
On optimal tests for rotational symmetry against new classes of
hyperspherical distributions

Eduardo Garcı́a-Portugués

Department of Statistics

Carlos III University of Madrid

Calle Madrid, 126

28903 Getafe (Madrid), Spain

Davy Paindaveine
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Summary. Motivated by the central role played by rotationally symmetric distributions in directional statistics,
we consider the problem of testing rotational symmetry on the hypersphere. We adopt a semiparametric
approach and tackle the situations where the location of the symmetry axis is either specified or unspecified.
For each problem, we define two tests and study their asymptotic properties under very mild conditions. We
introduce two new classes of directional distributions that extend the rotationally symmetric class and are
of independent interest. We prove that each test is locally asymptotically maximin, in the Le Cam sense,
for one kind of the alternatives given by the new classes of distributions, both for specified and unspecified
symmetry axis. The tests, aimed to detect location-like and scatter-like alternatives, are combined into a
convenient hybrid test that is consistent against both alternatives. A Monte Carlo study illustrates the finite-
sample performances of the tests and corroborates empirically the theoretical findings. Finally, we apply the
tests for assessing rotational symmetry in two real data examples coming from geology and proteomics.

1. Introduction

Directional statistics deals with data belonging to the unit hypersphere Sp−1 := {x ∈ Rp : ‖x‖2 = x′x =

1} of Rp. The most popular parametric model in directional statistics, which can be traced back to

the beginning of the 20th century, is the von Mises–Fisher (vMF) model characterized by the density
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(densities on Sp−1 throughout are with respect to the surface area measure σp−1 on Sp−1)

x 7→ cMp,κ exp(κx′θθθ),

where θθθ ∈ Sp−1 is a location parameter (it is the modal location on the sphere), κ > 0 is a concentration

parameter (the larger the value of κ, the more the probability mass is concentrated about θθθ), and cMp,κ is a

normalizing constant to be specified later. The vMF model belongs to a much broader model comprised

by rotationally symmetric densities of the form

x 7→ cp,g g(x′θθθ),

where g : [−1, 1] −→ R+ and cp,g is a normalizing constant. The rotationally symmetric model is

indexed by the finite-dimensional parameter θθθ and the infinite-dimensional parameter g, hence is of a

semiparametric nature. Clearly, the (parametric) vMF submodel is obtained with g(t) = exp(κt). Note

that for axial distributions (g(−t) = g(t) for any t), only the pair {±θθθ} is identified, whereas non-axial

distributions allow to identify θθθ under mild conditions (identifiability of θθθ is discussed later in the paper).

Rotationally symmetric distributions are often regarded as the most natural (non-uniform) distributions

on the sphere and tend to have more tractable normalizing constants than non-rotationally symmetric

models. Yet, since these distributions impose a rather stringent symmetry on the hypersphere (as they

are invariant under rotations fixing θθθ), it is natural to test for rotational symmetry prior to adopt any

rotationally symmetric model to conduct inference.

The problem of testing rotational symmetry has mainly been considered in the circular case (p = 2),

where rotational symmetry is referred to as reflective symmetry. Tests of reflective symmetry about a

specified θθθ have been considered by Schach (1969), using a linear rank test, and Mardia and Jupp (2000),

using sign-based statistics, whereas Pewsey (2002) introduced a test based on second-order trigonometric

moments for unspecified θθθ. Ley and Verdebout (2014) and Meintanis and Verdebout (2016) developed

tests that are locally and asymptotically optimal against some specific alternatives, both for specified θθθ.

