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HALFSPACE DEPTHS FOR SCATTER, CONCENTRATION AND
SHAPE MATRICES

BY DAVY PAINDAVEINE1 AND GERMAIN VAN BEVER2

Université libre de Bruxelles

We propose halfspace depth concepts for scatter, concentration and shape
matrices. For scatter matrices, our concept is similar to those from Chen,
Gao and Ren [Robust covariance and scatter matrix estimation under Huber’s
contamination model (2018)] and Zhang [J. Multivariate Anal. 82 (2002)
134–165]. Rather than focusing, as in these earlier works, on deepest scat-
ter matrices, we thoroughly investigate the properties of the proposed depth
and of the corresponding depth regions. We do so under minimal assump-
tions and, in particular, we do not restrict to elliptical distributions nor to
absolutely continuous distributions. Interestingly, fully understanding scatter
halfspace depth requires considering different geometries/topologies on the
space of scatter matrices. We also discuss, in the spirit of Zuo and Serfling
[Ann. Statist. 28 (2000) 461–482], the structural properties a scatter depth
should satisfy, and investigate whether or not these are met by scatter half-
space depth. Companion concepts of depth for concentration matrices and
shape matrices are also proposed and studied. We show the practical rele-
vance of the depth concepts considered in a real-data example from finance.

1. Introduction. Statistical depth measures the centrality of a given location
in R

k with respect to a sample of k-variate observations, or more generally, with
respect to a probability measure P over Rk . The most famous depths include the
halfspace depth [Tukey (1975)], the simplicial depth [Liu (1990)], the spatial depth
[Vardi and Zhang (2000)] and the projection depth [Zuo (2003)]. In the last decade,
depth has also known much success in functional data analysis, where it measures
the centrality of a function with respect to a sample of functional data. Some in-
stances are the band depth [López-Pintado and Romo (2009)], the functional halfs-
pace depth [Claeskens et al. (2014)] and the functional spatial depth [Chakraborty
and Chaudhuri (2014)]. The large variety of available depths made it necessary
to introduce an axiomatic approach identifying the most desirable properties of a
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depth function; see Zuo and Serfling (2000) in the multivariate case and Nieto-
Reyes and Battey (2016) in the functional one.

Statistical depth provides a center-outward ordering of the observations that al-
lows to tackle in a robust and nonparametric way a broad range of inference prob-
lems; see Liu, Parelius and Singh (1999). For most depths, the deepest point is
a robust location functional that extends the univariate median to the multivari-
ate or functional setups; see, in particular, Cardot, Cénac and Godichon-Baggioni
(2017) for a recent work on the functional spatial median. Beyond the median,
depth plays a key role in the classical problem of defining multivariate quantiles;
see, for example, Hallin, Paindaveine and Šiman (2010) or Serfling (2010). In line
with this, the collections of locations in R

k whose depth does not exceed a given
level are sometimes called quantile regions; see, for example, He and Einmahl
(2017) in a multivariate extreme value theory framework. In the functional case,
the quantiles in Chaudhuri (1996) may be seen as those associated with functional
spatial depth; see Chakraborty and Chaudhuri (2014). Both in the multivariate and
functional cases, supervised classification and outlier detection are standard appli-
cations of depth; we refer, for example, to Cuevas, Febrero and Fraiman (2007),
Paindaveine and Van Bever (2015), Dang and Serfling (2010), Hubert, Rousseeuw
and Segaert (2015) and to the references therein.

In Mizera (2002), statistical depth was extended to a virtually arbitrary para-
metric framework. In a generic parametric model indexed by an �-dimensional
parameter ϑ , the resulting tangent depth DPn(ϑ0) measures how appropriate a
parameter value ϑ0 is, with respect to the empirical measure Pn of a sample of
k-variate observations X1, . . . ,Xn at hand, as one could alternatively do based on
the likelihood LPn(ϑ0). Unlike the MLE of ϑ , the depth-based estimator maxi-
mizing DPn(ϑ) is robust under mild conditions; see Section 4 of Mizera (2002).
The construction, that for linear regression provides the Rousseeuw and Hubert
(1999) depth, proved useful in various contexts. However, tangent depth requires
evaluating the halfspace depth of a given location in R

�, hence can only deal with
low-dimensional parameters. In particular, tangent depth cannot cope with covari-
ance or scatter matrix parameters [� = k(k + 1)/2], unless k is as small as 2 or 3.

The crucial role played by scatter matrices in multivariate statistics, however,
makes it highly desirable to have a satisfactory depth for such parameters, as
phrased by Serfling (2004), that calls for an extension of the Mizera and Müller
(2004) location-scale depth concept into a location-scatter one. While computa-
tional issues prevent from basing this extension on tangent depth, a more ad hoc
approach such as the one proposed in Zhang (2002) is suitable. Recently, another
concept of scatter depth, that is very close in spirit to the one from Zhang (2002),
was introduced in Chen, Gao and Ren (2018). Both proposals dominate tangent
depth in the sense that, for k-variate observations, they rely on projection pur-
suit in R

k rather than in R
k(k+1)/2, which allowed Chen, Gao and Ren (2018)

to consider their depth even in high dimensions under, for example, sparsity as-
sumptions. Both works, however, mainly focus on asymptotic, robustness and/or
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minimax convergence properties of the sample deepest scatter matrix. The prop-
erties of these scatter depths thus remain largely unknown, which severely affects
the interpretation of the sample concepts.

In the present work, we consider a concept of halfspace depth for scatter matri-
ces that is close to the Zhang (2002) and Chen, Gao and Ren (2018) ones. Unlike
these previous works, however, we thoroughly study the properties of the scatter
depth and of the corresponding depth regions. We do so under minimal assump-
tions and, in particular, we do not restrict to elliptical distributions nor to abso-
lutely continuous distributions. Interestingly, fully understanding scatter halfspace
depth requires considering different geometries/topologies on the space of scat-
ter matrices. Like Donoho and Gasko (1992) and Rousseeuw and Ruts (1999) did
for location halfspace depth, we study continuity and quasi-concavity properties
of scatter halfspace depth, as well as the boundedness, convexity and compacity
properties of the corresponding depth regions. Existence of a deepest halfspace
scatter matrix, which is not guaranteed a priori, is also investigated. We further
discuss, in the spirit of Zuo and Serfling (2000), the structural properties a scatter
depth should satisfy and we investigate whether or not these are met by scatter
halfspace depth. Moreover, companion concepts of depth for concentration matri-
ces and shape matrices are proposed and studied. To the best of our knowledge,
our results are the first providing structural and topological properties of depth
regions outside the classical location framework. Throughout, numerical results
illustrate our theoretical findings. Finally, we show the practical relevance of the
depth concepts considered in a real-data example from finance.

The outline of the paper is as follows. In Section 2, we define scatter halfspace
depth and investigate its affine-invariance and uniform consistency properties. We
also obtain explicit expressions of this depth for two distributions we will use as
running examples in the paper. In Section 3, we derive the properties of scatter
halfspace depth and scatter halfspace depth regions when considering the Frobe-
nius topology on the space of scatter matrices, whereas we do the same for the
geodesic topology in Section 4. In Section 5, we identify the desirable properties
a generic scatter depth should satisfy and investigate whether or not these are met
by scatter halfspace depth. In Sections 6 and 7, we extend this depth to concen-
tration and shape matrices, respectively. In Section 8, we treat a real-data example
from finance. Final comments and perspectives for future work are provided in
Section 9. Proofs and further numerical results are provided in the supplemental
article Paindaveine and Van Bever (2018).

Before proceeding, we list here, for the sake of convenience, some notation
to be used throughout. The collection of k × k matrices, k × k invertible matri-
ces and k × k symmetric matrices will be denoted as Mk , GLk and Sk , respec-
tively (all matrices in this paper are real matrices). The identity matrix in Mk

will be denoted as Ik . For any A ∈ Mk , diag(A) will stand for the k-vector
collecting the diagonal entries of A, whereas, for any k-vector v, diag(v) will
stand for the diagonal matrix such that diag(diag(v)) = v. For p ≥ 2 square
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matrices A1, . . . ,Ap , diag(A1, . . . ,Ap) will stand for the block-diagonal ma-
trix with diagonal blocks A1, . . . ,Ap . Any matrix A in Sk can be diagonal-
ized into A = O diag(λ1(A), . . . , λk(A))O ′, where λ1(A) ≥ · · · ≥ λk(A) are the
eigenvalues of A and where the columns of the k × k orthogonal matrix O =
(v1(A), . . . , vk(A)) are corresponding unit eigenvectors (as usual, eigenvectors,
and possibly eigenvalues, are only partly identified, but this will not play a role in
the sequel). The spectral interval of A is Sp(A) := [λk(A),λ1(A)]. For any map-
ping f : R → R, we let f (A) = O diag(f (λ1(A)), . . . , f (λk(A)))O ′. If � is a
scatter matrix, in the sense that � belongs to the collection Pk of symmetric and
positive definite k × k matrices, then this defines log(�) and �t for any t ∈ R. In
particular, �1/2 is the unique A ∈ Pk such that � = AA′, and �−1/2 is the inverse
of this symmetric and positive definite square root. Throughout, T will denote a
location functional, that is, a function mapping a probability measure P to a real
k-vector TP . A location functional T is affine-equivariant if TPA,b

= ATP + b for
any A ∈ GLk and b ∈ R

k , where the probability measure PA,b is the distribution
of AX + b when X has distribution P . A much weaker equivariance concept is
centro-equivariance, for which TPA,b

= ATP +b is imposed for A = −Ik and b = 0
only. For a probability measure P over Rk and a location functional T , we will let
αP,T := min(sP,T ,1 − sP,T ), where sP,T := supu∈Sk−1 P [{x ∈ R

k : u′(x − TP ) =
0}] involves the unit sphere Sk−1 := {x ∈ R

k : ‖x‖2 = x′x = 1} of Rk . We will say
that P is smooth at θ (∈ R

k) if the P -probability of any hyperplane of Rk contain-

ing θ is zero and that it is smooth if it is smooth at any θ . Finally, D= will denote
equality in distribution.

2. Scatter halfspace depth. We start by recalling the classical concept of lo-
cation halfspace depth. To do so, let P be a probability measure over Rk and X

be a random k-vector with distribution P , which allows us throughout to write
P [X ∈ B] instead of P [B] for any k-Borel set B . The location halfspace depth of
θ(∈ R

k) with respect to P is then

HDloc
P (θ) := inf

u∈Sk−1
P

[
u′(X − θ) ≥ 0

]
.

