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Abstract: A new nonparametric quantile regression method based on the concept of optimal

quantization was developed recently and was showed to provide estimators that often dominate

their classical, kernel-type, competitors. The construction, however, remains limited to single-

output quantile regression. In the present work, we therefore extend the quantization-based

quantile regression method to the multiple-output context. We show how quantization allows

to approximate population multiple-output regression quantiles based on halfspace depth. We

prove that this approximation becomes arbitrarily accurate as the size of the quantization grid

goes to infinity. We also consider a sample version of the proposed regression quantiles and derive

a weak consistency result. Through simulations, we compare the performances of the proposed

estimators with (local constant and local bilinear) kernel competitors. We also compare the

corresponding sample quantile regions. The results reveal that the proposed quantization-based

estimators, which are local constant in nature, outperform their kernel counterparts and even

often dominate their local bilinear kernel competitors.

Key words and phrases: multivariate quantilem, nonparametric estimation, optimal quantization,

quantile regression.

1 Introduction

Since its introduction in the seminal paper Koenker and Bassett (1978), quantile regres-

sion has met a tremendous success. Unlike standard least squares regression that focuses

on the mean of a scalar response Y conditional on a d-dimensional covariate X, quan-

tile regression is after the corresponding conditional quantile of any order α ∈ (0, 1),

hence provides a thorough description of the conditional distribution of the response. It
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is well-known that quantile regression, as an L1-type method, dominates least squares

regression methods in terms of robustness, while remaining very light on the compu-

tational side since it relies on linear programming methods. Quantile regression was

first defined for linear regression but was later extended to nonlinear/nonparametric

regression. For a modern account of quantile regression, we refer to the monograph

Koenker (2005).

Quantile regression for long has been restricted to the single-output (that is, uni-

variate response) context. The reason is of course that, due to the lack of a canonical

ordering in Rm (m > 1), there is no universally accepted definition of multivariate

quantile. In the last two decades, the problem of defining a suitable concept of mul-

tivariate quantile has been an active research topic. Chaudhuri (1996) proposed a

concept of geometric quantiles whose corresponding quantile regions coincide with the

spatial depth regions; see, e.g., Serfling (2010). These quantiles are suitable in large

dimensions and even in general Hilbert spaces, which makes them applicable to high-

dimensional or functional data. They have been used in a quantile regression frame-

work, even in the functional case; see, e.g., Chakraborty (2003), Cheng and De Gooijer

(2007), Chaouch and Laïb (2013, 2015) and Chowdhury and Chaudhuri (2016). Al-

though they can be made affine-equivariant through a transformation-retransformation

approach (see Chakraborty, 2001, 2003), geometric (regression) quantiles intrinsically

are orthogonal-equivariant only. An alternative definition of multivariate quantile, that

is affine-equivariant and still enjoys all properties usually expected from a quantile, was

proposed in Hallin et al. (2010). The corresponding quantiles, unlike geometric ones,

are related to the (Tukey, 1975) halfspace depth. Very recently, multivariate quantiles

that enjoy even stronger equivariance properties and are still connected with appropri-

ate depth functions, but that are much harder to compute in practice, were proposed

and used for multiple-output quantile regression; see, e.g., Carlier et al. (2016, 2017)

and Chernozhukov et al. (2017).

In this paper, we focus on the affine-equivariant quantiles from Hallin et al. (2010)
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and on their use in a nonparametric regression framework. These quantiles were al-

ready used in this framework in Hallin et al. (2015) — hereafter, HLPS15 — where a

(local constant and local bilinear) kernel approach was adopted. The resulting regres-

sion quantiles thus extend to the multiple-output setup the single-output (local constant

and local linear) kernel regression quantiles from Yu and Jones (1998). Kernel methods,

however, are not the only smoothing techniques that can be used to perform nonpara-

metric quantile regression. In the single-output context, Charlier et al. (2015a) indeed

recently showed that nonparametric quantile regression can alternatively be based on

optimal quantization, which is a method that provides a suitable discretization 󰁨X
N

of size N of the d-dimensional, typically continuous, covariate X. As demonstrated in

Charlier et al. (2015b) through simulations, this quantization approach provides sample

regression quantiles that often dominate their kernel competitors in terms of integrated

square errors.

This dominance of quantization-based regression quantiles over their kernel com-

petitors provides a natural motivation to try and define quantization-based analogs of

the kernel multiple-output regression quantiles from HLPS15. This is the objective

of the present paper. While this objective, conceptually, can be achieved by apply-

ing the quantization-based regression methodology from Charlier et al. (2015a) to the

multiple-ouput regression quantiles from HLPS15, establishing theoretical guarantees

for the resulting regression quantiles is highly non-trivial (as we explain below) and

requires the highly technical proofs to be found in the appendix of the present paper.

The paper is organized as follows. Section 2 describes the multivariate quantiles

(Section 2.1) and multiple-output regression quantiles (Section 2.2) that will be con-

sidered in this work. Section 3 explains how these can be approximated through op-

timal quantization and shows that the approximation becomes arbitrarily accurate as

the number N of grid points used in the quantization goes to infinity. Section 4 de-

fines the corresponding sample quantization-based regression quantiles and establishes

their consistency (for the fixed-N approximation of multiple-output regression quan-
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tiles). Section 5 is devoted to numerical results : first, a data-driven method to select

the smoothing parameter N is described (Section 5.1). Then, a comparison with the

kernel-based competitors from HLPS15 is performed, based on empirical integrated

square errors and on visual inspection of the resulting conditional quantile regions

(Section 5.2). Finally, Section 6 concludes.

2 The multiple-output regression quantiles considered

As mentioned above, the main objective of this paper is to estimate through optimal

quantization the population multiple-output regression quantiles from HLPS15. These

regression quantiles are the conditional version of the multivariate quantiles from Hallin

et al. (2010). To make the paper self-contained, we start by describing these two types

of quantiles.

2.1 The multivariate quantiles considered

The multivariate quantiles from Hallin et al. (2010) are indexed by a vector α ranging

over Bm := {y ∈ Rm : 0 < |y| < 1}, the open unit ball of Rm deprived of the origin

(throughout, | · | denotes the Euclidean norm). This index α factorizes into α = αu,

with α = |α| ∈ (0, 1) and u ∈ Sm−1 := {y ∈ Rm : |y| = 1}. Letting Γu be an arbitrary

m× (m− 1) matrix whose columns form, jointly with u, an orthonormal basis of Rm,

the multivariate quantiles we consider in this paper are defined as follows.

Definition 1. Let Y be a random m-vector, with probability distribution PY , say, and

fix α = αu ∈ Bm. Then the α-quantile of Y , or order-α quantile of Y in direction u,

is any element of the collection of hyperplanes

πα := πα(PY ) :=
󰀋
y ∈ Rm : u′y = c′αΓ

′
uy + aα

󰀌
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with

qα :=

󰀕
aα

cα

󰀖
= argmin(a,c′)′∈RmE[ρα(Yu − c′Y ⊥

u − a)], (1)

where Yu := u′Y , Y ⊥
u := Γ′

uY and z 󰀁→ ρα(z) := z(α − I[z<0]) is the usual check

function (throughout, IA is the indicator function of A).

The multivariate quantile πα is nothing but the Koenker and Bassett (1978) order-α

regression quantile hyperplane obtained when L1 vertical deviations are computed in

the direction u. Two direct consequences are the following. First, unlike many com-

peting concepts of multivariate quantiles, such as, e.g., the geometric quantiles from

Chaudhuri (1996), the multivariate quantile considered are hyperplane-valued rather

than point-valued (of course, the difference is relevant for m > 1 only). This potentially

allows to use multivariate quantiles as critical values, in relation with the fact that a

(point-valued) test statistic T would take its value "above" (u′T > c′αΓ
′
uT+aα) or "be-

low" (u′T ≤ c′αΓ
′
uT + aα) the quantile hyperplane πα. Second, like many competing

quantiles, they are directional quantiles but are related to the direction in a non-trivial

way: the quantile hyperplane in direction u will generally not be orthogonal to u (just

like the point-valued geometric quantiles in direction u will generally not belong to the

halfline with direction u originating from the corresponding median, namely the spatial

median).

For fixed α ∈
󰀃
0, 1

2

󰀄
, the collection of multivariate quantiles παu provides the cen-

trality region

Rα := ∩u∈Sm−1

󰀋
y ∈ Rm : u′y ≥ c′αuΓ

′
uy + aαu

󰀌
, (2)

that, as showed in Hallin et al. (2010), coincides with the order-α halfspace depth region

of PY (that is, with the set of y’s whose halfspace depth D(y, PY ) = infu∈Sm−1 P [u′(Y −

y) ≥ 0] is larger than or equal to α); see Tukey (1975). In the univariate case (m = 1),

the quantile hyperplane παu reduces, for u = 1 (resp., for u = −1), to the usual α-

quantile (resp., (1− α)-quantile) of PY , and Rα then coincides with the interval whose

end points are these two quantiles. Halfspace depth regions provide a very informative
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description of the distribution of Y and allow to perform robust nonparametric infer-

ence for various problems; see, e.g., Liu et al. (1999). It should be noted that other

definitions of multivariate quantiles are linked to different concepts of statistical depth;

for instance, as already mentioned, the regions resulting from the geometric quantiles

from Chaudhuri (1996) coincide with spatial depth regions; see, e.g., Serfling (2010).

2.2 The multiple-output regression quantiles considered

Consider now the regression framework where the random m-vector Y from the pre-

vious section is regarded as a vector of response variables and where a d-vector X of

random covariates is available. Still with α = αu ∈ Bm, the regression α-quantile of Y

given X = x we are after, namely the one from HLPS15, is then the cartesian prod-

uct of {x} with the quantile hyperplane πα(PY |X=x) associated with the conditional

distribution of Y upon X = x. More specifically, we adopt the following definition.

