−1/2

i νννννν
−1/2
i′

]
ovec(ti′(βββ))

=:


ovec(t1(βββ))

...

ovec(tm(βββ))


′

A


ovec(t1(βββ))

...

ovec(tm(βββ))


is based on ti(βββ) := r

1/2
i (1 + κi)

−1/2ΛΛΛ
−1/2
i βββ′ΣΣΣiβββΛΛΛ

−1/2
i , ΛΛΛi = diag(λi1, . . . , λip), ννν :=

(
∑m
i=1 ννν

−1
i )−1 , νννi := diag(ν

(i)
12 , ν

(i)
23 , . . . , ν

(i)
(p−1)p), with ν

(i)
j` := (1 + κi)λijλi`/[ri(λij − λi`)2].

Since A is positive definite and since, away from the CPC hypothesis, no eigenvectors

matrix βββ can simultaneously diagonalize ΣΣΣi , i = 1, . . . ,m , we have that q(βββ) > 0 for
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any βββ ∈ SOp . The compacity of SOp then implies that

inf
βββ
q(βββ) > 0. (A.2)

Now, letting Rn(βββ) := Qn(βββ)/n − q(βββ), it is easy to show that {Rn(βββ) : n = 1, 2, . . .} is

stochastically equicontinuous (see Newey (1991)) over SOp under P
(n)

βββ(n),f
, in the sense that,

for any ε, η > 0, there exists δ > 0 such that (‖.‖ denotes the Frobenius norm)

lim sup
n→∞

P
(n)

βββ(n),f

[
sup
βββ

sup
β̃ββ:‖β̃ββ−βββ‖<δ

|Rn(β̃ββ)−Rn(βββ)| > η
]
< ε.

Jointly with (A.1), this implies that

sup
βββ
|Qn(βββ)/n− q(βββ)| = oP(1), (A.3)

as n→∞ under P
(n)

βββ(n),f
; see Newey (1991). Since

n/Qn ≤
∣∣∣ 1

Qn/n
− 1

q(β̂ββ)

∣∣∣+
1

q(β̂ββ)
=
|Qn/n− q(β̂ββ)|
q(β̂ββ)Qn/n

+
1

q(β̂ββ)

≤
supβββ |Qn/n− q(βββ)|

infβββ q(βββ)
(

infβββ q(βββ)− supβββ |Qn(βββ)/n− q(βββ)|
) +

1

infβββ q(βββ)
,

the result then follows from (A.2)-(A.3). �

Proof of Theorem 1. Letting γ(t) := I[t ≤ χ2
(m−1)s,1−α] , we have that

√
nR(n)(β̂ββ

PT
− βββ(n)) =

√
nR(n)

(
(1− γ(Qn))β̂ββ

U
+ γ(Qn)β̂ββ

C
− βββ(n))

=
√
nR(n)(β̂ββ

U
− βββ(n)) +

√
nR(n)γ(Qn)(β̂ββ

C
− β̂ββ

U
), (A.4)

so that it remains to show that
√
nR(n)γ(Qn)(β̂ββ

C
− β̂ββ

U
) is oP(1) as n→∞ . Write then

√
nR(n)γ(Qn)(β̂ββ

C
− β̂ββ

U
) = Q1/2

n γ(Qn)(n/Qn)1/2R(n)(β̂ββ
C
− β̂ββ

U
).

Since R(n) converges to R and since (β̂ββ
C
− β̂ββ

U
) is trivially OP(1), it thus remains to show,

in view of Lemma 1, that Q
1/2
n γ(Qn) is oP(1) as n → ∞ . Since the positive quantity Qn

is not a OP(1) under P
(n)

βββ(n),f
away from CPC and limt→∞ t1/2γ(t) = 0, the result follows.

�

Proof of Theorem 2. First note that by using the fact that Qn−‖D(n)‖2 is oP(1) under
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P
(n)
βββ,f with βββ ∈ HCPC as n → ∞ , it is easy to show that under the same sequence of

hypotheses

√
nR(n)(β̂ββ

PT
− βββ(n)) =

√
nR(n)

(
(1− γ(Qn))β̂ββ

U
+ γ(Qn)β̂ββ

C
− βββ(n))

= (1− γ(Qn))
√
nR(n)(β̂ββ

U
− βββ(n)) + γ(Qn)

√
nR(n)(β̂ββ

C
− βββ(n))

= (1− γ(‖D(n)‖2))
√
nR(n)(β̂ββ

U
− βββ(n)) + γ(‖D(n)‖2)

√
nR(n)(β̂ββ

C
− βββ(n)) + oP(1)

(A.5)

as n→∞ . By contiguity, (A.5) also holds under P
(n)

βββ(n),f
. Therefore we need to obtain the

asymptotic distribution (conditional to D(n) = D) of

 √nR(n)(β̂ββ
C
− βββ(n))

√
nR(n)(β̂ββ

U
− βββ(n))


under P

(n)

βββ(n),f
.