The corresponding depth regions Rloc
P (α) := {θ ∈ R

k : HDloc
P (θ) ≥ α} form a

nested family of closed convex subsets of Rk . The innermost depth region, namely
M loc

P := {θ ∈ R
k : HDloc

P (θ) = maxη∈Rk HDloc
P (η)} [the maximum always exists;

see, e.g., Proposition 7 in Rousseeuw and Ruts (1999)], is a set-valued location
functional. When a unique representative of M loc

P is needed, it is customary to
consider the Tukey median θP of P , that is defined as the barycenter of M loc

P . The
Tukey median has maximal depth (which follows from the convexity of M loc

P ) and
is an affine-equivariant location functional.
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In this paper, for a location functional T , we define the T -scatter halfspace
depth of �(∈ Pk) with respect to P as

HDsc
P,T (�) := inf

u∈Sk−1
min

(
P

[∣∣u′(X − TP )
∣∣ ≤ √

u′�u
]
,

(2.1)
P

[∣∣u′(X − TP )
∣∣ ≥ √

u′�u
])

.

This extends to a probability measure with arbitrary location the centered ma-
trix depth concept from Chen, Gao and Ren (2018). If P is smooth, then the depth
in (2.1) is also equivalent to the (Tukey version of) the dispersion depth introduced
in Zhang (2002), but for the fact that the latter, in the spirit of projection depth, in-
volves centering through a univariate location functional [both Zhang (2002) and
Chen, Gao and Ren (2018) also propose bypassing centering through a pairwise
difference approach that will be discussed in Section 9]. While they were not con-
sidered in these prior works, it is of interest to introduce the corresponding depth
regions

(2.2) Rsc
P,T (α) := {

� ∈ Pk : HDsc
P,T (�) ≥ α

}
, α ≥ 0.

We will refer to Rsc
P,T (α) as the order-α (T -scatter halfspace) depth region of P .

Obviously, one always has Rsc
P,T (0) =Pk . The concepts in (2.1)–(2.2) give practi-

tioners the flexibility to freely choose the location functional T ; numerical results
below, however, will focus on the depth HDsc

P (�) and on the depth regions Rsc
P (α)

based on the Tukey median θP , which is the natural location functional whenever
halfspace depth objects are considered.

To get a grasp of the scatter depth HDsc
P (�), it is helpful to start with the

univariate case k = 1. There, the location halfspace deepest region is the “me-
dian interval” M loc

P = arg maxθ∈R min(P [X ≤ θ ],P [X ≥ θ ]) and the Tukey me-
dian θP , that is, the midpoint of M loc

P , is the usual representative of the uni-
variate median. The scatter halfspace deepest region is then the median interval
Msc

P := arg max�∈R+
0

min(P [(X − θP )2 ≤ �],P [(X − θP )2 ≥ �]) of (X − θP )2;
call it the median squared deviation interval IMSD[X] (or IMSD[P ]) of X ∼ P .
Below, parallel to what is done for the median, MSD[X] (or MSD[P ]) will denote
the midpoint of this MSD interval. In particular, if IMSD[P ] is a singleton, then
scatter halfspace depth is uniquely maximized at � = MSD[P ] = (MAD[P ])2,
where MAD[P ] denotes the median absolute deviation of P . Obviously, the depth
regions Rsc

P (α) form a family of nested intervals, [�−
α ,�+

α ] say, included in
P1 = R

+
0 . It is easy to check that, if P is symmetric about zero with an invert-

ible cumulative distribution function F and if T is centro-equivariant, then

HDsc
P (�) = HDsc

P,T (�) = 2 min
(
F(

√
�) − 1

2
,1 − F(

√
�)

)
and(2.3)

Rsc
P (α) = Rsc

P,T (α) =
[(

F−1
(

1

2
+ α

2

))2
,

(
F−1

(
1 − α

2

))2]
.(2.4)
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This is compatible with the fact that the maximal value of � 
→ HDsc
P (�) (that is

equal to 1/2) is achieved at � = (MAD[P ])2 only.
For k > 1, elliptical distributions provide an important particular case. We will

say that P = P X is k-variate elliptical with location θ(∈ R
k) and scatter �(∈ Pk)

if and only if X
D= θ + �1/2Z, where Z = (Z1, . . . ,Zk)

′ is (i) spherically symmet-

ric about the origin of Rk (i.e., OZ
D= Z for any k × k orthogonal matrix O) and

is (ii) standardized in such a way that MSD[Z1] = 1 (one then has TP = θ for any
affine-equivariant location functional T ). Denoting by 	 the cumulative distribu-
tion function of the standard normal, the k-variate normal distribution with location
zero and scatter Ik is then the distribution of X := W/b, where b := 	−1(3

4) and
W is a standard normal random k-vector. In this Gaussian case, we obtain

HDsc
P,T (�) = inf

u∈Sk−1
min

(
P

[∣∣u′X
∣∣ ≤ √

u′�u
]
,P

[∣∣u′X
∣∣ ≥ √

u′�u
])

(2.5)

= 2 min
(
	

(
bλ

1/2
k (�)

) − 1

2
,1 − 	

(
bλ

1/2
1 (�)

))
.

One can check directly that HDsc
P,T (�) ≤ HDsc

P,T (Ik) = 1/2, with equality if and
only if � coincides with the “true” scatter matrix Ik (we refer to Theorem 5.1 for
a more general result). Also, � belongs to the depth region Rsc

P,T (α) if and only if

Sp(�) ⊂ [( 1
b
	−1(1

2 + α
2 ))2, ( 1

b
	−1(1 − α

2 ))2].
Provided that the location functional used is affine-equivariant, extension to an

arbitrary multinormal is based on the following affine-invariance result, which en-
sures in particular that scatter halfspace depth will not be affected by possible
changes in the marginal measurement units [a similar result is stated in Zhang
(2002) for the dispersion depth concept considered there].

THEOREM 2.1. Let T be an affine-equivariant location functional. Then,
(i) scatter halfspace depth is affine-invariant in the sense that, for any probability
measure P over R

k , � ∈ Pk , A ∈ GLk and b ∈ R
k , we have HDsc

PA,b,T
(A�A′) =

HDsc
P,T (�), where PA,b is as defined on page 3279. Consequently, (ii) the regions

Rsc
P,T (α) are affine-equivariant, in the sense that, for any probability measure P

over Rk , α ≥ 0, A ∈ GLk and b ∈ R
k , we have Rsc

PA,b,T
(α) = ARsc

P,T (α)A′.

This result readily entails that if P is the k-variate normal with location θ0 and
scatter �0, then, provided that T is affine-equivariant,

(2.6) HDsc
P,T (�) = 2 min

(
	

(
bλ

1/2
k

(
�−1

0 �
)) − 1

2
,1 − 	

(
bλ

1/2
1

(
�−1

0 �
)))

and Rsc
P,T (α) is the collection of scatter matrices � for which Sp(�−1

0 �) ⊂
[( 1

b
	−1(1

2 + α
2 ))2, ( 1

b
	−1(1 − α

2 ))2]. For a non-Gaussian elliptical probability
measure P with location θ0 and scatter �0, it is easy to show that HDsc

P,T (�)

will still depend on � only through λ1(�
−1
0 �) and λk(�

−1
0 �).
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As already mentioned, we also intend to consider nonelliptical probability mea-
sures. A running nonelliptical example will be the one for which P is the distribu-
tion of a random vector X = (X1, . . . ,Xk)

′ with independent Cauchy marginals. If
T is centro-equivariant, then

HDsc
P,T (�)

(2.7)

= 2 min
(



(
1/max

s

√
s′�−1s

)
− 1

2
,1 − 


(√
max

(
diag(�)

)))
,

where 
 is the Cauchy cumulative distribution function and where the maximum
in s is over all sign vectors s = (s1, . . . , sk) ∈ {−1,1}k ; see the supplemental ar-
ticle Paindaveine and Van Bever (2018) for a proof. For k = 1, this simplifies to
HDsc

P,T (�) = 2 min(
(
√

�)− 1
2 ,1−
(

√
�)), which agrees with (2.3). For k = 2,

we obtain

HDsc
P,T (�) = 2 min

(



(√
det(�)/s�

) − 1

2
,1 − 


(√
max(�11,�22)

))
,

where we let s� := �11 + �22 + 2|�12|. For a general k, a scatter matrix � be-
longs to Rsc

P,T (α) if and only if 1/(s′�−1s) ≥ (
−1(1
2 + α

2 ))2 for all s ∈ {−1,1}k
and ��� ≤ (
−1(1 − α

2 ))2 for all � = 1, . . . , k. The problem of identifying the
scatter matrix achieving maximal depth, if any (existence is not guaranteed), will
be considered in Section 4. Figure 1 plots scatter halfspace depth regions in the

FIG. 1. Level sets of order α = 0.2,0.3 and 0.4, for any centro-symmetric T , of
(x, y, z) 
→ HDsc

P,T (�x,y,z), where HDsc
P,T (�x,y,z) is the T -scatter halfspace depth of

�x,y,z = (x z
z y

)
with respect to two probability measures P , namely the bivariate multinormal distri-

bution with location zero and scatter I2 (left) and the bivariate distribution with independent Cauchy
marginals (right). The red points are those associated with I2 (left) and

√
2I2 (right), which are the

corresponding deepest scatter matrices (see Sections 4 and 5).
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Gaussian and independent Cauchy cases above. Examples involving distributions
that are not absolutely continuous with respect to the Lebesgue measure will be
considered in the next sections.

In the supplemental article Paindaveine and Van Bever (2018), we validate
through a Monte Carlo exercise the expressions for HDsc

P,T (�) obtained in (2.6)–
(2.7) above. Such a numerical validation is justified by the following uniform con-
sistency result; see (6.2) and (6.6) in Donoho and Gasko (1992) for the correspond-
ing location halfspace depth result, and Proposition 2.2(ii) in Zhang (2002) for the
dispersion depth concept considered there.

THEOREM 2.2. Let P be a smooth probability measure over R
k and T be

a location functional. Let Pn denote the empirical probability measure associated
with a random sample of size n from P and assume that TPn → TP almost surely as
n → ∞. Then sup�∈Pk

|HDsc
Pn,T (�) − HDsc

P,T (�)| → 0 almost surely as n → ∞.