For p ≥ 3, however, the problem is more difficult, which explains that the corresponding literature is

much sparser. To the best of our knowledge, for p ≥ 3, only Jupp and Spurr (1983) and Ley and

Verdebout (2017b) addressed the problem of testing rotational symmetry in a semiparametric way (that

is, without specifying the function g). The former considered a test for symmetry in p ≥ 2 using the

Sobolev tests machinery of Giné (1975), whereas the latter established the efficiency of the Watson

(1983)’s test against a new type of non-rotationally symmetric alternatives. Both papers considered only

the specified-θθθ situation. Goodness-of-fit tests within the directional framework (i.e., tests for checking

that the underlying distribution on the hypersphere belongs to a given parametric class of distributions)

have received comparatively more attention in the literature. For instance, Boulerice and Ducharme

(1997) proposed goodness-of-fit tests based on spherical harmonics for a class of rotationally symmetric

distributions. More recently, Figueiredo (2012) considered goodness-of-fit tests for vMF distributions,

while Boente et al. (2014) introduced goodness-of-fit tests based on kernel density estimation for any

(possibly non-rotationally symmetric) distribution.

In this paper, we consider the problem of testing rotational symmetry on the sphere or hypersphere

(p ≥ 3). The contributions are three-fold. Firstly, we tackle the specified-θθθ case and propose two tests

aimed to detect scatter -like and location-like departures from the null. Secondly, we introduce two new

classes C1 and C2 of distributions on Sp−1 that are of independent interest and may serve as natural

alternatives to rotational symmetry. In particular, the class C1 is an “elliptical” extension of the class of

rotationally symmetric distributions based on the angular Gaussian distributions from Tyler (1987). We



On optimal tests for rotational symmetry 3

prove that the proposed scatter and location tests are locally asymptotically maximin against alternatives

in C1 and C2, respectively. Thirdly, we address the more challenging unspecified-θθθ case. The scatter test is

seen to be unaffected asymptotically by the estimation of θθθ under the null (and therefore under contiguous

alternatives), whereas the location test presents a more involved asymptotic behaviour affected by the

estimation of θθθ. We therefore propose corrected versions of the location tests that keep optimality

properties against alternatives in C2. Finally, using the asymptotic independence between the location

and scatter test statistics, we introduce hybrid tests for the specified and unspecified-θθθ problems that

enjoy appealing asymptotic power properties against both types of alternatives (in C1 and C2) without

being optimal neither against alternatives in C1 nor in C2.

The outline of the paper is as follows. In Section 2 we address the testing for rotational symmetry with

θθθ specified. The asymptotic distributions of two tests proposed for that aim are provided in Section 2.1.

Section 2.2 gives two non-rotationally symmetric extensions of the class of rotationally symmetric dis-

tributions, used in Sections 2.3–2.4 to investigate the non-null asymptotic behaviour of the proposed

tests. In Section 3, we extend the proposed tests to the problem of testing rotational symmetry about

an unspecified location and investigate their non-null asymptotic behaviour. Hybrid tests are introduced

in Section 4. In Section 5, we conduct Monte Carlo experiments to study how well the finite-sample

behaviour of the proposed tests agrees with our asymptotic results. We treat two real data examples in

Section 6 and discuss perspectives for future research in Section 7. Appendix A collects the proofs of the

main results, whereas Appendix B provides useful lemmas.

2. Testing rotational symmetry about a specified θθθ

A random vector X, with values in Sp−1, is said to be rotationally symmetric about θθθ ∈ Sp−1 if and

only if OX
D
= X for any p× p orthogonal matrix O satisfying Oθθθ = θθθ (throughout,

D
= denotes equality in

distribution). For any x ∈ Sp−1, write

vθθθ(x) := x′θθθ and uθθθ(x) :=
ΓΓΓ′θθθx

‖ΓΓΓ′θθθx‖
=

ΓΓΓ′θθθx

(1− v2
θθθ(x))1/2

, (2.1)

where ΓΓΓθθθ denotes an arbitrary p × (p − 1) matrix whose columns form an orthonormal basis of the

orthogonal complement to θθθ (so that ΓΓΓ′θθθΓΓΓθθθ = Ip−1 and ΓΓΓθθθΓΓΓ
′
θθθ = Ip − θθθθθθ′). This allows to consider the

tangent-normal decomposition

x = vθθθ(x)θθθ + (Ip − θθθθθθ′)x = vθθθ(x)θθθ + (1− v2
θθθ(x))1/2 ΓΓΓθθθuθθθ(x). (2.2)