Definition 2. Fix α ∈ Bm. The (regression) α-quantile of Y given X = x, or

(regression) order-α quantile of Y given X = x in direction u, is any element of the

collection of hyperplanes

πα,x = παu,x :=
󰀋
(x,y) ∈ Rd × Rm : u′y = c′α,xΓ

′
uy + aα,x

󰀌

with

qα,x :=

󰀕
aα,x

cα,x

󰀖
= argmin(a,c′)′∈RmE[ρα(Yu − c′Y ⊥

u − a)|X = x], (3)

where we still let Yu := u′Y and Y ⊥
u := Γ′

uY .

Parallel to what was done in the location case, (regression) α-quantile regions can

be obtained by considering the envelopes of the regression quantiles παu,x for fixed α.

More precisely, for any α ∈
󰀃
0, 1

2

󰀄
, the fixed-x order-α regression quantile region is

Rα,x := ∩u∈Sm−1

󰀋
y ∈ Rm : u′y ≥ c′αu,xΓ

′
uy + aαu,x

󰀌
; (4)
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as in the previous section, this region coincides with the order-α halfspace depth re-

gion of PY |X=x. When considering all values of x, these fixed-x regions generate the

nonparametric α-quantile/depth regions

Rα := ∪x∈Rd

󰀓
{x}×Rα,x

󰀔
,

which provide nested regression "tubes" indexed by α. Note that the regression quantile

regions Rα,x are obtained by considering all directions u in the Y -space Rm and not

all directions in the (X,Y )-space Rd+m, which is in line with the fact that conditional

quantiles of Y remain quantiles of the m-variate quantity Y .

In the single-output case m = 1, the hypersurface ∪x∈Rdπα,x associated with α =

αu = α (u = 1) is the standard conditional α-quantile surface ∪x∈Rd{(x, aα,x)} (here,

aα,x is the usual α-quantile of Y given X = x), so that the multiple-output regression

quantiles from Definition 2 provide an extension of the classical single-output ones.

The corresponding fixed-x regression quantile region Rα,x is the interval [aα,x, a1−α,x],

and, for α ∈ (0, 1
2
), the resulting nonparametric α-quantile region Rα is then the subset

of Rd+1 between the quantile conditional hypersurfaces of orders α and 1− α, that is,

between ∪x∈Rd{(x, aα,x)} and ∪x∈Rd{(x, a1−α,x)}.

We close this section with the following technical points. If PY |X=x is absolutely

continuous with respect to the Lebesgue measure on Rm, with a density that has a

connected support and admits finite first-order moments, the minimization problem

in (3) admits a unique solution; see Hallin et al. (2010). Moreover, (a, c′)′ 󰀁→ Ga,c(x) =

E[ρα(Yu − c′Y ⊥
u − a)|X = x] is then convex and continuously differentiable on Rm.

Therefore, under these asumptions, qα,x = (aα,x, c
′
α,x)

′ is alternatively characterized

as the unique solution of the system of equations

∂aGa,c(x) = P [u′Y < a+ c′Γ′
uY |X = x]− α = 0 (5)

∇cGa,c(x) = E
󰀅
Γ′

uY
󰀃
α− I[u′Y <a+c′Γ′

uY ]

󰀄󰀏󰀏X = x
󰀆
= 0; (6)

see Lemma 4 in Appendix A. As we will see in the sequel, twice differentiability of

(a, c′)′ 󰀁→ Ga,c(x) actually requires slightly stronger assumptions.
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3 Quantization-based multiple-output regression quan-

tiles

Nonparametric single-output quantile regression is classically performed through kernel

smoothing (Yu and Jones, 1998). An alternative approach, that relies on the concept of

optimal quantization, was recently proposed in Charlier et al. (2015a) and was showed

in Charlier et al. (2015b) to dominate kernel methods in finite samples. As explained

in Charlier et al. (2015b), the dominance of quantization-based quantile regression

methods over kernel smoothing ones can be explained by the fact that the amount

of smoothing is usually fixed globally for kernel methods (that is, the bandwidth is

constant all over the covariate space) whereas the subtle geometry of optimal quanti-

zation grids (see below) de facto leads to smooth more in some part of the covariate

space than in others. The efficiency of quantization-based quantile regression methods

in single-output situations provides a strong motivation to extend these methods to

multiple-output problems, which is the topic of this section.

We start by defining optimal quantization. For any fixed N ∈ N0(:= {1, 2, . . . }),

quantization replaces the random d-vector X by a discrete version 󰁨X
γN

:= ProjγN (X)

obtained by projecting X onto the N -quantization grid γN(∈ (Rd)N). The quantization

grid is optimal if it minimizes the quantization error 󰀂󰁨X
γN

− X󰀂p, where 󰀂Z󰀂p :=

(E[|Z|p])1/p denotes the Lp-norm of Z. Existence (but not unicity) of such an optimal

grid is guaranteed if the distribution of X does not charge any hyperplane; see, e.g.,

Pagès (1998). In the sequel, 󰁨X
N

will denote the projection of X onto an arbitrary

optimal N -grid. This approximation becomes more and more precise as N increases

since 󰀂󰁨X
N
− X󰀂p = O(N−1/d) as N → ∞; see, e.g., Graf and Luschgy (2000). More

details on optimal quantization can be found in Pagès (1998), Pagès and Printems

(2003) or Graf and Luschgy (2000).

Now, let p ≥ 1 such that 󰀂X󰀂p < ∞ and let γN be an optimal quantization grid.
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Replacing X in (3) by its projection 󰁨X
N

onto γN leads to considering

󰁨qN
α,x =

󰀕 󰁨aNα,x

󰁨cNα,x

󰀖
= argmin(a,c′)′∈RmE[ρα(Yu − c′Y ⊥

u − a)| 󰁨X
N
= x̃], (7)

where x̃ denotes the projection of x onto γN . A quantization-based approximation of

the multiple-output regression quantile from Definition 2 above is thus any hyperplane

of the form

π̃N
α,x :=

󰀋
(x,y) ∈ Rd × Rm : u′y = (󰁨cNα,x)

′Γ′
uy + 󰁨aNα,x

󰀌
.

This quantization-based quantile being entirely characterized by 󰁨qN
α,x, we will investi-

gate the quality of this approximation through 󰁨qN
α,x. Since 󰁨X

N
− X goes to zero in

Lp-norm as N goes to infinity, we may expect that 󰁨qN
α,X − qα,X also converges to zero

in an appropriate sense. To formalize this, the following assumptions are needed.

Assumption (A) (i) The random vector (X,Y ) is generated through Y = M (X, ε),

where the d-dimensional covariate vector X and the m-dimensional error vector ε are

mutually independent; (ii) the support SX of the distribution PX of X is compact;

(iii) denoting by GLm(R) the set of m × m invertible real matrices, the link function

M : SX × Rm → Rm is of the form (x, z) 󰀁→ M (x, z) = Ma,x + Mb,xz, where the

functions Ma,· : SX → Rm and Mb,· : SX → GLm(R) are Lipschitz with respect to the

Euclidean norm and operator norm, respectively (see below); (iv) the distribution PX

of X does not charge any hyperplane; (v) the distribution Pε of ε admits finite pth

order moments, that is, 󰀂ε󰀂pp = E[|ε|p] < ∞.

For the sake of clarity, we make precise that the Lipschitz properties of Ma,· and Mb,·

in Assumption (A)(iii) mean that there exist constants C1, C2 > 0 such that

∀x1,x2 ∈ Rd, |Ma,x1 −Ma,x2 | ≤ C1|x1 − x2|, (8)

∀x1,x2 ∈ Rd, 󰀂Mb,x1 −Mb,x2󰀂 ≤ C2|x1 − x2|, (9)
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where 󰀂A󰀂 = supu∈Sm−1 |Au| denotes the operator norm of A. The smallest con-

stant C1 (resp., C2) that satisfies (8) (resp., (9)) will be denoted as [Ma,·]Lip (resp.,

[Mb,·]Lip). We will also need the following assumption, that ensures in particular that

the mapping (a, c′)′ 󰀁→ Ga,c(x) is twice continuously differentiable (see Lemma 4).

Assumption (B) The distribution of ε is absolutely continuous with respect to the

Lebesgue measure on Rm, with a density fε : Rm → R+
0 that is bounded, has a con-

nected support, admits finite second-order moments, and satisfies, for some constants

C > 0, r > m− 1 and s > 0,
󰀏󰀏fε(z1)− fε(z2)

󰀏󰀏 ≤ C |z1 − z2|s
󰀃
1 + 1

2
|z1 + z2|2

󰀄−(3+r+s)/2
, (10)

for all z1, z2 ∈ Rm.

This assumption is an extremely slight reinforcement of Assumption (A′
n) in Hallin

et al. (2010); more precisely, Assumption (B) above is obtained by replacing the condi-

tion r > m−2 from Hallin et al. (2010) into r > m−1, which we had to do for technical

reasons. The resulting Lipschitz-type condition (10) remains very mild, though, and in

particular it is satisfied (with s = 1) as soon as fε is continuously differentiable and

that there exists a positive constant C and an invertible m×m matrix A such that

sup
|Az|≥R

|∇fε(z)| ≤ C(1 +R2)−(r+4)/2

for any R > 0. This implies that Condition (10) is satisfied with s = 1 at the multi-

normal distributions and at t distributions with ν > 2 degrees of freedom. We insist,

however, that Condition (10) actually does not require that fε is everywhere continu-

ously differentiable.

We can now state one of the main results of the paper (the proof is deferred to

Appendix A).

Theorem 1. Let Assumptions (A) and (B) hold. Then, for any α ∈ Bm,

sup
x∈SX

|󰁨qN
α,x − qα,x| → 0,
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as N → ∞.

This result confirms that, as the size N of the optimal quantization grid goes to

infinity, the quantization-based approximation 󰁨qN
α,x of qα,x becomes arbitrarily precise.

Clearly, the approximation is actually uniform in x. This makes it natural to try and

define, whenever observations are available, a sample version of 󰁨qN
α,x that will then be

an estimator of qα,x from which one will be able to obtain in particular sample versions

of the regression quantile regions Rα,x in (4).