This result applies in particular to the scatter halfspace depth HDsc
P (�), as the

Tukey median is strongly consistent without any assumption on P [for complete-
ness, we show this in the supplemental article Paindaveine and Van Bever (2018)].
Inspection of the proof of Theorem 2.2 reveals that the smoothness assumption is
only needed to control the estimation of TP , hence is superfluous when a constant
location functional is used. This is relevant when the location is fixed, as in Chen,
Gao and Ren (2018).

3. Frobenius topology. Our investigation of the further structural proper-
ties of the scatter halfspace depth HDsc

P,T (�) and of the corresponding depth re-
gions Rsc

P,T (α) depends on the topology that is considered on Pk . In this section,
we focus on the topology induced by the Frobenius metric space (Pk, dF ), where
dF (�a,�b) = ‖�b − �a‖F is the distance on Pk that is inherited from the Frobe-
nius norm ‖A‖F = √

tr[AA′] on Mk . The resulting Frobenius topology (or simply
F -topology), generated by the F -balls BF (�0, r) := {� ∈ Pk : dF (�,�0) < r}
with center �0 and radius r , gives a precise meaning to what we call below F -
continuous functions on Pk , F -open/F -closed subsets of Pk , etc. We then have
the following result.

THEOREM 3.1. Let P be a probability measure over Rk and T be a location
functional. Then (i) � 
→ HDsc

P,T (�) is upper F -semicontinuous on Pk , so that
(ii) the depth region Rsc

P,T (α) is F -closed for any α ≥ 0. (iii) If P is smooth at TP ,
then � 
→ HDsc

P,T (�) is F -continuous on Pk .

For location halfspace depth, the corresponding result was derived in Lem-
ma 6.1 of Donoho and Gasko (1992), where the metric on R

k is the Euclidean
one. The similarity between the location and scatter halfspace depths also extends
to the boundedness of depth regions, in the sense that, like for location halfspace
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depth [Proposition 5 in Rousseeuw and Ruts (1999)], the order-α scatter halfspace
depth region is bounded if and only if α > 0.

THEOREM 3.2. Let P be a probability measure over Rk and T be a location
functional. Then, for any α > 0, Rsc

P,T (α) is F -bounded [i.e., it is included, for
some r > 0, in the F -ball BF (Ik, r)].

This shows that, for any probability measure P , HDsc
P,T (�) goes to zero

as ‖�‖F → ∞. Since ‖�‖F ≥ λ1(�), this means that explosion of � [that is,
λ1(�) → ∞] leads to arbitrarily small depth, which is confirmed in the multinor-
mal case in (2.5). In this Gaussian case, however, implosion of � [i.e., λk(�) → 0]
also provides arbitrarily small depth, but this is not captured by the general re-
sult in Theorem 3.2 [similar comments can be given for the independent Cauchy
example in (2.7)]. Irrespective of the topology adopted (so that the F -topology
is not to be blamed for this behavior), it is actually possible to have implosion
without depth going to zero. We show this by considering the following example.
Let P = (1 − s)P1 + sP2, where s ∈ (1

2 ,1), P1 is the bivariate standard normal

and P2 is the distribution of
(0
Z

)
, where Z is univariate standard normal. Then,

it can be showed that, for �n := (1/n 0
0 1

)
and any centro-equivariant T , we have

HDsc
P,T (�n) → 1 − s > 0 as n → ∞.

In the metric space (Pk, dF ), any bounded set is also totally bounded, that is, can
be covered, for any ε > 0, by finitely many balls of the form BF (�, ε). Theorems
3.1–3.2 thus show that, for any α > 0, Rsc

P,T (α) is both F -closed and totally F -
bounded. However, since (Pk, dF ) is not complete, there is no guarantee that these
regions are F -compact. Actually, these regions may fail to be F -compact, as we
show through the example from the previous paragraph. For any α ∈ (0,1− s), the
scatter matrix �n belongs to Rsc

P,T (α) for n large enough. However, the sequence

(�n) F -converges to
(0 0
0 1

)
, that does not belong to Rsc

P,T (α) (since it does not even
belong to P2). Since this will also hold for any subsequence of (�n), we conclude
that, for α ∈ (0,1 − s), Rsc

P,T (α) is not F -compact in this example. This provides
a first discrepancy between location and scatter halfspace depths, since location
halfspace depth regions associated with a positive order α are always compact.

The lack of compacity of scatter halfspace depth regions may allow for proba-
bility measures for which no halfspace deepest scatter exists. This is actually the
case in the bivariate mixture example above. There, letting e1 = (1,0)′ and assum-
ing again that T is centro-equivariant, any � ∈ P2 indeed satisfies HDsc

P,T (�) ≤
P [|e′

1X| ≥
√

e′
1�e1] = P [|X1| ≥ √

�11] = (1 − s)P [|Z| ≥ √
�11] < 1 − s =

sup�∈P2
HDsc

P,T (�), where the last equality follows from the fact that we iden-
tified a sequence (�n) such that HDsc

P,T (�n) → 1 − s. This is again in sharp con-
trast with the location case, for which a halfspace deepest location always exists;
see, for example, Propositions 5 and 7 in Rousseeuw and Ruts (1999). Identifying
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sufficient conditions under which a halfspace deepest scatter exists requires con-
sidering another topology, namely the geodesic topology considered in Section 4
below.

The next result states that scatter halfspace depth is a quasi-concave function,
which ensures convexity of the corresponding depth regions; we refer to Proposi-
tion 1 (and to its corollary) in Rousseeuw and Ruts (1999) for the corresponding
results on location halfspace depth.

THEOREM 3.3. Let P be a probability measure over Rk and T be a location
functional. Then, (i) � 
→ HDsc

P,T (�) is quasi-concave, in the sense that, for any
�a,�b ∈ Pk and t ∈ [0,1], HDsc

P,T (�t) ≥ min(HDsc
P,T (�a),HDsc

P,T (�b)), where
we let �t := (1 − t)�a + t�b; (ii) for any α ≥ 0, Rsc

P,T (α) is convex.

Strictly speaking, Theorem 3.3 is not directly related to the F -topology consid-
ered on Pk . Yet we state the result in this section due to the link between the linear
paths t 
→ �t = (1− t)�a + t�b it involves and the “flat” nature of the F -topology
(this link will become clearer below when we will compare with what occurs for
the geodesic topology). Illustration of Theorem 3.3 will be provided in Figure 2
below, as well as in the supplemental article Paindaveine and Van Bever (2018).

4. Geodesic topology. Equipped with the inner product 〈A,B〉 = tr[A′B],
Mk is a Hilbert space. The resulting norm and distance are the Frobenius ones
considered in the previous section. As an open set in Sk , the parameter space Pk

of interest is a differentiable manifold of dimension k(k + 1)/2. The correspond-
ing tangent space at �, which is isomorphic (via translation) to Sk , can be
equipped with the inner product 〈A,B〉 = tr[�−1A�−1B]. This leads to consid-
ering Pk as a Riemannian manifold, with the metric at � given by the differential
ds = ‖�−1/2 d��−1/2‖F ; see, for example, Bhatia (2007). The length of a path
γ : [0,1] → Pk is then given by

L(γ ) =
∫ 1

0

∥∥∥∥γ −1/2(t)
dγ (t)

dt
γ −1/2(t)

∥∥∥∥
F

dt.

The resulting geodesic distance between �a,�b ∈ Pk is defined as

(4.1) dg(�a,�b) := inf
{
L(γ ) : γ ∈ G(�a,�b)

} = ∥∥log
(
�−1/2

a �b�
−1/2
a

)∥∥
F ,

where G(�a,�b) denotes the collection of paths γ from γ (0) = �a to γ (1) = �b

[the second equality in (4.1) is Theorem 6.1.6 in Bhatia (2007)]. It directly follows
from the definition of dg(�a,�b) that the geodesic distance satisfies the triangle
inequality. Theorem 6.1.6 in Bhatia (2007) also states that all paths γ achieving the
infimum in (4.1) provide the same geodesic {γ (t) : t ∈ [0,1]} joining �a and �b,
and that this geodesic can be parametrized as

(4.2) γ (t) = �̃t := �1/2
a

(
�−1/2

a �b�
−1/2
a

)t
�1/2

a , t ∈ [0,1].
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By using the explicit formula in (4.1), it is easy to check that this particular
parametrization of this unique geodesic is natural in the sense that dg(�a, �̃t ) =
tdg(�a,�b) for any t ∈ [0,1].

Below, we consider the natural topology associated with the metric space
(Pk, dg), that is, the topology whose open sets are generated by geodesic balls
of the form Bg(�0, r) := {� ∈ Pk : dg(�,�0) < r}. This topology—call it the
geodesic topology, or simply g-topology—defines subsets of Pk that are g-open,
g-closed, g-compact and functions that are g-semicontinuous, g-continuous, etc.
We will say that a subset R of Pk is g-bounded if and only if R ⊂ Bg(Ik, r) for
some r > 0 (we can safely restrict to balls centered at Ik since the triangle in-
equality guarantees that R is included in a finite-radius g-ball centered at Ik if and
only if it is included in a finite-radius g-ball centered at an arbitrary �0 ∈ Pk).
A g-bounded subset of Pk is also totally g-bounded, still in the sense that, for any
ε > 0, it can be covered by finitely many balls of the form Bg(�, ε); for complete-
ness, we prove this in Lemma S.2.6 from the supplemental article Paindaveine and
Van Bever (2018). Since (Pk, dg) is complete [see, e.g., Proposition 10 in Bhatia
and Holbrook (2006)], a g-bounded and g-closed subset of Pk is then g-compact.

We omit the proof of the next result as it follows along the exact same lines as
the proof of Theorem 3.1, once it is seen that a sequence (�n) converging to �0 in
(Pk, dg) also converges to �0 in (Pk, dF ).

THEOREM 4.1. Let P be a probability measure over Rk and T be a location
functional. Then, (i) � 
→ HDsc

P,T (�) is upper g-semicontinuous on Pk , so that
(ii) the depth region Rsc

P,T (α) is g-closed for any α ≥ 0. (iii) If P is smooth at TP ,
then � 
→ HDsc

P,T (�) is g-continuous on Pk .