As n→∞ under P
(n)
βββ,f with βββ ∈ HCPC , it follows from [11] and [15] that

√
nR(n)(β̂ββ

C
− βββ) = R(n)ΥΥΥΓΓΓ

(βββ,ΛΛΛ)S
(n) + oP(1) (A.6)

and
√
nR(n)(β̂ββ

U
− βββ) = (ΓΓΓU

f (βββ,ΛΛΛ))−S(n) + oP(1), (A.7)

where S(n) is the random vector in (3.11) and ΥΥΥΓΓΓ
(βββ,ΛΛΛ) was defined in the statement of

Theorem 2. Therefore, with βββ(n) in the vicinity of HCPC as in (3.9), we readily obtain

√
nR(n)(β̂ββ

C
− βββ(n)) =

√
nR(n)(β̂ββ

C
− βββ) +

√
nR(n)(βββ − βββ(n))

= R(n)ΥΥΥΓΓΓ
(βββ,ΛΛΛ)S

(n) − b(n) + oP(1) (A.8)

and

√
nR(n)(β̂ββ

U
− βββ(n)) =

√
nR(n)(β̂ββ

U
− βββ) +

√
nR(n)(βββ − βββ(n))

= (ΓΓΓU
f (βββ,ΛΛΛ))−S(n) − b(n) + oP(1), (A.9)

as n→∞ under P
(n)
βββ,f , hence also (from contiguity) under P

(n)

βββ(n),f
.

Under P
(n)
βββ,f with βββ ∈ HCPC , S(n) D→ N (0,ΓΓΓU

f (βββ,ΛΛΛ)), where
D→ denotes weak conver-
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gence. Le Cam’s third Lemma then implies that under P
(n)

βββ(n),f
,

S(n) D→ N (ΓΓΓU
f (βββ,ΛΛΛ)b,ΓΓΓU

f (βββ,ΛΛΛ)), (A.10)

with b := limn→∞ b(n) . Recalling that D(n) = P(βββ,ΛΛΛ)((ΓΓΓU
f (βββ,ΛΛΛ))−)1/2S(n) (see (3.11)),

(A.9), (A.8) and (A.10) then yield that, under P
(n)

βββ(n),f
,


√
nR(n)(β̂ββ

C
− βββ(n))

√
nR(n)(β̂ββ

U
− βββ(n))

D(n)

 D→ N




(RΥΥΥΓΓΓ
(βββ,ΛΛΛ)ΓΓΓ

U
f (βββ,ΛΛΛ)− Imp2)b

0

P(βββ,ΛΛΛ)(ΓΓΓU
f (βββ,ΛΛΛ))1/2b

 ,C1

 ,

with

C1 :=


RΥΥΥΓΓΓ

(βββ,ΛΛΛ)ΓΓΓ
U
f (βββ,ΛΛΛ)(ΥΥΥΓΓΓ

(βββ,ΛΛΛ))
′R 1

2RΥΥΥΓΓΓ
(βββ,ΛΛΛ)(Im ⊗Gβββ

p (Gβββ
p )′) 0

1
2 (Im ⊗Gβββ

p (Gβββ
p )′)(ΥΥΥΓΓΓ

(βββ,ΛΛΛ))
′R (ΓΓΓU

f (βββ,ΛΛΛ))− ((ΓΓΓU
f (βββ,ΛΛΛ))−)1/2P(βββ,ΛΛΛ)

0 P(βββ,ΛΛΛ)((ΓΓΓU
f (βββ,ΛΛΛ))−)1/2 P(βββ,ΛΛΛ)

 ,

where we used in the computations the facts that (ΓΓΓU
f (βββ,ΛΛΛ))−ΓΓΓU

f (βββ,ΛΛΛ) = 1
2 (Im⊗Gβββ

p (Gβββ
p )′)

and that 1
2 (Im ⊗Gβββ

p (Gβββ
p )′)b = b (see Lemma A.1 of Hallin et al. (2013)). It follows that,

still under P
(n)

βββ(n),f
, we have that, conditional to D(n) = D ,

 √nR(n)(β̂ββ
C
− βββ(n))

√
nR(n)(β̂ββ

U
− βββ(n))

 D→ N

 (RΥΥΥΓΓΓ
(βββ,ΛΛΛ)ΓΓΓ

U
f (βββ,ΛΛΛ)− Imp2)b

((ΓΓΓU
f (βββ,ΛΛΛ))−)1/2P(βββ,ΛΛΛ)(D− (ΓΓΓU

f (βββ,ΛΛΛ))1/2b)

 ,C2

 ,

with

C2 :=

 RΥΥΥΓΓΓ
(βββ,ΛΛΛ)ΓΓΓ

U
f (βββ,ΛΛΛ)(ΥΥΥΓΓΓ

(βββ,ΛΛΛ))
′R 1

2RΥΥΥΓΓΓ
(βββ,ΛΛΛ)(Im ⊗Gβββ

p (Gβββ
p )′)

1
2 (Im ⊗Gβββ

p (Gβββ
p )′)(ΥΥΥΓΓΓ

(βββ,ΛΛΛ))
′R (ΓΓΓU

f (βββ,ΛΛΛ))− − ((ΓΓΓU
f (βββ,ΛΛΛ))−)1/2P(βββ,ΛΛΛ)((ΓΓΓU

f (βββ,ΛΛΛ))−)1/2

 .

The result then follows directly from (A.5).
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