4 Sample quantization-based multiple-output regres-

sion quantiles

We now consider the problem of defining, from independent copies (X1,Y 1), . . . , (Xn,Y n)

of (X,Y ), a sample version 󰁥qN,n
α,x of the quantization-based regression quantile coeffi-

cients 󰁨qN
α,x in (7).

4.1 Definition of the estimator

No closed form is available for an optimal quantization grid, except in some very par-

ticular cases. The definition of 󰁥qN,n
α,x thus first requires constructing an (approximate)

optimal grid. This may be done through a stochastic gradient algorithm, which pro-

ceeds as follows to quantize a d-dimensional random vector X.

Let (ξt)t∈N0 be a sequence of independent copies of X, and let (δt)t∈N0 be a de-

terministic sequence in (0, 1) satisfying
󰁓∞

t=1 δt = +∞ and
󰁓∞

t=1 δ
2
t < +∞. Starting

from an initial N -grid γ̂N,0 with pairwise distinct components, the algorithm recursively

defines the grid γ̂N,t, t ∈ N0, as

γ̂N,t = γ̂N,t−1 − δt
p
∇xd

p
N(γ̂

N,t−1, ξt),
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where ∇xd
p
N(x, ξ) is the gradient with respect to the x-component of the so-called local

quantization error dpN(x, ξ) = mini=1,...,N |xi − ξ|p, with x = (x1, . . . ,xN) ∈ (Rd)N and

ξ ∈ Rd. Since (∇xd
p
N(x, ξ))i = p|xi − ξ|p−2(xi − ξ)I[xi=Projx(ξ)], i = 1, . . . , N , two con-

secutive grids γ̂N,t−1 and γ̂N,t differ by one point only, namely the point corresponding

to the non-zero component of this gradient. The reader can refer to Pagès (1998), Pagès

and Printems (2003) or Graf and Luschgy (2000) for more details on this algorithm,

which, for p = 2, is known as the Competitive Learning Vector Quantization (CLVQ)

algorithm.

The construction of 󰁥qN,n
α,x then proceeds in two steps.

(S1) An “optimal” quantization grid is obtained from the algorithm above. First, an

initial grid γ̂N,0 is selected by sampling randomly without replacement among the

Xi’s, under the constraint that the same value cannot be picked more than once (a

constraint that is relevant only if there are ties in the Xi’s). Second, n iterations

of the algorithm are performed, based on ξt = Xt, for t = 1, . . . , n. The resulting

optimal grid is denoted as γ̂N,n = (x̂N,n
1 , . . . , x̂N,n

n ).

(S2) The approximation 󰁨qN
α,x = argmin(a,c′)′ E[ρα(u

′Y − c′Γ′
uY − a)| 󰁨X

N
= x̃] in (7)

is then estimated by

󰁥qN,n
α,x =

󰀕 󰁥aN,n
α,x

󰁥cN,n
α,x

󰀖
= argmin(a,c′)′∈Rm

n󰁛

i=1

ρα(u
′Y i − c′Γ′

uY i − a)I
[X̂

N
i = x̂]

, (11)

where 󰁥X
N

i = 󰁥X
N,n

i = Projγ̂N,n(Xi) and x̂ = x̂N,n = Projγ̂N,n(x).

An estimator of the multiple-output regression quantiles from Definition 2 is then

any hyperplane of the form

π̂N,n
α,x :=

󰀋
(x,y) ∈ Rd × Rm : u′y = (󰁥cN,n

α,x)
′Γ′

uy + 󰁥aN,n
α,x

󰀌
.

Since this estimator is entirely characterized by 󰁥qN,n
α,x, we may focus on 󰁥qN,n

α,x when

investigating the properties of these sample quantiles. We will show that, for fixed N(∈
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N0) and x(∈ SX), 󰁥qN,n
α,x is a weakly consistent estimator for 󰁨qN

α,x. The result requires

restricting to p = 2 and reinforcing Assumption (A) into the following assumption.

Assumption (A)′ Same as Assumption (A), but with Assumption (A)(iv) replaced

by the following : PX is absolutely continuous with respect to the Lebesgue measure

on Rd.

We then have the following result (see Appendix B for the proof).

Theorem 2. Let Assumption (A) ′ hold. Then, for any α ∈ Bm, x ∈ SX and N ∈ N0,

󰀏󰀏󰁥qN,n
α,x − 󰁨qN

α,x

󰀏󰀏 → 0 as n → ∞

in probability, provided that quantization is based on p = 2.

At first glance, Theorems 1-2 may appear as simple extensions, to the multiple-

output case, of the corresponding single-output results in Charlier et al. (2015a). We

would like to stress, however, that this extension is by no means trivial and requires

different proof techniques. The main reason for this is that the concept of multiple-

output regression quantiles considered is actually associated with a single-output quan-

tile regression not only on the covariate vector X but (as soon as m > 1) also on

the response-based quantity Y ⊥
u ; this makes the problem of a different nature for the

single-output case (m = 1) and for the multiple-output one (m > 1). Another reason

is that, in the multiple-output case, qα,x is not a scalar but a vector, which makes

the proof more complex as it requires, e.g., to use Hessian matrices and eigenvalues

theory where, in single-output problems, classical optimization theory could be based

on second derivatives.

4.2 A bootstrap modification

For small sample sizes, the stochastic gradient algorithm above is likely to provide a

grid that is far from being optimal, which may have a negative impact on the proposed

13



Charlier, Paindaveine and Saracco

sample quantiles. To improve on this, we propose the same bootstrap approach as the

one adopted in the single-output context by Charlier et al. (2015a,b) :

(S1) For some integer B, we first generate B samples of size n with replacement from

the initial sample X1, . . . ,Xn, that we denote as {ξtb, t = 1, . . . , n}, b = 1, . . . , B.

We also generate initial grids γ̂N,0
b as above, by sampling randomly among the

corresponding {ξtb, t = 1, . . . , n} under the constraints that the N values are

pairwise distinct. We then perform B times the CLVQ algorithm with iterations

based on {ξtb, t = 1, . . . , n} and with initial grid γ̂N,0
b . This provides B optimal

grids γ̂N,n
b , b = 1, . . . , B (each of size N).

(S2) Each of these grids is then used to estimate multiple-output regression quantiles.

Working again with the original sample (X i,Y i), i = 1, . . . , n, we project the

X-part onto the grids γ̂N,n
b , b = 1, . . . , B. Therefore, (11) provides B estimates

of qα,x, denoted as q̂(b),N,n
α,x , b = 1, . . . , B. This leads to the bootstrap estimator

q̄N,n
α,x =

1

B

B󰁛

b=1

q̂(b),N,n
α,x , (12)

obtained by averaging these B estimates.

Denoting by R̂α,x the resulting sample quantile regions (see Section 5.2.3 for more

details), the parameter B should be chosen large enough to smooth the mappings x 󰀁→

R̂α,x, but not too large to keep the computational burden under control. We use

B = 50 or B = 100 in the sequel. The choice of N , that plays the role of the smoothing

parameter in the nonparametric regression method considered, has an important impact

on the proposed estimators and is discussed in the next section.

5 Numerical results

In this section, we explore the numerical performances of the proposed estimators. We

first introduce in Section 5.1 a data-driven method for selecting the size N of the quan-
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tization grid. In Section 5.2, we then compare the proposed (bootstrap) quantization-

based estimators with their kernel-type competitors from HLPS15.

5.1 Data-driven selection of N

In this section, we extend the N -selection criterion developed in Charlier et al. (2015b)

to the present multiple-output context. This criterion is based on the minimization

of an empirical integrated square error (ISE) quantity that is essentially convex in N ,

which allows to identify an optimal value Nopt of N .

Let x1, . . . ,xJ be values of interest in SX and u1, . . . ,uK be directions of interest

in Sm−1, with J,K finite. The procedure to select N works as follows. For any combina-

tion of xj and uk, we first compute q̄N,n
αuk,xj

= 1
B

󰁓B
b=1 q̂

(b),N,n
αuk,xj

from B bootstrap samples

as above. We then generate 󰁨B further samples of size n with replacement from the ini-

tial sample X1, . . . ,Xn, and we perform 󰁨B times the CLVQ algorithm with iterations

based on these samples. This provides 󰁨B optimal quantization grids. Working again

with the original sample (Xi,Y i), i = 1, . . . , n and using the b̃th grid, (11) provides 󰁨B

new estimations, denoted q̂(B+b̃),N,n
αuk,xj

, b̃ = 1, . . . , 󰁨B. We then consider

󰁧ISEα,B, 󰁨B,J,K(N) =
1

J

J󰁛

j=1

󰀕
1

K

K󰁛

k=1

󰀕
1

󰁨B

󰁨B󰁛

b̃=1

󰀏󰀏q̄N,n
αuk,xj

− q̂(B+b̃),N,n
αuk,xj

󰀏󰀏2
󰀖󰀖

.

To make the notation lighter, we simply denote these integrated square errors as 󰁧ISEα(N)

(throughout, our numerical results will be based on m = 2, 󰁨B = 30 and K equispaced

directions in S1; the values of B, K and x1, . . . ,xJ will be made precise in each case).

These sample ISEs are to be minimized in N . Since not all values of N can be

considered in practice, we rather consider

N̂α;opt = arg min
N∈N

󰁧ISEα(N), (13)

where the cardinality of N (⊂ N0) is finite and may be chosen as a function of n.
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Figure 1: Plot of the mappings N 󰀁→ 󰁧ISEα(N) (α = 0.2, 0.4) with B = 50, 󰁨B = 30 and K = 40,

averaged over 100 mutually independent replications of Model (M1) with sample size n = 999.

For illustration purposes, we simulated random samples of size n = 999 according

to the model

(M1) (Y1, Y2) = (X,X2) + (1 +X2)ε,

where X ∼ U([−2, 2]), ε has independent N (0, 1/4) marginals, and X and ε are in-

dependent. It is easy to check that this model satisfies Assumptions (A) ′ and (B).