The following result uses the notation sP,T := supu∈Sk−1 P [u′(X − TP ) = 0]
and αP,T := min(sP,T ,1 − sP,T ) defined in the Introduction.

THEOREM 4.2. Let P be a probability measure over Rk and T be a location
functional. Then, for any α > αP,T , Rsc

P,T (α) is g-bounded, hence g-compact [if
sP,T ≥ 1/2, then this result is trivial in the sense that Rsc

P,T (α) is empty for any
α > αP,T ]. In particular, if P is smooth at TP , then Rsc

P,T (α) is g-compact for any
α > 0.

This result complements Theorem 3.2 by showing that implosion always leads
to a depth that is smaller than or equal to αP,T . In particular, in the multinormal
and independent Cauchy examples in Section 2, this shows that both explosion and
implosion lead to arbitrarily small depth, whereas Theorem 3.2 was predicting this
collapsing for explosion only. Therefore, while the behavior of HDsc

P,T (�) under
implosion/explosion of � is independent of the topology adopted, the use of the
g-topology provides a better understanding of this behavior than the F -topology.
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It is not possible to improve the result in Theorem 4.2, in the sense that
Rsc

P,T (αP,T ) may fail to be g-bounded. For instance, consider the probability mea-
sure P over R2 putting probability mass 1/6 on each of the six points (0,±1/2)

and (±2,±2), and let T be a centro-equivariant location functional. Clearly,
αP,T = sP,T = 1/3. Now, letting �n := (1/n 0

0 1

)
, we have P [|u′�−1/2

n X| ≤ 1] ≥
1/3 and P [|u′�−1/2

n X| ≥ 1] ≥ 1/3 for any u ∈ S1 (here, X is a random vector
with distribution P ), which entails that

HDsc
P,T (�n) = inf

u∈S1
min

(
P

[∣∣u′X
∣∣ ≤ √

u′�nu
]
,P

[∣∣u′X
∣∣ ≥ √

u′�nu
])

= inf
u∈S1

min
(
P

[∣∣u′�−1/2
n X

∣∣ ≤ 1
]
,P

[∣∣u′�−1/2
n X

∣∣ ≤ 1
]) ≥ 1

3
= αP,T ,

so that �n ∈ Rsc
P,T (αP,T ) for any n. Since dg(�n, I2) → ∞, Rsc

P,T (αP,T ) is indeed
g-unbounded.

An important benefit of working with the g-topology is that, unlike the F -
topology, it allows to show that, under mild assumptions, a halfspace deepest scat-
ter does exist. More precisely, we have the following result.

THEOREM 4.3. Let P be a probability measure over R
k and T be a

location functional. Assume that Rsc
P,T (αP,T ) is nonempty. Then, α∗P,T :=

sup�∈Pk
HDsc

P,T (�) = HDsc
P,T (�∗) for some �∗ ∈Pk .

In particular, this result shows that for any probability measure P that is smooth
at TP , there exists a halfspace deepest scatter �∗. For the k-variate multinormal
distribution with location zero and scatter Ik (and any centro-equivariant T ), we al-
ready stated in Section 2 that � 
→ HDsc

P,T (�) is uniquely maximized at �∗ = Ik ,
with a corresponding maximal depth equal to 1/2. The next result identifies the
halfspace deepest scatter (and the corresponding maximal depth) in the indepen-
dent Cauchy case.

THEOREM 4.4. Let P be the k-variate probability measure with independent
Cauchy marginals and let T be a centro-equivariant location functional. Then,
� 
→ HDsc

P,T (�) is uniquely maximized at �∗ = √
kIk , and the corresponding

maximal depth is HDsc
P,T (�∗) = 2

π
arctan(k−1/4).

For k = 1, the Cauchy distribution in this result is symmetric (hence, elliptical)
about zero, which is compatible with the maximal depth being equal to 1/2 there
(Theorem 5.1 below shows that the maximal depth for absolutely continuous el-
liptical distributions is always equal to 1/2). For larger values of k, however, this
provides an example where the maximal depth is strictly smaller than 1/2. Inter-
estingly, this maximal depth goes (monotonically) to zero as k → ∞. Note that,
for the same distribution, location halfspace depth has, irrespective of k, maximal
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value 1/2 [this follows, e.g., from Lemma 1 and Theorem 1 in Rousseeuw and
Struyf (2004)].

In general, the halfspace deepest scatter �∗ is not unique. This is typically the
case for empirical probability measures Pn [note that the existence of a halfspace
deepest scatter in the empirical case readily follows from the fact that HDsc

Pn,T (�)

takes its values in {�/n : � = 0,1, . . . , n}]. For several purposes, it is needed to
identify a unique representative of the halfspace deepest scatters, that would play a
similar role for scatter as the one played by the Tukey median for location. To this
end, one may consider here a center of mass, that is, a scatter matrix of the form

(4.3) �P,T := arg min
�∈Pk

∫
Rsc

P,T (α∗P,T )
d2
g(m,�)dm,

where dm is a mass distribution on Rsc
P,T (α∗P,T ) with total mass one [the nat-

ural choice being the uniform over Rsc
P,T (α∗P,T )]. This is a suitable solution if

Rsc
P,T (α∗P,T ) is g-bounded (hence, g-compact), since Cartan (1929) showed that,

in a simply connected manifold with nonpositive curvature (as Pk), every com-
pact set has a unique center of mass; see also Proposition 60 in Berger (2003).
Convexity of Rsc

P,T (α∗P,T ) then ensures that �P,T has maximal depth. Like for
location, this choice of �P,T as a representative of the deepest scatters guarantees
affine equivariance (in the sense that �PA,b,T = A�P,T A′ for any A ∈ GLk and any
b ∈ R

k), provided that T itself is affine-equivariant. An alternative approach is to
consider the scatter matrix �P,T whose vectorized form vec�P,T is the barycen-
ter of vecRsc

P,T (α∗P,T ). While this is a more practical solution for scatter matrices,
the nonflat nature of some of the parameter spaces in Section 7 will require the
more involved, manifold-type, approach in (4.3).

As a final comment related to Theorem 4.3, note that if Rsc
P,T (αP,T ) is empty,

then it may actually be so that no halfspace deepest scatter does exist. An example
is provided by the bivariate mixture distribution P in Section 3. There, we saw
that, for any centro-equivariant T , no halfspace deepest scatter does exist, which
is compatible with the fact that, for any �, HDsc

P,T (�) < 1 − s = αP,T , so that
Rsc

P,T (αP,T ) is empty.

5. An axiomatic approach for scatter depth. Building on the properties de-
rived in Liu (1990) for simplicial depth, Zuo and Serfling (2000) introduced an
axiomatic approach suggesting that a generic location depth Dloc

P (·) : Rk → [0,1]
should satisfy the following properties: (P1) affine invariance, (P2) maximality at
the symmetry center (if any), (P3) monotonicity relative to any deepest point, and
(P4) vanishing at infinity. Without entering into details, these properties are to be
understood as follows: (P1) means that Dloc

PA,b
(Aθ + b) = Dloc

P (θ) for any A ∈ GLk

and b ∈R
k , where PA,b is as defined on page 3279; (P2) states that if P is symmet-

ric (in some sense), then the symmetry center should maximize Dloc
P (·); according

to (P3), Dloc
P (·) should be monotone nonincreasing along any halfline originating
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from any P -deepest point; finally, (P4) states that as θ exits any compact set in R
k ,

its depth should converge to zero. There is now an almost universal agreement in
the literature that (P1)–(P4) are the natural desirable properties for location depths.

In view of this, one may wonder what are the desirable properties for a scatter
depth. Inspired by (P1)–(P4), we argue that a generic scatter depth Dsc

P (·) : Pk →
[0,1] should satisfy the following properties, all involving an (unless otherwise
specified) arbitrary probability measure P over Rk :

(Q1) Affine invariance: for any A ∈ GLk and b ∈R
k , Dsc

PA,b
(A�A′) = Dsc

P (�),
where PA,b is still as defined on page 3279;

(Q2) Fisher consistency under ellipticity: if P is elliptically symmetric with
location θ0 and scatter �0, then Dsc

P (�0) ≥ Dsc
P (�) for any � ∈ Pk ;

(Q3) Monotonicity relative to any deepest scatter: if �a maximizes Dsc
P (·),

then, for any �b ∈ Pk , t 
→ Dsc
P ((1 − t)�a + t�b) is monotone nonincreasing

over [0,1];
(Q4) Vanishing at the boundary of the parameter space: if (�n) F -converges to

the boundary of Pk [in the sense that either dF (�n,�) → 0 for some � ∈ Sk \Pk

or dF (�n, Ik) → ∞], then Dsc
P (�n) → 0.

While (Q1) and (Q3) are the natural scatter counterparts of (P1) and (P3), re-
spectively, some comments are in order for (Q2) and (Q4). We start with (Q2). In
essence, (P2) requires that, whenever an indisputable location center exists (as it
is the case for symmetric distributions), this location should be flagged as most
central by the location depth at hand. A similar reasoning leads to (Q2): we argue
that, for an elliptical probability measure, the “true” value of the scatter param-
eter is indisputable, and (Q2) then imposes that the scatter depth at hand should
identify this true scatter value as the (or at least, as a) deepest one. One might ac-
tually strengthen (Q2) by replacing the elliptical model there by a broader model
in which the true scatter would still be clearly defined. In such a case, of course,
the larger the model for which scatter depth satisfies (Q2), the better [a possibility,
that we do not explore here, is to consider the union of the elliptical model and
the independent component model; see Ilmonen and Paindaveine (2011) and the
references therein]. This is parallel to what happens in (P2): the weaker the sym-
metry assumption under which (P2) is satisfied, the better [for instance, having
(P2) satisfied with angular symmetry is better than having it satisfied with central
symmetry only]; see Zuo and Serfling (2000).

We then turn to (Q4), whose location counterpart (P4) is typically read by saying
that the depth/centrality Dloc

P (θn) goes to zero when the point θn goes to the bound-
ary of the sample space. In the spirit of parametric depth [Mizera (2002), Mizera
and Müller (2004)], however, it is more appropriate to look at θn as a candidate
location fit and to consider that (P4) imposes that the appropriateness Dloc

P (θn) of
this fit goes to zero as θn goes to the boundary of the parameter space. For loca-
tion, the confounding between the sample space and parameter space (both are Rk)
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allows for both interpretations. For scatter, however, there is no such confounding
(the sample space is Rk and the parameter space is Pk), and we argue (Q4) above
is the natural scatter version of (P4): whenever �n goes to the boundary of the
parameter space Pk , scatter depth should flag it as an arbitrarily poor candidate fit.