If X is rotationally symmetric about θθθ, then the distribution of the random (p− 1)-vector ΓΓΓ′θθθX is spher-

ically symmetric about the origin of Rp−1, so that the multivariate sign uθθθ(X) is uniformly distributed

over Sp−2, hence satisfying the moment conditions

E[uθθθ(X)] = 0 (2.3)

and

E[uθθθ(X)u′θθθ(X)] =
1

p− 1
Ip−1. (2.4)

Note also that uθθθ(X) and the cosine vθθθ(X) are mutually independent. This multivariate sign is there-

fore a quantity that is more appealing than the “projection” ΓΓΓ′θθθX, that is neither distribution-free nor

independent of vθθθ(X). If X admits a density, then this density is of the form

x 7→ fθθθ,g(x) = cp,g g(x′θθθ),
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where cp,g(> 0) is a normalizing constant and g : [−1, 1] −→ R+ is referred to as an angular function in

the sequel. Then, vθθθ(X) is absolutely continuous with respect to the Lebesgue measure on [−1, 1] and

the corresponding density is

v 7→ g̃p(v) := ωp−1cp,g(1− v2)(p−3)/2g(v), (2.5)

where ωp−1 := 2π
p−1
2 /Γ(p−1

2 ) is the surface area of Sp−2. Application of (2.5) to the vMF with location θθθ

and concentration κ (notation: Mp(θθθ, κ)), gives cMp,κ = κ
p−2
2 /((2π)

p
2 I p−2

2
(κ)), where Iν is the order-ν

modified Bessel function of the first kind.

2.1. The proposed tests

In view of the above considerations, it is natural to test the null of rotational symmetry about θθθ by

testing that uθθθ(X) is uniformly distributed over Sp−2. Since there are extremely diverse alternatives to

uniformity on Sp−2, one may first want to consider location alternatives and scatter alternatives, the

ones associated with violations of the expectation (2.3) and the covariance (2.4), respectively. The tests

we propose in this paper are designed to detect such alternatives.

Let X1, . . . ,Xn be a random sample from a distribution on Sp−1 and consider the problem of testing

the null H0,θθθ that X1 is rotationally symmetric about a given location θθθ. Writing Ui,θθθ := uθθθ(Xi),

i = 1, . . . , n, the first test we propose rejects the null for large values of

Qloc
θθθ :=

p− 1

n

n∑
i,j=1

U′i,θθθUj,θθθ = n(p− 1)‖Ūθθθ‖2,

where Ūθθθ := 1
n

∑n
i=1 Ui,θθθ. As for the uniformity of the Ui,θθθ’s on Sp−2, this test is simply the celebrated

Rayleigh (1919)’s test. Alternatively, if it is assumed that the Xi’s are sampled from a rotationally

symmetric distribution (about an unspecified location), then the test also coincides with the Paindaveine

and Verdebout (2015) sign test for the null that the unknown location is equal to θθθ. Since, under the

null H0,θθθ, the Ui,θθθ’s form a random sample from the uniform distribution over Sp−2, the Central Limit

Theorem (CLT) readily entails that
√
nŪθθθ

D
 N (0, 1

p−1Ip−1), and hence that Qloc
θθθ

D
 χ2

p−1 under H0,θθθ,

where
D
 denotes convergence in distribution. The resulting test, φloc

θθθ say, then rejects the null H0,θθθ at

asymptotic level α whenever Qloc
θθθ > χ2

p−1,1−α, where χ2
`,1−α denotes the α-upper quantile of the chi-

square distribution with ` degrees of freedom. As we will show, this test typically detects the location

alternatives violating the expectation condition (2.3).