Figure 1 plots, for α = 0.2 and α = 0.4, the graphs of N 󰀁→ 󰁧ISEα(N), where the ISEs

are based on B = 50, K = 40 and x1 = −1.89, x2 = −1.83, x3 = −1.77, . . . , xJ = 1.89

(more precisely, the figure shows the average of the corresponding graphs, computed

from 100 mutually independent replications). It is seen that ISE curves are indeed

essentially convex in N and allow to select N equal to 10 for both values of α.

5.2 Comparison with competitors

In this section, we investigate the numerical performances of our estimator q̄N,n
α,x. In

Section 5.2.1, we first define the competitors that will be considered. Then we compare
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the respective ISEs through simulations (Section 5.2.2) and show how the estimated

quantile regions compare on a given sample (Section 5.2.3).

5.2.1 The competitors considered

The main competitors are the local constant and local bilinear estimators from HLPS15,

that extend to the multiple-output setting the local constant and local linear estima-

tors of Yu and Jones (1998), respectively. To describe these estimators, fix a kernel

function K : Rd → R+ and a bandwidth h. Writing Yiu := u′Y i and Y ⊥
iu := Γ′

uY i, the

local constant estimator is then the minimizer 󰁥q c
α,x = (󰁥acα,x, (󰁥c

c
α,x)

′)′ of

q 󰀁→
n󰁛

i=1

K
󰀓X i − x

h

󰀔
ρα

󰀃
Yiu − q′X c

iu

󰀄
, with X c

iu :=

󰀕
1

Y ⊥
iu

󰀖
. (14)

As for the local (bi)linear estimator 󰁥q ℓ
α,x = (󰁥aℓα,x, (󰁥c

ℓ
α,x)

′)′, its transpose vector (󰁥q ℓ
α,x)

′

is given by the first row of the (d+ 1)×m matrix Q̂ that minimizes

Q 󰀁→
n󰁛

i=1

K
󰀓X i − x

h

󰀔
ρα

󰀃
Yiu−(vecQ)′X ℓ

iu

󰀄
, with X ℓ

iu :=

󰀕
1

Y ⊥
iu

󰀖
⊗
󰀕

1

Xi − x

󰀖
. (15)

As explained in HLPS15, the local bilinear approach is more informative than the

local constant one and should be more reliable close to the boundary of the covariate

support. However, the price to pay is an increase of the covariate space dimension (X c
iu

is of dimension m, whereas X ℓ
iu is of dimension m(d+1)). We refer to HLPS15 for more

details on these approaches.

In the sequel, we consider d = 1 and m = 2 in order to provide graphical repre-

sentations of the corresponding quantile regions. The kernel K will be the density of

the bivariate standard Gaussian distribution and we choose, as in most applications in

HLPS15,

h =
3sx
n1/5

, (16)

where sx stands for the empirical standard deviation of X1, . . . , Xn.
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5.2.2 Comparison of ISEs

We now compare our bootstrap estimators with the competitors above in terms of ISEs.

To do so, we generated 500 independent samples of size n = 999 from

(M1) (Y1, Y2) = (X,X2) + (1 +X2)ε1,

(M2) (Y1, Y2) = (X,X2) + ε1,

(M3) (Y1, Y2) = (X,X2) +
󰀃
1 + 3

2

󰀃
sin

󰀃
π
2
X
󰀄󰀄2󰀄

ε2,

where X ∼ U([−2, 2]), ε1 has independent N (0, 1/4) marginals, ε2 has independent

N (0, 1) marginals, and X is independent of ε1 and ε2. These models, that were already

considered in HLPS15, are easily checked to satisfy Assumptions (A) ′ and (B).

Both the proposed quantization-based quantiles and their competitors are indexed

by a scalar order α ∈ (0, 1) and a direction u ∈ S1. In this section, we compare

efficiencies when estimating a given conditional quantile qαu,x. In the sequel, we still

work with α = 0.2, 0.4 and we fix u = (0, 1)′.

For each replication in each model, the various quantile estimators were computed,

based on the bandwidth h in (16) for the HLPS15 estimators and based on B =

100 and the N -selection procedure described in Section 5.1 (with x1 = −1.89, x2 =

−1.83, . . . , xJ = 1.89, N = {10, 15, 20} and K = 1 direction, namely the direc-

tion u = (0, 1)′ above) for the quantization-based estimators. For each estimator,

we then evaluated

ISEa
α =

J󰁛

j=1

󰀃
󰁥aαu,xj

− aαu,xj

󰀄2 and ISEc
α =

J󰁛

j=1

󰀃
󰁥cαu,xj

− cαu,xj

󰀄2
,

still for x1 = −1.89, x2 = −1.83, . . . , xJ = 1.89; here, 󰁥aαu,xj
stands for āN,n

αu,xj
, 󰁥acαu,xj

or

󰁥aℓαu,xj
and 󰁥cαu,xj

for c̄N,n
αu,xj

, 󰁥c cαu,xj
or 󰁥c ℓαu,xj

. Figure 2 reports, for each model and each

estimator, the boxplots of ISEa
α and ISEc

α obtained from the 500 replications considered.

Results reveal that the proposed estimator q̄N,n
α,x and the local bilinear estimator 󰁥q ℓ

α,x

perform significantly better than the local constant estimator 󰁥q c
α,x, particularly for the
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estimation of the first component aα,x of qα,x. In most cases, the proposed estima-

tor q̄N,n
α,x actually also dominates the local bilinear one 󰁥q ℓ

α,x (the only cases where the

opposite holds relate to the estimation of cα,x and the difference of performance is then

really small). It should be noted that the quantization-based estimator q̄N,n
α,x is local

constant in nature, which makes it remarkable that it behaves well in terms of ISE

compared to its local bilinear kernel competitor.

5.2.3 Comparison of sample quantile regions

As explained in HLPS15, the regression quantile regions Rα,x in (4) are extremely

informative about the conditional distribution of the response, which makes it desirable

to obtain well-behaved estimations of these regions. That is why we now compare the

sample regions obtained from the proposed quantization-based quantile estimators with

the kernel ones from HLPS15. Irrespective of the quantile coefficient estimators q̂αu,x =

(âαu,x, ĉ
′
αu,x)

′ used, the corresponding sample regions are obtained as

R̂α,x := ∩u∈Sm−1
F

󰀋
y ∈ Rm : u′y ≥ ĉ′αu,xΓ

′
uy + âαu,x

󰀌
,

where Sm−1
F is a finite subset of Sm−1; compare with (4).

We considered a random sample of size n = 999 from Model (M1) and computed, for

the various estimation methods, R̂α,x for α = 0.2, 0.4 and for x = −1.89,−1.83,−1.77,

. . . , 1.89; in each case, Sm−1
F = S1

F is made of 360 equispaced directions in S1. For the

kernel-based estimators„ we did not select h following the data-driven procedure men-

tioned in Section 5.2.1, but chose it equal to 0.37, as proposed in HLPS15, Figure 3. For

the quantization-based estimators, N was selected according to the data-driven method

from Section 5.1 (with B = 100, K = 360, N = {5, 10, 15, 20}, and still x1 = −1.89,

x2 = −1.83, . . . , xJ = 1.89), which led to the optimal value N = 10. The resulting

sample quantile regions, obtained from the quantization-based method and from the

local constant and local bilinear kernel ones, are plotted in Figure 3. For comparison

purposes, the population quantile regions Rα,x are also reported there. We observe that
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Figure 2: Boxplots, for α = 0.2, 0.4 and u = (0, 1)′, of ISEa
α (left) and of ISEc

α (right) for various

conditional quantile estimators obtained from 500 independent random samples according to Mod-

els (M1) (top), (M2) (middle) and (M3) (bottom), with size n = 999. The estimators considered are

the quantization-based estimator q̄N,n
α,x (in blue), the local bilinear estimator 󰁥q ℓ

α,x (in purple) and the

local constant estimator 󰁥q c
α,x (in red).
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the quantization-based and local bilinear methods provide quantile regions that are nice

and close to the population ones. They succeed in particular in catching the underlying

heteroscedasticity. Clearly, they perform better than the local constant methods close

to the boundary of the covariate range. While the local (bi)linear methods, as already

mentioned, are known to exhibit good boundary behaviour, it is surprising that the

quantization-based method also behaves well in this respect, since this method is of a

local constant nature. Finally, it should be noted that, unlike the smoothing parame-

ter of the local constant/bilinear methods (namely, h), that of the quantization-based

method (namely, N) was chosen in a fully data-driven way.

6 Summary and perspectives for future research

In this paper, we defined new nonparametric estimators of the multiple-output regres-

sion quantiles proposed in HLPS15. The main idea is to perform localization through

the concept of optimal quantization rather than through standard kernel methods.

We derived consistency results that generalize to the multiple-output context those

obtained in Charlier et al. (2015a). Moreover, the good empirical efficiency proper-

ties of quantization-based quantiles showed in Charlier et al. (2015b) extend to the

multiple-output context. In particular, the proposed quantization-based sample quan-

tiles, that are local constant in nature, outperform their kernel-based counterparts,

both in terms of integrated square errors and in terms of visual inspection of the cor-

responding quantile regions. The proposed quantiles actually perform as well as (and

sometimes even strictly dominate) the local bilinear kernel estimators from HLPS15.

The data-driven selection procedure we proposed for the smoothing parameter N in-

volved in the quantization-based method allows to make the estimation fully automatic.

Our estimation procedure was actually implemented in R and the code is available from

the authors on simple request.

We conclude by stating a few open problems that are left for future research. In
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Figure 3: (a)-(c) The sample quantile regions R̂α,x, for α = 0.2, 0.4 and x =

−1.89,−1.83,−1.77, . . . , 1.89, computed from a random sample of size n = 999 from Model (M1)

by using (a) the quantization-based method, (b) the local constant kernel method, and (c) the local

bilinear kernel one. (d) The corresponding population quantile regions Rα,x.
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principle, Theorem 1 and Theorem 2 could be combined to provide an asymptotic result

stating that
󰀏󰀏󰁥qN,n

α,x − qα,x| → 0 as n → ∞ in probability, with N = Nn going to infinity

at an appropriate rate. However, obtaining such a result is extremely delicate, since

all convergence results available for the CLVQ algorithm are as n → ∞ with N fixed.