Theorem 2.1 states that scatter halfspace depth satisfies (Q1) as soon as it
is based on an affine-equivariant T . Scatter halfspace depth satisfies (Q3) as
well: if �a maximizes HDsc

P,T (·), then Theorem 3.3 indeed readily implies that
HDsc

P,T ((1− t)�a + t�b) ≥ min(HDsc
P,T (�a),HDsc

P,T (�b)) = HDsc
P,T (�b) for any

�b ∈ Pk and t ∈ [0,1]. The next Fisher consistency result shows that, provided
that T is affine-equivariant, (Q2) is also met.

THEOREM 5.1. Let P be an elliptical probability measure over Rk with loca-
tion θ0 and scatter �0, and let T be an affine-equivariant location functional.
Then, (i) HDsc

P,T (�0) ≥ HDsc
P,T (�) for any � ∈ Pk , and the equality holds if

and only if Sp(�−1
0 �) ⊂ IMSD[Z1], where Z = (Z1, . . . ,Zk)

′ D= �
−1/2
0 (X − θ0);

(ii) in particular, if IMSD[Z1] is a singleton (equivalently, if IMSD[Z1] = {1}), then
� 
→ HDsc

P,T (�) is uniquely maximized at �0.

While (Q1)–(Q3) are satisfied by scatter halfspace depth without any assump-
tion on P , (Q4) is not, as the mixture example considered in Section 3 shows
[since the sequence (�n) considered there has limiting depth 1 − s > 0]. How-
ever, Theorem 3.2 reveals that (Q4) may fail only when dF (�n,�) → 0 for some
� ∈ Sk \Pk . More importantly, Theorem 4.2 implies that T -scatter halfspace depth
will satisfy (Q4) at any P that is smooth at TP .

In a generic parametric depth setup, (Q3) would require that the parameter space
is convex. If the parameter space rather is a nonflat Riemannian manifold, then it is
natural to replace the “linear” monotonicity property (Q3) with a “geodesic” one.
In the context of scatter depth, this would lead to replacing (Q3) with:

(Q̃3) Geodesic monotonicity relative to any deepest scatter: if �a maximizes
Dsc

P (·), then, for any �b ∈ Pk , t 
→ Dsc
P (�̃t ) is monotone nonincreasing over [0,1]

along the geodesic path �̃t from �a to �b in (4.2).

We refer to Section 7 for a parametric framework where (Q3) cannot be con-
sidered and where (Q̃3) needs to be adopted instead. For scatter, however, the
hybrid nature of Pk , which is both flat (as a convex subset of the vector space Sk)
and curved (as a Riemannian manifold with nonpositive curvature), allows to con-
sider both (Q3) and (Q̃3). Just like (Q3) follows from quasi-concavity of the map-
ping � 
→ HDsc

P,T (�), (Q̃3) would follow from the same mapping being geodesic
quasi-concave, in the sense that HDP,T (�̃t ) ≥ min(HDP,T (�a),HDP,T (�b))

along the geodesic path �̃t from �a to �b. Geodesic quasi-concavity would
actually imply that scatter halfspace depth regions are geodesic convex, in the
sense that, for any �a,�b ∈ Rsc

P,T (α), the geodesic from �a to �b is contained
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in Rsc
P,T (α). We refer to Dümbgen and Tyler (2016) for an application of geodesic

convex functions to inference on (high-dimensional) scatter matrices.
Theorem 3.3 shows that � 
→ HDsc

P,T (�) is quasi-concave for any P . A natural
question is then whether or not this extends to geodesic quasi-concavity. The an-
swer is positive at any k-variate elliptical probability measure and at the k-variate
probability measure with independent Cauchy marginals.

THEOREM 5.2. Let P be an elliptical probability measure over R
k or the

k-variate probability measure with independent Cauchy marginals, and let T be
an affine-equivariant location functional. Then, (i) � 
→ HDsc

P,T (�) is geodesic
quasi-concave, so that (ii) Rsc

P,T (α) is geodesic convex for any α ≥ 0.

We close this section with a numerical illustration of the quasi-concavity re-
sults in Theorems 3.3 and 5.2 and with an example showing that geodesic quasi-
concavity may actually fail to hold. Figure 2 provides, for three bivariate prob-
ability measures P , the plots of t 
→ HDsc

P (�t) and t 
→ HDsc
P (�̃t ), where �t =

(1 − t)�a + t�b is the linear path from �a = I2 to �b = diag(0.001,20) and
where �̃t = �

1/2
a (�

−1/2
a �b�

−1/2
a )t�

1/2
a is the corresponding geodesic path. The

three distributions considered are (i) the bivariate normal with location zero and
scatter I2, (ii) the bivariate distribution with independent Cauchy marginals and
(iii) the empirical distribution associated with a random sample of size n = 200
from the bivariate mixture distribution P = 1

2P1 + 1
4P2 + 1

4P3, where P1 is the
standard normal, P2 is the normal with mean (0,4)′ and covariance matrix 1

10I2,
and P3 is the normal with mean (0,−4)′ and covariance matrix 1

10I2. Figure 2 il-
lustrates that (linear) quasi-concavity of scatter halfspace depth always holds, but
that geodesic quasi-concavity may fail to hold. Despite this counterexample, ex-
tensive numerical experiments led us to think that geodesic quasi-concavity is the
rule rather than the exception.

6. Concentration halfspace depth. In various setups, the parameter of in-
terest is the concentration matrix � := �−1 rather than the scatter matrix �. For
instance, in Gaussian graphical models, the (i, j)-entry of � is zero if and only if
the ith and j th marginals are conditionally independent given all other marginals.
It may then be useful to define a depth for inverse scatter matrices. The scatter
halfspace depth in (2.1) naturally leads to defining the T -concentration halfspace
depth of � with respect to P as

HDconc
P,T (�) := HDsc

P,T

(
�−1)

and the corresponding T -concentration halfspace depth regions as Rconc
P,T (α) :=

{� ∈ Pk : HDconc
P,T (�) ≥ α}, α ≥ 0. As indicated by an anonymous referee, the def-

inition of T -concentration halfspace depth alternatively results, through the use
of “innovated transformation” [see, e.g., Hall and Jin (2010), Fan, Jin and Yao
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FIG. 2. Plots, for various bivariate probability measures P , of the scatter halfspace depth
function � 
→ HDsc

P (�) along the linear path �t = (1 − t)�a + t�b (red), the geodesic path

�̃t = �
1/2
a (�

−1/2
a �b�

−1/2
a )t�

1/2
a (blue), and the harmonic path �∗

t = ((1 − t)�−1
a + t�−1

b )−1

(orange), from �a = I2 to �b = diag(0.001,20); harmonic paths are introduced in Section 6. The
probability measures considered are the bivariate normal with location zero and scatter I2 (top left),
the bivariate distribution with independent Cauchy marginals (top right), and the empirical probabil-
ity measure associated with a random sample of size n = 200 from the bivariate mixture distribution
described in Section 5 (bottom right). The scatter plot of the sample used in the mixture case is
provided in the bottom left panel.

(2013), or Fan and Lv (2016)], from the concept of (an affine-invariant) T -scatter
halfspace depth.

Concentration halfspace depth and concentration halfspace depth regions inherit
the properties of their scatter antecedents, sometimes with subtle modifications.
The former is affine-invariant and the latter are affine-equivariant as soon as they
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are based on an affine-equivariant T . Concentration halfspace depth is upper F -
and g-semicontinuous for any probability measure P [so that the regions Rconc

P,T (α)

are F - and g-closed] and F - and g-continuous if P is smooth at TP . While the
regions Rconc

P,T (α) are still g-bounded (hence also, F -bounded) for α > αP,T , the
outer regions Rconc

P,T (α), α ≤ αP,T , here may fail to be F -bounded (this is because
implosion of �, under which scatter halfspace depth may fail to go below αP,T , is
associated with explosion of �−1). Finally, uniform consistency and existence of a
concentration halfspace deepest matrix are guaranteed under the same conditions
on P and T as for scatter halfspace depth.

Quasi-concavity of concentration halfspace depth and convexity of the corre-
sponding regions require more comments. The linear path t 
→ (1− t)�a + t�b be-
tween the concentration matrices �a = �−1

a and �b = �−1
b determines a harmonic

path t 
→ �∗
t := ((1 − t)�−1

a + t�−1
b )−1 between the corresponding scatter matri-

ces �a and �b. In line with the definitions adopted in the previous sections, we will
say that f : Pk → R is harmonic quasi-concave if f (�∗

t ) ≥ min(f (�a), f (�b))

for any �a,�b ∈ Pk and t ∈ [0,1], and that a subset R of Pk is harmonic con-
vex if �a,�b ∈ R implies that �∗

t ∈ R for any t ∈ [0,1]. Clearly, concentration
halfspace depth is quasi-concave if and only if scatter halfspace depth is harmonic
quasi-concave, which turns out to be the case in the elliptical and independent
Cauchy cases. We thus have the following result.

THEOREM 6.1. Let P be an elliptical probability measure over Rk or the k-
variate probability measure with independent Cauchy marginals, and let T be an
affine-equivariant location functional. Then, (i) � 
→ HDconc

P,T (�) is quasi-concave,
so that (ii) Rconc

P,T (α) is convex for any α ≥ 0.

However, concentration halfspace depth may fail to be quasi-concave, since,
as we show by considering the mixture example in Figure 2, scatter halfspace
depth may fail to be harmonic quasi-concave. The figure, that also plots scatter
halfspace depth along harmonic paths, confirms that, while scatter halfspace depth
is harmonic quasi-concave for the Gaussian and independent Cauchy examples
there, it is not in the mixture example. In this mixture example, thus, concentration
halfspace depth fails to be quasi-concave and the corresponding depth regions fail
to be convex. This is not a problem per se; recall that famous (location) depth
functions, like, for example, the simplicial depth from Liu (1990), may provide
nonconvex depth regions.

For completeness, we present the following result which shows that some form
of quasi-concavity for concentration halfspace depth survives.