In contrast, the second test we propose is designed to show power against the scatter alternatives that

violate the covariance condition (2.4). This second test rejects H0,θθθ for large values of

Qsc
θθθ :=

p2 − 1

2n

n∑
i,j=1

(
(U′i,θθθUj,θθθ)

2 − 1

p− 1

)
=
n(p2 − 1)

2

(
tr
[
S2
θθθ

]
− 1

p− 1

)
,

where we let Sθθθ := 1
n

∑n
i=1 Ui,θθθU

′
i,θθθ. Using again the fact that, under H0,θθθ, the Ui,θθθ’s form a random

sample from the uniform distribution over Sp−2, it readily follows from Hallin and Paindaveine (2006b)

that Qsc
θθθ

D
 χ2

(p−2)(p+1)/2 under H0,θθθ. The resulting test, φsc
θθθ say, then rejects the null H0,θθθ at asymptotic

level α whenever Qsc
θθθ > χ2

(p−2)(p+1)/2,1−α.

For each test, thus, the asymptotic distribution of the test statistic, under the null of rotational

symmetry about a specified location θθθ, follows from results available in the literature. Yet, two important
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questions remain open at this stage: (i) do φloc
θθθ and φsc

θθθ behave well under non-null distributions? In

particular, are there alternatives to H0,θθθ against which these tests would enjoy some power optimality?

(ii) To test rotational symmetry about an unspecified θθθ, can one use the tests φloc
θ̂θθ

and φsc
θ̂θθ

obtained by

replacing θθθ with an appropriate estimator θ̂θθ in φloc
θθθ and φsc

θθθ ? We address (i) in Sections 2.3 and 2.4 (for

appropriate scatter and location alternatives, respectively), and (ii) in Section 3.

2.2. Non-rotationally symmetric tangent distributions

As explained in the previous section, if X is rotationally symmetric about θθθ, then the sign U := uθθθ(X)

(see (2.1)) is uniformly distributed over Sp−2 and is independent of the cosine V := vθθθ(X). Vice versa, it

directly follows from the tangent-normal decomposition in (2.2) that any rotational distribution on Sp−1

can be obtained as the distribution of

V θθθ +
√

1− V 2 ΓΓΓθθθU, (2.6)

where U is a random vector that is uniformly distributed over Sp−2 and where the random variable V

with values in [−1, 1] is independent of U. In this section, we introduce natural alternatives to rotational

symmetry by relaxing some of the distributional constraints on U in (2.6). Rather than assuming that U is

uniformly distributed over Sp−2, we construct two families of non-rotationally symmetric distributions for

which U follows an angular central Gaussian distribution (see, e.g., Tyler (1987)) and a vMF distribution.

For the first family, recall that the random (p − 1)-vector U has an angular central Gaussian distri-

bution on Sp−2 with shape parameter ΛΛΛ (notation: U ∼ Ap−1(ΛΛΛ)) if it admits the density

u 7→ cAp−1,ΛΛΛ(u′ΛΛΛ−1u)−(p−1)/2

with respect to the surface area measure σp−2 on Sp−2, where cAp−1,ΛΛΛ :=
(
ωp−1(detΛΛΛ)1/2

)−1
is a normal-

izing constant. Here, the scatter parameter ΛΛΛ is a (p−1)× (p−1) symmetric and positive-definite matrix

that is normalized into a shape matrix in the sense that tr[ΛΛΛ] = p−1 (without this normalization, ΛΛΛ would

be identified up to a positive scalar factor only). Denoting by Lp−1 the collection of shape matrices ΛΛΛ,

and by G the set of all cumulative distribution functions G over [−1, 1], we then introduce the family of

tangent elliptical distributions.

Definition 2.1. Let θθθ ∈ Sp−1, ΛΛΛ ∈ Lp−1, and G ∈ G. Then the random vector X has a tangent

elliptical distribution on Sp−1 with location θθθ, shape ΛΛΛ, and angular distribution function G if and only

if X
D
= V θθθ +

√
1− V 2 ΓΓΓθθθU, where V ∼ G and U ∼ Ap−1(ΛΛΛ) are mutually independent. If V admits the

density (2.5) involving the angular function g, then we will write X ∼ T Ep(θθθ, g,ΛΛΛ).