Obviously, once such a weak consistency is proved, another challenging task would be

to derive the asymptotic distribution of 󰁥qN,n
α,x and to design confidence zones for the

population quantity qα,x.
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A Proof of Theorem 1

The proof requires several lemmas. First, recall that Ga,c(x) = E[ρα(Yu − c′Y ⊥
u −

a)|X = x] and consider the corresponding quantized quantity 󰁨Ga,c(x̃) = E[ρα(Yu −

c′Y ⊥
u − a)| 󰁨X

N
= x̃]. Since qα,x = (aα,x, c

′
α,x)

′ and 󰁨qN
α,x = (󰁨aNα,x, (󰁨c

N
α,x)

′)′ are defined

as the vectors achieving the minimum of Ga,c(x) and 󰁨Ga,c(x̃) respectively, we naturally

start controlling the distance between 󰁨Ga,c(x̃) and Ga,c(x). This is achieved below in

Lemma 5, whose proof requires the following preliminary lemmas. Throughout this

appendix, C is a constant that may vary from line to line.
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Lemma 1. Let Assumption (A) hold and fix α = αu ∈ Bm, a ∈ R and c ∈ Rm−1.

Then for x1,x2 ∈ Rd, |Ga,c(x1) − Ga,c(x2)| ≤ max(α, 1 − α)
󰁳

1 + |c|2 ([Ma,·]Lip +

[Mb,·]Lip󰀂ε󰀂1)|x1 − x2|.

Proof. For x1,x2 ∈ Rd, we have

|Ga,c(x1)−Ga,c(x2)|

=
󰀏󰀏E[ρα(Yu − c′Y ⊥

u − a)|X = x1]− E[ρα(Yu − c′Y ⊥
u − a)|X = x2]

󰀏󰀏

=
󰀏󰀏E[ρα((u− Γuc)

′M (X, ε)− a)|X = x1]− E[ρα((u− Γuc)
′M (X, ε)− a)|X = x2]

󰀏󰀏

=
󰀏󰀏E[ρα((u− Γuc)

′M (x1, ε)− a)− ρα((u− Γuc)
′M (x2, ε)− a)]

󰀏󰀏,

where we used the independence of X and ε. Using the fact that ρα is a Lipschitz

function with Lipschitz constant [ρα]Lip := max(α, 1 − α), then the Cauchy-Schwarz

inequality, this yields

|Ga,c(x1)−Ga,c(x2)| ≤ [ρα]LipE[|(u− Γuc)
′(M (x1, ε)−M (x2, ε))|],

≤ [ρα]Lip|u− Γuc|E[|M (x1, ε)−M (x2, ε)|]

≤ [ρα]Lip|(u,Γu)(1,−c′)′|E[|Ma,x1 −Ma,x2 + (Mb,x1 −Mb,x2)ε|]

≤ [ρα]Lip
󰁳

1 + |c|2 ([Ma,·]Lip + [Mb,·]Lip󰀂ε󰀂1)|x1 − x2|,

where we used Assumptions (A)(iii)-(v).

The following lemma shows that, under the assumptions considered, the regularity

property (10) extends from the error density fε(·) to the conditional density fY |X=x(·).

Lemma 2. Let Assumptions (A) and (B) hold and fix x ∈ SX . Then, for some

constants C > 0, r > m− 1 and s > 0, we have

󰀏󰀏fY |X=x(y1)− fY |X=x(y2)
󰀏󰀏 ≤ C|y1 − y2|s

󰀃
1 + 1

2
|y1 + y2|2

󰀄−(3+r+s)/2
, (17)

for all y1,y2 ∈ Rm.
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Proof. Assumption (A) allows to rewrite the conditional density of Y given X = x as

fY |X=x(y) =
1

|det(Mb,x)|
fε

󰀃
M−1

b,x(y −Ma,x)
󰀄
,

for all y ∈ Rm. Hence, we have

|fY |X=x(y1)− fY |X=x(y2)|

=
1

|det(Mb,x)|

󰀏󰀏󰀏fε
󰀃
M−1

b,x(y1 −Ma,x)
󰀄
− fε

󰀃
M−1

b,x(y2 −Ma,x)
󰀄󰀏󰀏󰀏.

Now, Assumption (B) entails

|fY |X=x(y1)− fY |X=x(y2)| ≤
C
󰀏󰀏M−1

b,x(y1 − y2)
󰀏󰀏s

|det(Mb,x)|
󰀃
1 + 1

2

󰀏󰀏M−1
b,x(y1 + y2 − 2Ma,x)

󰀏󰀏2󰀄(3+r+s)/2

≤ C|(y1 − y2)|s
󰀃
1 + 1

2

󰀏󰀏M−1
b,x(y1 + y2 − 2Ma,x)

󰀏󰀏2󰀄−(3+r+s)/2
,

where the second inequality comes from the compactness of SX and the continuity of

the mapping x 󰀁→ Mb,x. The result then follows from the fact that

1 + 1
2

󰀏󰀏y1 + y2

󰀏󰀏2

1 + 1
2

󰀏󰀏M−1
b,x(y1 + y2 − 2Ma,x)

󰀏󰀏2

=
1 + 1

2

󰀏󰀏Mb,x{M−1
b,x(y1 + y2 − 2Ma,x)}+ 2Ma,x

󰀏󰀏2

1 + 1
2

󰀏󰀏M−1
b,x(y1 + y2 − 2Ma,x)

󰀏󰀏2

≤
C + C

󰀏󰀏M−1
b,x(y1 + y2 − 2Ma,x)

󰀏󰀏2

1 + 1
2

󰀏󰀏M−1
b,x(y1 + y2 − 2Ma,x)

󰀏󰀏2 ≤ C,

where we used again the continuity of x 󰀁→ Ma,x and x 󰀁→ Mb,x, and the compactness

of SX .

We will also need the following result belonging to linear algebra.

Lemma 3. For p > q ≥ 1, let V = (v1 . . .vq) be a p × q full-rank matrix and H be a

q-dimensional vector subspace of Rp. Then, there exists a p× q matrix U = (u1 . . .uq)

whose columns form an orthonormal basis of H and such that Iq +U ′V is invertible.
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Proof. We fix p ≥ 2 and we prove the result by induction on q between q = 1 and

q = p − 1. We start with the case q = 1 and take U = (u1), where u1 is an arbitrary

unit p-vector in H. If det(1 + U ′V ) = 1 + u′
1v1 = 0, then we may alternatively

take U ∗ = (−u1), which provides det(1 + U ′
∗V ) = 1 − u′

1v1 = 2 ∕= 0. Assume

then that the result holds for q (with q < p− 1) and let us prove it for q + 1. Pick an

arbitrary p×(q+1) matrix U = (u1 . . .uq+1) whose columns form an orthonormal basis

of the (q+1)-dimensional vector subspace H of Rp. Assume that det(Iq+1+U ′V ) = 0,

where V = (v1 . . .vq+1) is the given p × (q + 1) full-rank matrix. Letting U−1 =

(u2 . . .uq+1) and V−1 = (v2 . . .vq+1), an expansion of the determinant along the first

row provides

0 = det(Iq+1 +U ′V ) = (u′
1v1 + 1) det(Iq +U ′

−1V−1) +
󰁓q+1

i=2 (−1)i+1u′
1vi det(Wi),

for some q × q matrices W2, . . . ,Wm. With U∗ = (−u1,u2 . . .uq+1), we then have

det(Iq+1 +U ′
∗V ) = (−u′

1v1 + 1) det(Iq +U ′
−1V−1)−

󰁓q+1
i=2 (−1)i+1u′

1vi det(Wi)

= 2 det(Iq +U ′
−1V−1)− det(Iq+1 +U ′V )

= 2 det(Iq +U ′
−1V−1).

The induction hypothesis guarantees that U−1 can be chosen such that det(Iq+U ′
−1V−1)

is non-zero, which establishes the result.

We can now calculate explicitly the gradient and the Hessian matrix of the func-

tion (a, c) 󰀁→ Ga,c(x) for any x in the support SX of X, and derive some important

properties of this Hessian matrix.

Lemma 4. Let Assumptions (A) and (B) hold. Then (i) (a, c) 󰀁→ Ga,c(x) is twice

differentiable at any x ∈ SX , with gradient vector

∇Ga,c(x) =

󰀣
∇aGa,c(x)

∇cGa,c(x)

󰀤
=

󰀣
P [u′Y < a+ c′Γ′

uY |X = x]− α

E
󰀅
Γ′

uY (I[u′Y <a+c′Γ′
uY ] − α)|X = x

󰀆

󰀤
(18)
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and Hessian matrix

Ha,c(x) =

󰁝

Rm−1

󰀣
1 t′

t tt′

󰀤
fY |X=x

󰀃
(a+ c′t)u+ Γut

󰀄
dt;

(ii) for any (a, c,x) ∈ R × Rm−1 × SX , Ha,c(x) is positive definite; (iii) (a, c,x) 󰀁→

Ha,c(x) is continuous over R× Rm−1 × SX .

Proof. (i) Let

ηα(a, c) =
󰀃
I[u′Y −c′Γ′

uY −a<0] − α
󰀄󰀕 1

Γ′
uY

󰀖
.