THEOREM 6.2. Let P be a probability measure over R
k and T be a lo-

cation functional. Then, (i) � 
→ HDconc
P,T (�) is harmonic quasi-concave, so that

(ii) Rconc
P,T (α) is harmonic convex for any α ≥ 0.
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Since concentration halfspace depth is harmonic quasi-concave if and only if
scatter halfspace depth is quasi-concave, the result is a direct corollary of Theo-
rem 3.3. Quasi-concavity and harmonic quasi-concavity clearly are dual concepts,
relative to scatter and concentration halfspace depths (which justifies the ∗ nota-
tion in the path �∗

t , dual to �t ). Interestingly, � 
→ HDconc
P,T (�) is geodesic quasi-

concave if and only if � 
→ HDsc
P,T (�) is, so that concentration halfspace depth

regions are geodesic convex if and only if scatter halfspace depth regions are.

7. Shape halfspace depth. In many multivariate statistics problems (PCA,
CCA, sphericity testing, etc.), it is sufficient to know the scatter matrix � up to
a positive scalar factor. In PCA, for instance, all scatter matrices of the form c�,
c > 0, indeed provide the same unit eigenvectors v�(c�), � = 1, . . . , k, hence the
same principal components. Moreover, when it comes to deciding how many prin-
cipal components to work with, a common practice is to look at the proportions of
explained variance

∑m
�=1 λ�(c�)/

∑k
�=1 λ�(c�), m = 1, . . . , k − 1, which do not

depend on c either. In PCA, thus, the parameter of interest is a shape matrix, that
is, a normalized version, V say, of the scatter matrix �.

The generic way to normalize a scatter matrix � into a shape matrix V is based
on a scale functional S, that is, on a mapping S : Pk →R

+
0 satisfying (i) S(Ik) = 1

and (ii) S(c�) = cS(�) for any c > 0 and � ∈ Pk . In this paper, we will fur-
ther assume that (iii) if �1,�2 ∈ Pk satisfy �2 ≥ �1 (in the sense that �2 − �1
is positive semidefinite), then S(�2) ≥ S(�1). Such a scale functional leads to
factorizing �(∈ Pk) into � = σ 2

S VS , where σ 2
S := S(�) is the scale of � and

VS := �/S(�) is its shape matrix (in the sequel, we will drop the subscript S

in VS to avoid overloading the notation). The resulting collection of shape ma-
trices V will be denoted as PS

k . Note that the constraint S(Ik) = 1 ensures that,
irrespective of the scale functional S adopted, Ik is a shape matrix. Common scale
functionals satisfying (i)–(iii) are (a) Str(�) = (tr�)/k, (b) Sdet(�) = (det�)1/k ,
(c) S∗

tr(�) = k/(tr�−1) and (d) S11(�) = �11; we refer to Paindaveine and
Van Bever (2014) for references where the scale functionals (a)–(d) are used.
The corresponding shape matrices V are then normalized in such a way that (a)
tr[V ] = k, (b) detV = 1, (c) tr[V −1] = k or (d) V11 = 1.

In this section, we propose a concept of halfspace depth for shape matrices.
More precisely, for a probability measure P over Rk , we define the (S, T )-shape
halfspace depth of V (∈ PS

k ) with respect to P as

(7.1) HDsh,S
P,T (V ) := sup

σ 2>0
HDsc

P,T

(
σ 2V

)
,

where HDsc
P,T (σ 2V ) is the T -scatter halfspace depth of σ 2V with respect to P .

The corresponding depth regions are defined as

R
sh,S
P,T (α) := {

V ∈PS
k : HDsh,S

P,T (V ) ≥ α
}
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[alike scatter, we will drop the index T in HDsh,S
P,T (V ) and R

sh,S
P,T (α) whenever T is

the Tukey median]. The halfspace deepest shape (if any) is obtained by maximizing
the “profile depth” in (7.1), in the same way a profile likelihood approach would
be based on the maximization of a (shape) profile likelihood of the form Lsh

V =
supσ 2>0 Lσ 2V . To the best of our knowledge, such a profile depth construction has
never been considered in the literature.

We start the study of shape halfspace depth by considering our running, Gaus-
sian and independent Cauchy, examples. For the k-variate normal with location θ0
and scatter �0 [hence, with S-shape matrix V0 = �0/S(�0)],

σ 2 
→ HDsc
P,T

(
σ 2V

)

= 2 min
(
	

(
bσλ

1/2
k (V −1

0 V )√
S(�0)

)
− 1

2
,1 − 	

(
bσλ

1/2
1 (V −1

0 V )√
S(�0)

))

[see (2.6)] will be uniquely maximized at the σ 2-value for which both arguments
of the minimum are equal. It follows that

HDsh,S
P,T (V ) = 2	

(
c
(
V −1

0 V
)
λ

1/2
k

(
V −1

0 V
)) − 1,

where c(ϒ) is the unique solution of 	(c(ϒ)λ
1/2
k (ϒ))− 1

2 = 1−	(c(ϒ)λ
1/2
1 (ϒ)).

At the k-variate distribution with independent Cauchy marginals, we still have that
[with the same notation as in (2.7)]

HDsc
P,T

(
σ 2V

) = 2 min
(



(
σ/max

s

(
s′V −1s

)1/2
)

− 1

2
,1 − 


(
σ

√
max

(
diag(V )

)))
is maximized for fixed V when both arguments of the minimum are equal, that is,
when σ 2 = (maxs(s

′V −1s)/max(diag(V )))1/2. Therefore,

HDsh,S
P,T (V ) = 2


((
max

s

(
s′V −1s

)
max

(
diag(V )

))−1/4)
− 1

= 2

π
arctan

((
max

s

(
s′V −1s

)
max

(
diag(V )

))−1/4)
.

Figure 3 draws, for six probability measures P and any affine-equivariant T , con-
tour plots of (V11,V12) 
→ HDsh,Str

P,T (V ), where HDsh,Str
P,T (V ) is the shape halfspace

depth of V = (V11
V12

V12
2−V11

)
with respect to P . Letting �A = (1 0

0 1

)
, �B = (4 0

0 1

)
and

�C = (3 1
1 1

)
, the probability measures P considered are those associated (i) with

the bivariate normal distributions with location zero and scatter �A, �B and �C ,
and (ii) with the distributions of �

1/2
A Z, �

1/2
B Z and �

1/2
C Z, where Z has inde-

pendent Cauchy marginals. Note that the maximal depth is larger in the Gaussian
cases than in the Cauchy ones, that depth monotonically decreases along any ray
originating from the deepest shape matrix and that it goes to zero if and only if the
shape matrix converges to the boundary of the parameter space. Shape halfspace
depth contours are smooth in the Gaussian cases but not in the Cauchy ones.
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In both the Gaussian and independent Cauchy examples above, the supremum
in (7.1) is a maximum. For empirical probability measures Pn, this will always be
the case since HDsc

Pn,T (σ 2V ) then takes its values in {�/n : � = 0,1, . . . , n}. The
following result implies in particular that a sufficient condition for this supremum
to be a maximum is that P is smooth at TP (which is the case in both our running
examples above).

THEOREM 7.1. Let P be a probability measure over R
k and T be a loca-

tion functional. Fix V ∈ PS
k such that cV ∈ Rsc

P,T (αP,T ) for some c > 0. Then

HDsh,S
P,T (V ) = HDsc

P,T (σ 2
V V ) for some σ 2

V > 0.

The following affine-invariance/equivariance and uniform consistency results
are easily obtained from their scatter antecedents.

THEOREM 7.2. Let T be an affine-equivariant location functional. Then,
(i) shape halfspace depth is affine-invariant in the sense that, for any probabil-
ity measure P over Rk , V ∈ PS

k , A ∈ GLk and b ∈ R
k , we have HDsh,S

PA,b,T
(AV A′/

S(AV A′)) = HDsh,S
P,T (V ), where PA,b is as defined on page 3279. Consequently,

(ii) shape halfspace depth regions are affine-equivariant, in the sense that
R

sh,S
PA,b,T

(α) = {AV A′/S(AV A′) : V ∈ R
sh,S
P,T (α)} for any probability measure P

over Rk , α ≥ 0, A ∈ GLk and b ∈ R
k .

THEOREM 7.3. Let P be a smooth probability measure over R
k and T be

a location functional. Let Pn denote the empirical probability measure associated
with a random sample of size n from P and assume that TPn → TP almost surely as
n → ∞. Then supV ∈PS

k
|HDsh,S

Pn,T (V ) − HDsh,S
P,T (V )| → 0 almost surely as n → ∞.

Shape halfspace depth inherits the F - and g-continuity properties of scatter
halfspace depth (Theorems 3.1 and 4.1, respectively), at least for a smooth P .
More precisely, we have the following result.

THEOREM 7.4. Let P be a probability measure over R
k and T be a loca-

tion functional. Then, (i) V 
→ HDsh,S
P,T (V ) is upper F - and g-semicontinuous on

R
sh,S
P,T (αP,T ), so that (ii) for any α ≥ αP,T , the depth region R

sh,S
P,T (α) is F - and

g-closed. (iii) If P is smooth at TP , then V 
→ HDsh,S
P,T (V ) is F - and g-continuous.

The g-boundedness part of the following result will play a key role when prov-
ing the existence of a halfspace deepest shape.

THEOREM 7.5. Let P be a probability measure over R
k and T be a loca-

tion functional. Then, for any α > αP,T , R
sh,S
P,T (α) is F - and g-bounded, hence
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g-compact. If sP,T ≥ 1/2, then this result is trivial in the sense that R
sh,S
P,T (α) is

empty for α > αP,T .