Clearly, rotationally symmetric distributions are obtained for ΛΛΛ = Ip−1. Since Ap−1(ΛΛΛ) can be

obtained by projecting radially on Sp−2 a (p − 1)-dimensional elliptical distribution with location 0

and scatter ΛΛΛ, the distributions in Definition 2.1 form an elliptical extension of the class of the (by

nature, spherical) rotationally symmetric distributions, which justifies the terminology. In the absolutely

continuous case, the following result provides the density of a tangent elliptical distribution.

Theorem 2.1. If X ∼ T Ep(θθθ, g,ΛΛΛ), then X is absolutely continuous and the corresponding density

is x 7→ fT Eθθθ,g,ΛΛΛ(x) = ωp−1cp,gc
A
p−1,ΛΛΛg(vθθθ(x))(u′θθθ(x)ΛΛΛ−1uθθθ(x))−(p−1)/2.
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As mentioned above, tangent elliptical distributions provide an elliptical extension of the class of rota-

tionally symmetric distributions, hence in particular of vMF distributions. Another elliptical extension of

vMF distributions is Kent (1982)’s class of Fisher–Bingham distributions. In addition to the immediate

generalization to p ≥ 3, the tangent elliptical distributions show several advantages with respect to the

latter: (i) they form a semiparametric class of distributions that contains all rotationally symmetric

distributions; (ii) the densities of tangent elliptical distributions involve normalizing constants that are

simple to compute (see, e.g., Kume and Wood (2005) for the delicate problem of approximating nor-

malizing constants in the Fisher–Bingham model); (iii) simulation is straightforward, since it reduces to

simulating independently a univariate variable V and a N (0,ΛΛΛ).

Fig. 1. Contour plots of tangent elliptical and tangent vMF densities, both with g(z) = exp(3z). Top row: from left to
right, tangent elliptical with shape matrices ΛΛΛ =

(
1+a 0
0 1−a

)
, a = 0 (rotationally symmetric) and a = 0.15, 0.45. Bottom

row: from left to right, tangent vMF densities with skewness intensities κ = 0.25, 0.50, 0.75.

The second class of distributions we introduce, namely the class of tangent vMF distributions, is

obtained by assuming that U ∼ Mp−1(µµµ, κ). Unlike the tangent elliptical distributions, under which U

assumes an axial distribution on Sp−2, the unimodality of Mp−1(µµµ, κ) in the tangent space provides a

skewed distribution for X around θθθ (see bottom row of Figure 1).

Definition 2.2. Let θθθ ∈ Sp−1, µµµ ∈ Sp−2, κ ≥ 0, and G ∈ G. Then the random vector X has

a tangent vMF distribution on Sp−1 with location θθθ, skewness direction µµµ, skewness intensity κ, and

angular distribution function G if and only if X
D
= V θθθ+

√
1− V 2 ΓΓΓθθθU, where V ∼ G and U ∼Mp−1(µµµ, κ)

are mutually independent. If V admits the density (2.5) involving the angular function g, then we will

write X ∼ TMp(θθθ, g,µµµ, κ).
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The following result provides the density of the tangent vMF distributions in the absolutely continuous

case. Its proof is along the same lines as the proof of Theorem 2.1, hence is omitted.

Theorem 2.2. If X ∼ TMp(θθθ, g,µµµ, κ), then X is absolutely continuous and the corresponding density

is x 7→ fTMθθθ,g,µµµ,κ(x) = ωp−1cp,gc
M
p−1,κg(vθθθ(x)) exp(κµµµ′uθθθ(x)).