For any (a, c′)′, (a0, c
′
0)

′ ∈ Rm, we then have

ρα(u
′Y − c′Γ′

uY − a)− ρα(u
′Y − c′0Γ

′
uY − a0)− (a− a0, c

′ − c′0)ηα(a0, c0)

= (u′Y − c′Γ′
uY − a)

󰁱
I[u′Y −c′0Γ

′
uY −a0<0] − I[u′Y −c′Γ′

uY −a<0]

󰁲
≥ 0, (19)

so that ηα(a, c) is a subgradient for (a, c) 󰀁→ ρα(u
′Y − c′Γ′

uY − a). Hence,

∇Ga,c(x) = ∇a,cE[ρα(u
′Y − c′Γ′

uY − a)|X = x] = E[ηα(a, c)|X = x], (20)

which readily provides (18). Let us now show that

|∇Ga+∆a,c+∆c(x)−∇Ga,c(x)−Ha,c(x)(∆a,∆
′
c)

′| = o
󰀃
|(∆a,∆

′
c)

′|
󰀄

as (∆a,∆
′
c)

′ → 0. From (20) and the identity

󰁝 (a+∆a)+(c+∆c)′t

a+c′t

󰀣
1

t

󰀤
dz =

󰀣
1 t′

t tt′

󰀤󰀣
∆a

∆c

󰀤
,
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we obtain

∇Ga+∆a,c+∆c(x)−∇Ga,c(x)−Ha,c(x)(∆a,∆
′
c)

′

= E[ηα(a+∆a, c+∆c)− ηα(a, c)|X = x]

−
󰁝

Rm−1

󰀣
1 t′

t tt′

󰀤󰀣
∆a

∆c

󰀤
fY |X=x

󰀃
(a+ c′t)u+ Γut

󰀄
dt

=

󰁝

Rm−1

󰁝

R

󰀃
I[z−(c+∆c)′t−(a+∆a)<0] − I[z−c′t−a<0]

󰀄
󰀣

1

t

󰀤
fY |X=x(zu+ Γut) dzdt

−
󰁝

Rm−1

󰁝 (a+∆a)+(c+∆c)′t

a+c′t

󰀣
1

t

󰀤
fY |X=x

󰀃
(a+ c′t)u+ Γut

󰀄
dzdt

=

󰁝

Rm−1

󰁝 (a+∆a)+(c+∆c)′t

a+c′t

󰀣
1

t

󰀤
󰀋
fY |X=x(zu+ Γut)− fY |X=x

󰀃
(a+ c′t)u+ Γut

󰀄󰀌
dzdt.

Now, by Lemma 2, one has, for any z between a+ c′t and (a+∆a) + (c+∆c)
′t,

|fY |X=x(zu+ Γut)− fY |X=x
󰀃
(a+ c′t)u+ Γut

󰀄
|

≤ C|z − a− c′t|s
󰀃
1 + 1

2
|(z + a+ c′t)u+ 2Γut|2

󰀄(3+r+s)/2
≤ C|∆a +∆′

ct|s
|(1, t′)′|3+r+s

·

This entails

|∇Ga+∆a,c+∆c(x)−∇Ga,c(x)−Ha,c(x)(∆a,∆
′
c)

′| ≤ C

󰁝

Rm−1

|∆a +∆′
ct|1+s

|(1, t′)′|2+r+s
dt

≤ C|(∆a,∆
′
c)

′|1+s

󰁝

Rm−1

1

|(1, t′)′|1+r
dt = o(|(∆a,∆

′
c)

′|),

as (∆a,∆
′
c)

′ → 0. Therefore, (a, c) 󰀁→ Ga,c(x) is twice continuously differentiable at

any x ∈ SX , with Hessian matrix H
󰀃
Ga,c(x)

󰀄
. Eventually, Assumption (A)(iii) implies

that

Ha,c(x) =
1

|det(Mb,x)|

󰁝

Rm−1

󰀣
1 t′

t tt′

󰀤
fε

󰀃
M−1

b,x

󰀃
(a+ c′t)u+ Γut−Ma,x

󰀄󰀄
dt. (21)
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(ii) Positive definiteness then readily follows from (21) and Assumption (B).

(iii) Every entry of Ha,c(x) is an integral involving an integrand of the form (see (21))

gi,j(a, c,x, t) =
tδii t

δj
j

| det(Mb,x)|

󰀓
fε

󰀃
M−1

b,x((a+ c′t)u+ Γut−Ma,x)
󰀄
− fε((1, t′)′)

󰀔

+
tδii t

δj
j

| det(Mb,x)|
fε((1, t′)′) =: gIi,j(a, c,x, t) + gIIi,j(a, c,x, t),

where δi, δj ∈ {0, 1}. Clearly, for any t, (a, c,x) 󰀁→ gIi,j(a, c,x, t) and (a, c,x) 󰀁→

gIIi,j(a, c,x, t) are continuous. Therefore, in view of Theorem 8.5 in Briane and Pagès

(2012), it is sufficient to prove that there exist integrable functions hI
i,j, h

II
i,j : Rm−1 → R+

such that

|gIi,j(a, c,x, t)| ≤ hI
i,j(t) and |gIIi,j(a, c,x, t)| ≤ hII

i,j(t) for any (a, c,x, t).

Since Assumptions (A)(ii)-(iii) ensure that det(Mb,x) stays away from 0 for any x ∈ SX ,

we can take t 󰀁→ hII
i,j(t) := tδii t

δj
j f

ε((1, t′)′)/(infx∈SX
| det(Mb,x)|), whose integrability

follows from the fact that fε(·) is bounded and ε has finite second-order moments.

Now, Lemma 2 and Assumptions (A)(ii)-(iii) readily entail that there exist r > m− 1

and s > 0 such that

|gIi,j(a, c,x, t)| = |tδii t
δj
j |×

󰀏󰀏fY |X=x
󰀃
(a+ c′t)u+ Γut

󰀄
− fY |X=x

󰀃
Mb,x(1, t

′)′ +Ma,x

󰀄󰀏󰀏

≤ |tδii t
δj
j |

C|(a+ c′t)u+ Γut−Mb,x(1, t
′)′ −Ma,x|s

󰀃
1 + 1

2

󰀏󰀏(a+ c′t)u+ Γut+Mb,x(1, t
′)′ +Ma,x

󰀏󰀏2󰀄(3+r+s)/2

≤ C|t|δi+δj(1 + |t|s)
󰀃
1 + 1

2

󰀏󰀏t+ Γ′
uMb,x(1, t

′)′ + Γ′
uMa,x

󰀏󰀏2󰀄−(3+r+s)/2

≤ C|t|δi+δj(1 + |t|s)
󰀃
1 + 1

2

󰀏󰀏(Im−1 + Γ′
uAx)t+ Γ′

uBx)
󰀏󰀏2󰀄−(3+r+s)/2

, (22)

where the matrices Ax := (Mb,x).2 and Bx := (Mb,x).1 − Ma,x are based on the

partition Mb,x = ((Mb,x).1 (Mb,x).2) into an m× 1 matrix (Mb,x).1 and an m× (m− 1)

matrix (Mb,x).2. Lemma 3 implies that it is always possible to choose Γu in such a

way that Im−1 + Γ′
uAx is invertible. Consequently, one may proceed as in the proof of
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Lemma 2 and write

1 + |t|2

1 + 1
2

󰀏󰀏(Im−1 + Γ′
uAx)t+ Γ′

uBx

󰀏󰀏2

=
1 +

󰀏󰀏(Im−1 + Γ′
uAx)

−1[(Im−1 + Γ′
uAx)t+ Γ′

uBx]− (Im−1 + Γ′
uAx)

−1Γ′
uBx

󰀏󰀏2

1 + 1
2

󰀏󰀏(Im−1 + Γ′
uAx)t+ Γ′

uBx)
󰀏󰀏2

≤
C + C

󰀏󰀏(Im−1 + Γ′
uAx)t+ Γ′

uBx)
󰀏󰀏2

1 + 1
2

󰀏󰀏(Im−1 + Γ′
uAx)t+ Γ′

uBx)
󰀏󰀏2 ≤ C,

where we used the fact that x 󰀁→ Ax and x 󰀁→ Bx are continuous functions defined over

the compact set SX . Therefore, (22) provides |gIi,j(a, c,x, t)| ≤ C|t|δi+δj(1 + |t|s)
󰀃
1 +

|t|2
󰀄−(3+r+s)/2

=: hI
i,j(t), where hI

i,j(·) is integrable over Rm−1 (since r > m− 1).

The proof of Theorem 1 still requires the following lemma.

Lemma 5. Let Assumptions (A) and (B) hold, fix α ∈ Bm, and write x̃ = x̃N =

ProjγN (x) for any x. Then,

(i) for any compact set K(⊂ Rm−1), supx∈SX
supa∈R,c∈K | 󰁨Ga,c(x̃) − Ga,c(x)| → 0 as

N → ∞;

(ii) supx∈SX
|min(a,c′)′∈Rm 󰁨Ga,c(x̃)−min(a,c′)′∈Rm Ga,c(x)| → 0 as N → ∞.

Proof. (i) Fix a ∈ R and c ∈ K. First note that [󰁨X
N
= x̃] is equivalent to [X ∈ Cx],

where we let Cx = CN
x = {z ∈ SX : ProjγN (z) = x̃}. Hence, one has

󰀏󰀏E[ρα(Yu − c′Y ⊥
u − a)| 󰁨X

N
= x̃]− E[ρα(Yu − c′Y ⊥

u − a)|X = x̃]
󰀏󰀏

≤ sup
z∈Cx

󰀏󰀏E[ρα(Yu − c′Y ⊥
u − a)|X = z]− E[ρα(Yu − c′Y ⊥

u − a)|X = x̃]
󰀏󰀏,
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which provides

| 󰁨Ga,c(x̃)−Ga,c(x)|

≤ |E[ρα(Yu − c′Y ⊥
u − a)|󰁨X

N
= x̃]− E[ρα(Yu − c′Y ⊥

u − a)|X = x̃]|

+ |E[ρα(Yu − c′Y ⊥
u − a)|X = x̃]− E[ρα(Yu − c′Y ⊥

u − a)|X = x]|

≤ 2 sup
z∈Cx

|E[ρα(Yu − c′Y ⊥
u − a)|X = z]− E[ρα(Yu − c′Y ⊥

u − a)|X = x̃]|

≤ 2 sup
z∈Cx

󰀏󰀏Ga,c(z)−Ga,c(x̃)
󰀏󰀏

≤ 2max(α, 1− α)
󰁳

1 + |c|2 ([Ma,·]Lip + [Mb,·]Lip󰀂ε󰀂1) sup
z∈Cx

|z − x̃|,

where we used Lemma 1. It directly follows that, for some C that does not depend

on N ,

sup
x∈SX

sup
a∈R,c∈K

| 󰁨Ga,c(x̃)−Ga,c(x)| ≤ C sup
x∈SX

sup
z∈Cx

|z − x̃| =: C sup
x∈SX

R(Cx);

the quantity R(Cx) is the “radius” of the cell Cx. The result then follows from the fact

that supx∈SX
R(Cx) → 0 as N → ∞; see Lemma A.2(ii) in Charlier et al. (2015a).