Comparing with the scatter result in Theorem 3.2, the shape result for
F -boundedness requires the additional condition α > αP,T (for g-boundedness,
this condition was already required in Theorem 4.2). This condition is actually
necessary for scale functionals S for which implosion of a shape matrix V cannot
be obtained without explosion, as it is the case, for example, for Sdet (the product
of the eigenvalues of an Sdet-shape matrix being equal to one, the smallest eigen-
value of V cannot go to zero without the largest going to infinity). We illustrate
this on the bivariate discrete example discussed below Theorem 4.2, still with an
arbitrary centro-equivariant T . The sequence of scatter matrices �n = diag( 1

n
,1)

there defines a sequence of Sdet-shape matrices Vn = diag( 1√
n
,
√

n), that is neither

F - nor g-bounded. Since HDsh,Sdet
P,T (Vn) ≥ HDsc

P,T (�n) ≥ 1/3 = αP,T for any n,

we conclude that R
sh,Sdet
P,T (αP,T ) is both F - and g-unbounded. Note also that F -

boundedness of R
sh,S
P,T (α) depends on S. In particular, it is easy to check that the

condition α > αP,T for F -boundedness is not needed for the scale functional S∗
tr

[that is, R
sh,S∗

tr
P,T (α) is F -bounded for any α > 0]. Finally, one trivially has that

all R
sh,Str
P,T (α)’s are F -bounded since the corresponding collection of shape ma-

trices, PStr
k , is itself F -bounded. Unlike F -boundedness results, g-boundedness

results are homogeneous in S, which further suggests that the g-topology is the
most appropriate one to study scatter/shape depths.

As announced, the g-part of Theorem 7.5 allows to show that a halfspace deep-
est shape exists under mild conditions. More precisely, we have the following re-
sult.

THEOREM 7.6. Let P be a probability measure over Rk and T be a location
functional. Assume that R

sh,S
P,T (αP,T ) is nonempty. Then αS∗P,T :=

supV ∈PS
k

HDsh,S
P,T (V ) = HDsh,S

P,T (V∗) for some V∗ ∈ PS
k .

Alike scatter, a sufficient condition for the existence of a halfspace deepest
shape is thus that P is smooth at TP . In particular, a halfspace deepest shape

FIG. 3. Contour plots of (V11,V12) 
→ HDsh,Str
P,T (V ), for several bivariate probability measures P

and an arbitrary affine-equivariant location functional T , where HDsh,Str
P,T (V ) is the shape halfspace

depth, with respect to P , of V = (V11
V12

V12
2−V11

)
. Letting �A = (1 0

0 1
)
, �B = (4 0

0 1
)

and �C = (3 1
1 1

)
, the

probability measures P considered are those associated (i) with the bivariate normal distributions
with location zero and scatter �A, �B and �C (top, middle and bottom left), and (ii) with the

distributions of �
1/2
A Z, �

1/2
B Z and �

1/2
C Z, where Z has mutually independent Cauchy marginals

(top, middle and bottom right). In each case, the “true” Str-shape matrix is marked in red.
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exists in the Gaussian and independent Cauchy examples. In the k-variate inde-
pendent Cauchy case, it readily follows from Theorem 4.4 that, irrespective of
the centro-equivariant T used, HDsh,S

P,T (V ) is uniquely maximized at V∗ = Ik , with

corresponding maximal depth 2
π

arctan(k−1/4). The next Fisher-consistency result
states that, in the elliptical case, the halfspace deepest shape coincides with the
“true” shape matrix.

THEOREM 7.7. Let P be an elliptical probability measure over Rk with loca-
tion θ0 and scatter �0, hence with S-shape matrix V0 = �0/S(�0), and let T be an
affine-equivariant location functional. Then, (i) HDsh,S

P,T (V0) ≥ HDsh,S
P,T (V ) for any

V ∈ PS
k ; (ii) if IMSD[Z1] is a singleton (equivalently, if IMSD[Z1] = {1}), where

Z = (Z1, . . . ,Zk)
′ D= �

−1/2
0 (X−θ0), then V 
→ HDsh,S

P,T (V ) is uniquely maximized
at V0.

We conclude this section by considering quasi-concavity properties of shape
halfspace depth and convexity properties of the corresponding depth regions. It
should be noted that, for some scale functionals S, the collection PS

k of S-shape
matrices is not convex; for instance, neither PSdet

k nor PS∗
tr

k is convex, so that it does

not make sense to investigate whether or not V 
→ HDsh,S
P,T (V ) is quasi-concave for

these scale functionals. It does, however, for Str and S11, and we have the following
result.

THEOREM 7.8. Let P be a probability measure over Rk and T be a location
functional. Fix S = Str or S = S11. Then, (i) V 
→ HDsh,S

P,T (V ) is quasi-concave,

that is, for any Va,Vb ∈ PS
k and t ∈ [0,1], HDsh,S

P,T (Vt ) ≥ min(HDsh,S
P,T (Va),

HDsh,S
P,T (Vb)), where we let Vt := (1 − t)Va + tVb; (ii) for any α ≥ 0, R

sh,S
P,T (α)

is convex.

As mentioned above, neither PSdet
k nor PS∗

tr
k are convex in the usual sense [unlike

for Str and S11, thus, a unique halfspace deepest shape could not be defined through
barycenters but would rather require a center-of-mass approach as in (4.3)]. How-
ever, PSdet

k is geodesic convex, which justifies studying the possible geodesic con-
vexity of Rsh

P,Sdet
(α) [this provides a parametric framework for which the shape

version of (Q3) in Section 5 cannot be considered and for which it is needed to

adopt the corresponding Property (Q̃3) instead]. Similarly, PS∗
tr

k is harmonic con-
vex, so that it makes sense to investigate the harmonic convexity of R

sh,S∗
tr

P,T (α). We
have the following results.

THEOREM 7.9. Let T be an affine-equivariant location functional and P be
an arbitrary probability measure over R

k for which T -scatter halfspace depth is
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geodesic quasi-concave. Then, (i) V 
→ HDsh,Sdet
P,T (V ) is geodesic quasi-concave,

so that (ii) R
sh,Sdet
P,T (α) is geodesic convex for any α ≥ 0.

THEOREM 7.10. Let T be an affine-equivariant location functional and P be
an arbitrary probability measure over R

k for which T -scatter halfspace depth is

harmonic quasi-concave. Then, (i) V 
→ HD
sh,S∗

tr
P,T (V ) is harmonic quasi-concave,

so that (ii) R
sh,S∗

tr
P,T (α) is harmonic convex for any α ≥ 0.

An illustration of Theorems 7.8–7.10 is provided in the supplemental article
Paindaveine and Van Bever (2018).

8. A real-data application. In this section, we analyze the returns of the Nas-
daq Composite and S&P500 indices from February 1, 2015 to February 1, 2017.
During that period, for each trading day and for each index, we collected returns
every 5 minutes (i.e., the difference between the index at a given time and 5 min-
utes earlier, when available), resulting in usually 78 bivariate observations per day.
Due to some missing values, the exact number of returns per day varies, and only
days with at least 70 observations were considered. The resulting dataset comprises
a total of 38,489 bivariate returns distributed over D = 478 trading days.

The goal of this analysis is to determine which days, during the two-year period,
exhibit an atypical behavior. In line with the fact that the main focus in finance is on
volatility, atypicality here will refer to deviations from the “global” behavior either
in scatter (i.e., returns do not follow the global dispersion pattern) or in scale only
(i.e., returns show a usual shape but their overall size is different). Atypical days
will be detected by comparing intraday estimates of scatter and shape with a global
version.

Below, �̂full will denote the minimum covariance determinant (MCD) scatter
estimate on the empirical distribution Pfull of the returns over the two-year pe-
riod, and V̂full will stand for the resulting shape estimate V̂full = �̂full/Sdet(�̂full).
For any d = 1, . . . ,D, �̂d and V̂d will denote the corresponding estimates on the
empirical distribution Pd on day d .

The rationale behind the choice of MCD rather than standard covariance as an
estimation method for scatter/shape is twofold. First, the former will naturally deal
with outliers inherently arising in the data (the first few returns after an overnight or
weekend break are famously more volatile and their importance should be down-
weighted in the estimation procedure). Second, as hinted above, the global estimate
will provide a baseline to measure the atypicality of any given day, which will be
done, among others, using its intraday depth. It would be natural to use halfs-
pace deepest scatter/shape matrices on Pfull as global estimates for scatter/shape.
While locating the exact maxima is a nontrivial task, the MCD shape estimator
has already a high depth value [HDsh,Sdet

Pfull
(V̂full) = 0.481], which makes it a very

good proxy for the halfspace deepest shape. For the same reason, the scaled MCD
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estimator �̄full = σ 2
fullVfull with σ 2

full = argmaxσ 2HDsc
Pfull

(σ 2Vfull) [that, obviously,

satisfies HDsc
Pfull

(�̄full) = 0.481] is similarly an excellent proxy for the halfspace
deepest scatter. In contrast, the shape estimate associated with the standard co-
variance matrix (resp., the deepest scaled version of the covariance matrix) has a
global shape (resp., scatter) depth of only 0.426.

For each day, the following measures of (a)typicality (three for scatter, three
for shape) are computed: (i) the scatter depth HDsc

Pd
(�̄full) of �̄full in day d ,

(ii) the shape depth HDsh,Sdet
Pd

(V̂full) of V̂full in day d , (iii) the scatter Frobenius dis-

tance dF (�̂d, �̂full), (iv) the shape Frobenius distance dF (V̂d, V̂full), (v) the scatter
geodesic distance dg(�̂d, �̂full), and (vi) the shape geodesic distance dg(V̂d, V̂full).
Of course, low depths or high distances point to atypical days. Practitioners might
be tempted to base the distances in (iii)–(vi) on standard covariance estimates,
which would actually provide poorer performances in the present outlier detection
exercise (due to the masking effect resulting from using a nonrobust global disper-
sion measure as a baseline). Here, we rather use MCD-based estimates to ensure a
fair comparison with the depth-based methods in (i)–(ii).

Figure 4 provides the plots of the quantities in (i)–(vi) above as a function of d ,
d = 1, . . . ,D. Major events affecting the returns during the two years are marked
there. They are (1) the Black Monday on August 24, 2015 (orange), when world
stock markets went down substantially, (2) the crude oil crisis on January 20, 2016
(dark blue), when oil barrel prices fell sharply, (3) the Brexit vote aftermath on
June 24, 2016 (dark green), (4) the end of the low volatility period on September
13, 2016 (red), (5) the Donald Trump election on November 9, 2016 (purple) and
(6) the announcement and aftermath of the federal rate hikes on December 14,
2016 (teal).