Note that, albeit our framework is p ≥ 3, the distributions are also properly defined for p = 2. In

that case, the signs U belong to S0 = {−1, 1}, ω1 = 2, and, since σ0 is the counting measure, the angular

central Gaussian and the vMF densities become probability mass functions. The former, since it is an axial

distribution, puts equal mass in ±1. The vMF, since I− 1
2
(κ) =

√
2/(πκ) cosh(κ), assigns probabilities

exp(±µκ)/(exp(−µκ) + exp(µκ)) to ±1, respectively, with µ ∈ S0. In view of these considerations, it

becomes apparent that only the tangent vMF distributions are non-rotationally symmetric extensions of

the rotationally symmetric class when p = 2. This is coherent with the fact that Qsc
θθθ is constant when

p = 2 and therefore does not provide any reasonable test. In order to deal with non-degenerate tests, we

restrict to p ≥ 3 in the sequel.

2.3. Non-null results for tangent elliptical alternatives

In this section, we will investigate the performances of the tests φloc
θθθ and φsc

θθθ under the tangent elliptical

alternatives to rotational symmetry introduced above. To do so, we will need the following notation:

we write vech (A) for the (p(p + 1)/2)-dimensional vector stacking the upper-triangular elements of a

p× p symmetric matrix A = (Aij), ve
◦
ch (A) for vech (A) with the first element (A11) excluded, Mp for

the matrix satisfying M′pve
◦
ch (A) = vec (A) for any p × p symmetric matrix A with tr[A] = 0, Jp :=∑p

i,j=1(ep,ie
′
p,j)⊗ (ep,ie

′
p,j) = (vec Ip)(vec Ip)

′, and Kp =
∑p
i,j=1(ep,ie

′
p,j)⊗ (ep,je

′
p,i) (the commutation

matrix), where ep,` denotes the `-th vector of the canonical basis of Rp. Since the shape matrix ΛΛΛ of

a tangent elliptical distribution is symmetric and satisfies tr[ΛΛΛ] = p − 1, it is completely characterized

by ve
◦
ch (ΛΛΛ). Throughout, we let Vi,θθθ := vθθθ(Xi) = X′iθθθ and we denote as χ2

ν(λ) the chi-square distribution

with ν degrees of freedom and non-centrality parameter λ (so that χ2
ν(0)

D
= χ2

ν).

In order to examine log-likelihood ratios involving the angular functions g, we need to assume some

regularity conditions on g. More precisely, we will restrict to the collection Ga of non-constant angular

functions g : [−1, 1] −→ R+
0 that are absolutely continuous and for which Jp(g) :=

∫ 1

−1
ϕ2
g(t)(1−t2)g̃p(t)dt

is finite, where ϕg := ġ/g involves the almost everywhere derivative ġ of g.

Consider then the semiparametric model
{

P
T E(n)
θθθ,g,ΛΛΛ : θθθ ∈ Sp−1, g ∈ Ga,ΛΛΛ ∈ Lp−1

}
, where P

T E(n)
θθθ,g,ΛΛΛ

denotes the probability measure associated with observations X1, . . . ,Xn that are randomly sampled from

the tangent elliptical distribution T Ep(θθθ, g,ΛΛΛ). In the rotationally symmetric case, that is, for ΛΛΛ = Ip−1,

we will simply write P
(n)
θθθ,g instead of P

T E(n)
θθθ,g,Ip−1

. Investigating the optimality of tests of rotational symmetry

against tangent elliptical alternatives requires studying the asymptotic behaviour of tangent elliptical

log-likelihood ratios associated with local deviations from ΛΛΛ = Ip−1. This leads to the following Local

Asymptotic Normality (LAN) result.

Theorem 2.3. Fix θθθ ∈ Sp−1 and g ∈ Ga. Let τττn := (t′n, ve
◦
ch (Ln)′)′, where (tn) is a bounded

sequence in Rp such that θθθn := θθθ + n−1/2tn ∈ Sp−1 for any n, and where (Ln) is a bounded sequence of