(ii) For simplicity of notations, we write ã = 󰁨aNα,x and c̃ = 󰁨cNα,x. From Lemma 4(ii),

v′Haα,x,cα,x(x)v > 0

for any x ∈ SX and any v ∈ Sm−1 = {x ∈ Rm : |x| = 1}. The compactness assumption

on SX and the continuity of x 󰀁→ Ha,c(x) (Lemma 4(iii)) yield that

inf
x∈SX

inf
v∈Sm−1

v′Haα,x,cα,x(x)v > 0.

This, jointly with Part (i) of the result, implies that there exists a positive integer N0 and

a compact set, Kα(⊂ Rm) say, such that, for all N ≥ N0 and for all x ∈ SX , 󰁨qN
α,x and

qα,x belong to Kα. In particular, for all N ≥ N0 and for all x ∈ SX , 󰁨cNα,x and cα,x belong
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to a compact set Kc
α(⊂ Rm−1)). Then, with I+ = I[min(a,c′)′∈Rm

󰁨Ga,c(x̃)≥min(a,c′)′∈Rm Ga,c(x)]
,

we have
󰀏󰀏󰀏 min
(a,c′)′∈Rm

󰁨Ga,c(x̃)− min
(a,c′)′∈Rm

Ga,c(x)
󰀏󰀏󰀏 I+ = ( 󰁨Gã,c̃(x̃)−Gaα,x,cα,x(x))I+

≤
󰀃 󰁨Gaα,x,cα,x(x̃)−Gaα,x,cα,x(x)

󰀄
I+ ≤ sup

a∈R,c∈Kc
α

| 󰁨Ga,c(x̃)−Ga,c(x)|I+. (23)

Similarly, with I− := 1− I+, we have
󰀏󰀏󰀏 min
(a,c′)′∈Rm

󰁨Ga,c(x̃)− min
(a,c′)′∈Rm

Ga,c(x)
󰀏󰀏󰀏 I− =

󰀃
Gaα,x,cα,x(x)− 󰁨Gã,c̃(x̃)

󰀄
I−

≤
󰀃
Gã,c̃(x)− 󰁨Gã,c̃(x̃)

󰀄
I− ≤ sup

a∈R,c∈Kc
α

| 󰁨Ga,c(x̃)−Ga,c(x)|I−. (24)

From (23)-(24), we readily obtain
󰀏󰀏󰀏 min
(a,c′)′∈Rm

󰁨Ga,c(x̃)− min
(a,c′)′∈Rm

Ga,c(x)
󰀏󰀏󰀏 ≤ sup

a∈R,c∈Kc
α

| 󰁨Ga,c(x̃)−Ga,c(x)|.

The result then directly follows from Part (i) of the result.

We can now prove Theorem 1.

Proof of Theorem 1. Write again x̃ = x̃N = ProjγN (x) and fix the same integer N0

and the same compact sets Kα and Kc
α as in the proof of Lemma 5. Then, for x ∈ SX

and N ≥ N0, one has

|Gã,c̃(x)−Gaα,x,cα,x(x)|

≤ |Gã,c̃(x)− 󰁨Gã,c̃(x̃)|+ | 󰁨Gã,c̃(x̃)−Gaα,x,cα,x(x)|

≤ sup
a∈R,c∈Kc

α

|Ga,c(x)− 󰁨Ga,c(x̃)|+
󰀏󰀏min

a,c

󰁨Ga,c(x̃)−min
a,c

Ga,c(x)
󰀏󰀏

≤ sup
x∈SX

sup
a∈R,c∈Kc

α

|Ga,c(x)− 󰁨Ga,c(x̃)|+ sup
x∈SX

󰀏󰀏min
a,c

󰁨Ga,c(x̃)−min
a,c

Ga,c(x)
󰀏󰀏.

Therefore, Lemma 5 implies that, as N → ∞,

sup
x∈SX

|Gã,c̃(x)−Gaα,x,cα,x(x)| → 0. (25)
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Performing a second-order expansion about qα,x = (aα,x, c
′
α,x)

′ provides

Gã,c̃(x)−Gaα,x,cα,x =
1

2

󰀃
󰁨qN
α,x − qα,x

󰀄′
HN

∗ (x)
󰀃
󰁨qN
α,x − qα,x

󰀄
,

with HN
∗x := HaN∗x,c

N
∗x
(x), where qN

∗x = (aN∗x, (c
N
∗x)

′)′ = θqα,x + (1 − θ)󰁨qN
α,x, for some

θ ∈ (0, 1). Write HN
∗x = OxΛ

N
x O

′
x, where Ox is an m × m orthogonal matrix and

where ΛN
x = diag(λN

1,x, . . . ,λ
N
m,x) collects the eigenvalues of HN

∗x in decreasing order.

We then have

Gã,c̃(x)−Ga,c(x) =
1

2

󰀃
󰁨qN
α,x − qα,x

󰀄′
HN

∗x
󰀃
󰁨qN
α,x − qα,x

󰀄

=
1

2

m󰁛

j=1

λN
j,x

󰀓󰀃
Ox

󰀃
󰁨qN
α,x − qα,x

󰀄󰀄
j

󰀔2

≥
λN
m,x

2

m󰁛

i=1

󰀓󰀃
Ox

󰀃
󰁨qN
α,x − qα,x

󰀄󰀄
j

󰀔2

=
λN
m,x

2

󰀏󰀏Ox

󰀃
󰁨qN
α,x − qα,x

󰀄󰀏󰀏2 =
λN
m,x

2

󰀏󰀏󰁨qN
α,x − qα,x

󰀏󰀏2.

Hence,

sup
x∈SX

󰀏󰀏󰁨qN
α,x − qα,x

󰀏󰀏2 ≤ 2
󰀓

inf
N̄≥N0

inf
x∈SX

λN̄
m,x

󰀔−1

sup
x∈SX

|Gã,c̃(x)−Ga,c(x)|. (26)

The result then follows from (25) and from the fact

inf
N̄≥N0

inf
x∈SX

λN̄
m,x = inf

N̄≥N0

inf
x∈SX

inf
v∈Sm−1

v′Ha,c(x)
󰀏󰀏
(a,c)=(aN̄∗x,c

N̄
∗x)

v

≥ inf
x∈SX

inf
v∈Sm−1

inf
(a,c′)′∈Kα

v′Ha,c(x)v > 0,

which results from Lemma 4(ii)-(iii) and the compactness of SX , Sm−1 and Kα.

B Proof of Theorem 2

Let (X1,Y 1), . . . , (Xn,Y n) be independent copies of (X,Y ). Recall that γN denotes

an optimal quantization grid of size N for the random d-vector X and that γ̂N,n stands

for the grid provided by the CLVQ algorithm on the basis of X1, . . . ,Xn. Below, we will

write (x̃N
1 , . . . , x̃

N
N) and (x̂N,n

1 , . . . , x̂N,n
N ) for the grid points of γN and γ̂N,n, respectively.
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Throughout this section, we assume that the empirical quantization of X, based

on X1, . . . ,Xn converges almost surely towards the population one, i.e., 󰁥X
N,n

= Projγ̂N,n(X) →
󰁨X
N
= ProjγN (X) almost surely as n → ∞. This is justified by classical results in quan-

tization about the convergence in n of the CLVQ algorithm when N is fixed; see Pagès

(1998).

The proof of Theorem 2 requires Lemmas 6-7 below.

Lemma 6. Let Assumption (A) ′ hold. Fix N ∈ N0 and x ∈ SX . Write x̃ = x̃N =

ProjγN (x) and x̂ = x̂N,n = Projγ̂N,n(x). Then, with 󰁥X
N

i = 󰁥X
N,n

i = Projγ̂N,n(X i),

i = 1, . . . , n, we have

(i) 1
n

󰁓n
i=1 I[X̂N

i = x̂N ]

a.s.−−−→
n→∞

P [ 󰁨X
N
= x̃];

(ii) after possibly reordering the x̃N
i ’s, x̂N,n

i
a.s.−−−→

n→∞
x̃N
i , i = 1, . . . , N (hence, γ̂N,n a.s.−−−→

n→∞
γN).

A proof is given in Charlier et al. (2015a).

Lemma 7. Let Assumptions (A) and (B) hold. Fix α = αu ∈ Bm, x ∈ SX and

N ∈ N0. Let K (⊂ Rm) be compact and define

󰁥Ga,c(x̂) = 󰁥GN,n
a,c (x̂) :=

1
n

󰁓n
i=1 ρα(u

′Y i − c′Γ′
uY i − a) I

[X̂
N
i =x̂]

1
n

󰁓n
i=1 I

[X̂
N
i =x̂]

.