Detecting atypical events was achieved by flagging outliers in either collections
of scatter or shape depth values. This was conducted by constructing box-and-
whisker plots of those collections and marking events with depth value below 1.5
IQR of the first quartile. This procedure flagged events (1), (2) and (6) as outly-
ing in scatter and 21 days—including events (1), (2), (3) and (5)—as atypical in
shape. Most of the resulting 22 outlying days can be associated (i.e., are temporally
close) to one of the events (1)–(6) above. For example, 9 days are flagged within
the period extending from January 20, 2016, to February 9, 2016, during which
continuous slump in oil prices rocked the marked strongly, with biggest loss for
S&P 500 index on February 9. Remarkably, out of the 22 flagged outliers, only
two (namely October 1, 2015, and December 14, 2015) could not be associated
with major events. Event (4), although not deemed outlying, was added to mark
the end of the low volatility period.

Events (1) and (2) are noticeably singled out by all outlyingness measures, dis-
playing low depth values and high Frobenius and geodesic distances, but the four
remaining events tell a very different story. In particular, event (6) exhibits a low
scatter depth but a relatively high shape depth, which means that this day shows a
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FIG. 4. Plots of (i) HDsc
Pd

(�̄full), (ii) HDsh,Sdet
Pd

(V̂full), (iii) dF (�̂d , �̂full), (iv) dF (V̂d , V̂full),

(v) dg(�̂d , �̂full) and (vi) dg(V̂d , V̂full), as a function of d , for the MCD scatter and shape esti-
mates described in Section 8. The horizontal dotted lines in (i)–(ii) correspond to the global depths

HDsc
Pfull

(�̄full) and HDsh,Sdet
Pfull

(V̂full), respectively. All depths make use of the Tukey median as a loca-
tion functional. Vertical lines mark the six events listed in Section 8.

shape pattern that is in line with the global one but is very atypical in scale (i.e., in
volatility size). Quite remarkably, the four distances considered fail to flag this day
as an atypical one. A similar behavior appears throughout the two-month period
spanning July, August and early September 2016 [between events (3) and (4)], dur-
ing which the markets have seen a historical streak of small volatility. This period
presents widely varying scatter depth values together with stable and high shape
depth values, which is perfectly in line with what has been seen on the markets,
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where only the volatility of the indices was low in days that were otherwise typi-
cal. Again, the four distance plots are blind to this relative behavior of scatter and
shape in the period.

Events (3) to (5) are picked up by depth measures and scatter distances, though
more markedly by the former. This is particularly so for event (3), which sticks out
sharply in both depths. The fact that the scatter depth is even lower than the shape
depth suggests that event (3) is atypical not only in shape but also in scale. Interest-
ingly, distance measures fully miss the shape outlyingness of this event. Actually,
shape distances do not assign large values to any of the events (3) to (6) and, from
March 2016 onwards, these distances stay in the same range—particularly so for
the Frobenius ones in (iv). In contrast, the better ability of shape depth to spot out-
lyingness may be of particular importance in cases where one wants to discard the
overall volatility size to rather focus on the shape structure of the returns.

To summarize, the detection of atypical patterns in the dispersion of intraday
returns can more efficiently be performed with scatter/shape depths than on the
basis of distance measures. Arguably, the fact that the proposed depths use all ob-
servations and not a sole estimate of scatter/shape allows to detect deviations from
global behaviors more sharply. As showed above, comparing scatter and shape
depth values provides a tool that permits the distinction between shape and scale
outliers.

9. Final comments and perspectives. In this work, we thoroughly investi-
gated the structural properties of a concept of scatter halfspace depth linked to
those proposed in Zhang (2002) and Chen, Gao and Ren (2018). While we tried
doing so under minimal assumptions, alternative scatter halfspace depth concepts
may actually require even weaker assumptions, but they typically would make the
computational burden heavier in the sample case. As an example, one might alter-
natively define the scatter halfspace depth of �(∈ Pk) with respect to P as

(9.1) HDsc,alt
P (�) = sup

θ∈Rk

HDsc
P,θ (�),

where HDsc
P,θ (�) is the scatter halfspace depth associated with the constant lo-

cation functional at θ . This alternative scatter depth concept satisfies a uniform
consistency result such as the one in Theorem 2.2 without any condition on P ,
whereas the scatter halfspace depth HDsc

P,T (�) in (2.1) requires that P is smooth

(see Theorem 2.2). In the sample case, however, evaluation of HDsc,alt
Pn

(�) is com-
putationally much more involved than HDsc

Pn,T (�). Alternative concentration and
shape halfspace depth concepts may be defined along the same lines and will show
the same advantages/disadvantages compared to those proposed in this paper.

Another possible concept of scatter halfspace depth bypasses the need to choose
a location functional T by exploiting a pairwise difference approach; see Zhang
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(2002) and Chen, Gao and Ren (2018). In our notation, the resulting scatter depth
of � with respect to P = P X is

(9.2) HDsc,U
P (�) = HDsc

P X−X̃,0
(�),

where X̃ is an independent copy of X and where 0 denotes the origin of Rk . On one
hand, the sample version of (9.2) is a U -statistic of order two, which will increase
the computational burden compared to the sample version of (2.1). On the other
hand, uniform consistency results for (9.2) [which here follow from Glivenko–
Cantelli results for U -processes, such as the one in Corollary 3.3 from Arcones
and Giné (1993)] will again hold without any assumption on P , which is due to
the fact that, as already mentioned, the smoothness assumption in Theorem 2.2 is
superfluous when a constant location functional T is used. At first sight, thus, the
pros and cons for (9.2) are parallel to those for (9.1), that is, weaker distributional
assumptions are obtained at the expense of computational ease. However, (9.2)
suffers from a major disadvantage: it does not provide Fisher consistency at the
elliptical model [see (Q2) in Section 5]. This results from the fact that if P = P X

is elliptical with location θ and scatter �, then P X−X̃ is elliptical with location 0
and scatter cP �, where the scalar factor cP depends on the type of elliptical dis-
tribution: for multinormal and Cauchy elliptical distributions, for example, cP = 2
and 4, respectively, so that if one replaces X − X̃ with (X − X̃)/

√
2 to achieve

Fisher consistency at the multinormal, then Fisher consistency will still not hold at
the Cauchy. Actually, the maximizer of HDsc,U

P (�) is useless as a measure of scat-
ter for the original probability measure P , as its interpretation requires knowing
which type of elliptical distribution P is. This disqualifies the pairwise difference
scatter depth, as well as the companion concentration depth. Note, however, that
the corresponding shape depth will not suffer from this Fisher consistency problem
since the normalization of scatter matrices into shape matrices will get rid of the
scalar factor cP .

As both previous paragraphs suggest and as it is often the case with statistical
depth, computational aspects are key for the application of the proposed depths.
Evaluating (good approximations of) the scatter halfspace depth HDsc

Pn,T (�) of
a given � can of course be done for very small dimensions k = 2 or 3 by simply
sampling the unit sphere Sk−1. Even for such small dimensions, however, comput-
ing the halfspace deepest scatter is nontrivial: while scatter halfspace depth relies
on a low-dimensional (i.e., k-dimensional) projection-pursuit approach, identify-
ing the halfspace deepest scatter indeed requires exploring the collection of scat-
ter matrices Pk , that is of higher dimension, namely of dimension k(k + 1)/2.
Fortunately, the fixed-location scatter halfspace depth—hence, also its T -version
proposed in this paper, after appropriate centering of the observations—can be
computed in higher dimensions through the algorithm proposed in Chen, Gao and
Ren (2018), where the authors performed simulations requiring to compute the
deepest scatter matrix for dimensions and sample sizes as large as 10 and 2000,
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respectively. Their implementation of this algorithm is available as an R package
at https://github.com/ChenMengjie/DepthDescent.

As pointed by an anonymous referee, the concept of scatter halfspace depth also
makes sense when the parameter space is the compactification of Pk , that is, is the
collection Pk of k × k symmetric positive semidefinite matrices. Interestingly, it
is actually easier to investigate the properties of scatter halfspace depth over Pk

than over Pk . The F -continuity and F -boundedness results in Theorems 3.1–3.2
extend, mutatis mutandis, to Pk . Unlike (Pk, dF ), the metric space (Pk, dF ) is
complete, so that the regions Rsc

P,T (α) are then F -compact for any α > 0. Conse-
quently, a trivial adaptation of the proof of Theorem 4.3 allows to show that there
always exists a halfspace deepest scatter matrix in Pk . It is fortunate that these
neat results can be established by considering the F -distance only, as the geodesic
distance, that is unbounded on Pk ×Pk , could not have been considered here. Of
course, in many applications, Pk remains the natural parameter space since many
multivariate statistics procedures will require inverting scatter matrices. In such ap-
plications, it will be of little help to practitioners that the deepest halfspace scatter
matrix belongs to Pk \Pk , which explains why our detailed investigation focusing
on Pk is of key importance.

Perspectives for future research are rich and diverse. The proposed halfspace
depth concepts for scatter, concentration and shape can be extended to other scat-
ter functionals of interest. In particular, halfspace depths that are relevant for PCA
could result from the “profile depth” approach in Section 7. For instance, the T -
“first principal direction” halfspace depth of β(∈ Sk−1) with respect to the prob-
ability measure P over Rk can be defined as

HD1stpd
P,T (β) = sup

�∈Pk,1,β

HDsc
P,T (�) with Pk,1,β := {

� ∈Pk : �β = λ1(�)β
}
.

The halfspace deepest first principal direction is a promising robust estimator of
the true underlying first principal direction, at least under ellipticity. Obviously,
the depth of any other principal direction, or the depth of any eigenvalue, can be
defined accordingly. Another direction of research is to explore inferential applica-
tions of the proposed depths. Clearly, point estimation is to be based on halfspace
deepest scatter, concentration or shape matrices; Chen, Gao and Ren (2018) partly
studied this already for scatter in high dimensions. Hypothesis testing is also of
primary interest. In particular, a natural test for H0 : � = �0, where �0 ∈ Pk is
fixed, would reject the null for small values of HDsc

Pn,T (�0). For shape matrices,

a test of sphericity would similarly reject the null for small values of HDsh,S
Pn,T (Ik).

These topics, obviously, are beyond the scope of the present work.
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SUPPLEMENTARY MATERIAL

Supplement to “Halfspace depths for scatter, concentration and shape ma-
trices” (DOI: 10.1214/17-AOS1658SUPP; .pdf). In this supplement, we conduct
a Monte Carlo exercise validating the explicit scatter halfspace depth expressions
obtained in the Gaussian and independent Cauchy examples. We also provide il-
lustrations of Theorem 3.3 and Theorems 7.8–7.10. Finally, we prove all theorems
stated in this paper.
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