Then

(i) sup(a,c′)′∈K | 󰁥Ga,c(x̂)− 󰁨Ga,c(x̃)| = oP(1) as n → ∞;

(ii) |min(a,c′)′∈Rm 󰁥Ga,c(x̂)−min(a,c′)′∈Rm 󰁨Ga,c(x̃)| = oP(1) as n → ∞;

(iii) | 󰁨G󰁥aN,n
α,x ,󰁥cN,n

α,x
(x̃)− 󰁨G󰁨aNα,x,󰁨cNα,x

(x̃)| = oP(1) as n → ∞.
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Proof. (i) Since

󰁨Ga,c(x̃) = E[ρα(u
′Y − c′Γ′

uY − a)| 󰁨X
N
= x̃] =

E[ρα(u
′Y − c′Γ′

uY − a)I
[X̃

N
=x̃]

]

P [ 󰁨X
N
= x̃]

,

it is sufficient, in view of Lemma 6(i), to show that

sup
(a,c′)′∈K

󰀏󰀏󰀏
1

n

n󰁛

i=1

ρα(u
′Y i−c′Γ′

uY i−a) I
[X̂

N
i =x̂]

−E
󰀅
ρα(u

′Y −c′Γ′
uY −a)I

[X̃
N
=x̃]

󰀆󰀏󰀏󰀏 = oP(1),

as n → ∞. It is natural to decompose it as

sup
(a,c′)′∈K

󰀏󰀏󰀏
1

n

n󰁛

i=1

ρα(u
′Y i − c′Γ′

uY i − a) I
[X̂

N
i =x̂]

− E
󰀅
ρα(u

′Y − c′Γ′
uY − a)I

[X̃
N
=x̃]

󰀆󰀏󰀏󰀏

≤ sup
(a,c′)′∈K

|Tac1|+ sup
(a,c′)′∈K

|Tac2|,

with

Tac1 :=
1

n

n󰁛

i=1

ρα(u
′Y i − c′Γ′

uY i − a)
󰀃
I
[X̂

N
i =x̂]

− I
[X̃

N
i =x̃]

󰀄
,

and

Tac2 :=
1

n

n󰁛

i=1

ρα(u
′Y i − c′Γ′

uY i − a)I
[X̃

N
i =x̃]

− E
󰀅
ρα(u

′Y − c′Γ′
uY − a)I

[X̃
N
= x̃]

󰀆
,

with 󰁨X
N

i = ProjγN (X i), i = 1, . . . , n.

We start by considering Tac2. Since x 󰀁→ M a,x and x 󰀁→ M b,x are continuous

functions defined over the compact set SX , one has that, for all (a, c′)′ ∈ K,

ρα(u
′Y − c′Γ′

uY − a)I
[X̃

N
= x̃]

≤ max(α, 1− α)|u′Y − c′Γ′
uY − a| ≤ max(α, 1− α)|(u− Γuc)

′Y − a|

≤ max(α, 1− α)

󰀥
|u− Γuc|

󰀓
sup
x∈SX

|M a,x|+ |ε| sup
x∈SX

󰀂M b,x󰀂
󰀔
+ |a|

󰀦

≤ C1|ε|+ C2, (27)
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for some constants C1, C2 that do not depend on (a, c′)′. Since Assumption (A)(v)

ensures that E[|ε|] < +∞ (recall that p = 2 here), the uniform law of large numbers

(see, e.g., Theorem 16(a) in Ferguson, 1996) then implies that

sup
(a,c′)′∈K

|Tac2| = oP(1), as n → ∞. (28)

It remains to treat Tac1. Let ℓn := {i = 1, . . . , n : I
[X̂

N
i =x̂]

∕= I
[X̃

N
i =x̃]

} be the set

collecting the indices of observations that are projected on the same point as x for γN

but not for γ̂N,n, or on the same point as x for γ̂N,n but not for γN . Proceeding as

in (27) then shows that, for any (a, c′)′ ∈ K,

|Tac1| ≤
1

n

󰁛

i∈ℓn

|ρα(u′Y i − c′Γ′
uY i − a)| ≤ #ℓn

n
× 1

#ℓn

󰁛

i∈ℓn

(C1 + C2|εi|) =: S1 × S2,

say. Lemma 6(ii) implies that S1 = oP(1) as n → ∞. Regarding S2, the independence

between #ℓn and the εi’s (which follows from the fact that #ℓn is measurable with

respect to the X i’s) entails that E[S2] = O(1) as n → ∞, hence that S2 = OP(1) as

n → ∞. Therefore,

sup
(a,c′)′∈K

|Tac1| ≤ S1S2 = oP(1) as n → ∞,

which, jointly with (28), establishes the result.

(ii) For simplicity, we write q̃ = (ã, c̃′)′ and 󰁥q = (â, ĉ′)′ instead of 󰁨qN
α,x = (󰁨aNα,x, (󰁨c

N
α,x)

′)′

and 󰁥qN,n
α,x = (󰁥aN,n

α,x, (󰁥c
N,n
α,x)

′)′, respectively. First fix δ > 0 and η > 0, and choose n1 and

R large enough to have |q̃| ≤ R and P [|󰁥q| > R] < η/2 for any n ≥ n1. This is

possible since 󰁥q is nothing but the sample Hallin et al. (2010) quantile of a number

of Y i’s that increases to infinity (so that, with arbitrary large probability for n large,

|󰁥q| cannot exceed 2 supx∈SX
|qα,x|). Define KR := {y ∈ Rm : |y| ≤ R}. Then, with

I+ := I[min(a,c′)′∈Rm
󰁥Ga,c(x̂)≥min(a,c′)′∈Rm

󰁨Ga,c(x̃)]
, we have

󰀏󰀏󰀏 min
(a,c′)′∈Rm

󰁥Ga,c(x̂)− min
(a,c′)′∈Rm

󰁨Ga,c(x̃)
󰀏󰀏󰀏I+ = ( 󰁥Gâ,ĉ(x̂)− 󰁨Gã,c̃(x̃))I+

≤
󰀃 󰁥Gã,c̃(x̂)− 󰁨Gã,c̃(x̃)

󰀄
I+ ≤ sup

(a,c′)′∈KR

| 󰁥Ga,c(x̂)− 󰁨Ga,c(x̃)|I+, (29)
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for n ≥ n1. Similarly, with I− := 1− I+, we have that, under |󰁥q| ≤ R,
󰀏󰀏󰀏 min
(a,c′)′∈Rm

󰁥Ga,c(x̂)− min
(a,c′)′∈Rm

󰁨Ga,c(x̃)
󰀏󰀏󰀏I− =

󰀃 󰁨Gã,c̃(x̃)− 󰁥Gâ,ĉ(x̂)
󰀄
I−

≤
󰀃 󰁨Gâ,ĉ(x̃)− 󰁥Gâ,ĉ(x̂)

󰀄
I− ≤ sup

(a,c′)′∈KR

| 󰁥Ga,c(x̂)− 󰁨Ga,c(x̃)|I−, (30)

still for n ≥ n1. By combining (29) and (30), we obtain that, under |󰁥q| ≤ R,
󰀏󰀏󰀏 min
(a,c′)′∈Rm

󰁥Ga,c(x̂)− min
(a,c′)′∈Rm

󰁨Ga,c(x̃)
󰀏󰀏󰀏 ≤ sup

(a,c′)′∈KR

| 󰁥Ga,c(x̂)− 󰁨Ga,c(x̃)|,

for n ≥ n1. Therefore, for any such n, we get

P

󰀗󰀏󰀏󰀏 min
(a,c′)′∈Rm

󰁥Ga,c(x̂)− min
(a,c′)′∈Rm

󰁨Ga,c(x̃)
󰀏󰀏󰀏 > δ

󰀘

≤ P

󰀗󰀏󰀏󰀏min
a,c

󰁥Ga,c(x̂)−min
a,c

󰁨Ga,c(x̃)
󰀏󰀏󰀏 > δ, |󰁥q| ≤ R

󰀘
+ P

󰀅
|󰁥q| > R

󰀆

≤ P
󰁫

sup
(a,c′)′∈KR

| 󰁥Ga,c(x̂)− 󰁨Ga,c(x̃)| > δ
󰁬
+

η

2
·

From Part (i) of the lemma, we conclude that, for n large enough,

P

󰀗󰀏󰀏󰀏 min
(a,c′)′∈Rm

󰁥Ga,c(x̂)− min
(a,c′)′∈Rm

󰁨Ga,c(x̃)
󰀏󰀏󰀏 > δ

󰀘
< η,

as was to be shown.

(iii) This proof proceeds in the same way as for (ii). We start with picking N1 and

R large enough so that P [|󰁥q| > R] < η/2 for any N ≥ N1, with η fixed. This yields

P
󰁫
| 󰁨Gâ,ĉ(x̃)− 󰁨Gã,c̃(x̃)| > δ

󰁬
≤ P

󰁫
| 󰁨Gâ,ĉ(x̃)− 󰁨Gã,c̃(x̃)| > δ, |󰁥q| ≤ M

󰁬
+

η

2
. (31)

Note then that

P
󰁫
| 󰁨Gâ,ĉ(x̃)− 󰁨Gã,c̃(x̃)| > δ, |󰁥q| ≤ M

󰁬

≤ P
󰁫
| 󰁨Gâ,ĉ(x̃)− 󰁥Gâ,ĉ(x̂)| > δ/2, |󰁥q| ≤ M

󰁬
+ P

󰁫
| 󰁥Gâ,ĉ(x̂)− 󰁨Gã,c̃(x̃)| > δ/2, |󰁥q| ≤ M

󰁬

≤ P
󰁫

sup
(a,c′)′∈KR

| 󰁨Ga,c(x̃)− 󰁥Ga,c(x̂)| > δ/2
󰁬
+ P

󰁫
|min

a,c

󰁥Ga,c(x̂)−min
a,c

󰁨Ga,c(x̃)| > δ/2
󰁬

=: p
(n)
1 + p

(n)
2 ,
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say. Parts (i) and (ii) of the lemma imply that p
(n)
1 and p

(n)
2 can be made arbitrarily

small for n large enough. Combining this with (31) yields the result.

We can now prove Theorem 2.

Proof of Theorem 2. Under the assumptions considered, the function (a, c′)′ 󰀁→ 󰁨Ga,c(x̃)

has a unique minimizer (that is the Hallin et al. (2010) α-quantile of the distribution

of Y conditional on 󰁨X
N
= x̃). Therefore, the convergence in probability of 󰁨G󰁥aN,n

α,x ,󰁥cN,n
α,x

(x̃)

towards 󰁨G󰁨aNα,x,󰁨cNα,x
(x̃) (Lemma 7(iii)) implies the convergence in probability of the corre-

sponding arguments (note indeed that the function (a, c′)′ 󰀁→ 󰁨Ga,c(x̃) does not depend

on n).
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