(p− 1)× (p− 1) matrices such that ΛΛΛn := Ip−1 +n−1/2Ln ∈ Lp−1 for any n. Then, the tangent elliptical
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log-likelihood ratio associated to local deviations ΛΛΛn from ΛΛΛ = Ip−1 satisfies

log
dP
T E(n)
θθθn,g,ΛΛΛn

dP
(n)
θθθ,g

= τττ ′n∆∆∆
T E(n)
θθθ,g − 1

2
τττ ′nΓΓΓT Eθθθ,gτττn + oP(1) (2.7)

as n→∞ under P
(n)
θθθ,g , where the central sequence

∆∆∆
T E(n)
θθθ,g :=

(
∆∆∆

(n)
θθθ,g;1

∆∆∆
T E(n)
θθθ;2

)
:=

(
1√
n

∑n
i=1 ϕg(Vi,θθθ)(1− V 2

i,θθθ)
1/2 ΓΓΓθθθUi,θθθ

p−1
2
√
n
Mp

∑n
i=1 vec

(
Ui,θθθU

′
i,θθθ −

1
p−1 Ip−1

) )

is, still under P
(n)
θθθ,g , asymptotically normal with mean zero and covariance matrix

ΓΓΓT Eθθθ,g :=

(
ΓΓΓθθθ,g;11 0

0 ΓΓΓT Eθθθ;22

)
:=

( Jp(g)
p−1 (Ip − θθθθθθ′) 0

0 p−1
4(p+1)Mp

(
I(p−1)2 + Kp−1

)
M′p

)
.

The restriction that g ∈ Ga in particular guarantees that the g-parametric submodel of the tangent

elliptical model has a finite Fisher information for θθθ in the vicinity of rotational symmetry. Any LAN

result requires a finite Fisher information condition of this sort (along with a smoothness condition

that allows to define Fisher information). The LAN result in Theorem 2.3 easily provides the following

corollary.

Corollary 2.1. Fix θθθ ∈ Sp−1 and g ∈ Ga. Let ΛΛΛn and (Ln) be as in Theorem 2.3, now with

Ln → L 6= 0. Then, under P
T E(n)
θθθ,g,ΛΛΛn

: (i) Qloc
θθθ

D
 χ2

p−1; (ii) Qsc
θθθ

D
 χ2

(p−2)(p+1)/2(λ), with λ = (p −
1)tr[L2]/(2(p+ 1)).

First note that (i) implies that, for the local alternatives considered, the null and non-null asymptotic

distributions of Qloc
θθθ do coincide, so that the test φloc

θθθ has asymptotic power α against such alternatives.

On the contrary, (ii) shows that the test φsc
θθθ exhibits non-trivial asymptotic powers against any alter-

natives associated with ΛΛΛn = Ip−1 + n−1/2Ln, Ln → L 6= 0 (note indeed that tr[L2] is the squared

Frobenius norm of L). Note also that, since L has trace zero by construction, the non-centrality param-

eter (p − 1)tr[L2]/(2(p + 1)) above is proportional to the variance of the eigenvalues of L, which is line

with the fact that φsc
θθθ has the nature of a sphericity test.

While Corollary 2.1 shows that the test φsc
θθθ can detect local alternatives of a tangent elliptical nature, it

does not provide information on the possible optimality of this test. General results on the Le Cam theory

(see, e.g., Chapter 5 of Ley and Verdebout (2017a)) together with Theorem 2.3 directly entail that a locally

asymptotically maximin test, at asymptotic level α, when testing
{

P
(n)
θθθ,g

}
against

⋃
ΛΛΛ∈Lp−1\{Ip}

{
P
T E(n)
θθθ,g,ΛΛΛ

}
rejects the null whenever

Qsc
θθθ =

(
∆∆∆
T E(n)
θθθ;2

)′(
ΓΓΓT Eθθθ;22

)−1
∆∆∆
T E(n)
θθθ;2 > χ2

(p−2)(p+1)/2,1−α. (2.8)

Now, using the closed form for the inverse of ΓΓΓT Eθθθ;22 in Lemma 5.2 from Hallin and Paindaveine (2006a),

it is easy to show that the test statistic in (2.8) coincides with Qsc
θθθ . Since this holds at any angular

function g in Ga, we proved the following result.

Corollary 2.2. When testing
⋃
g∈Ga

{
P

(n)
θθθ,g

}
against

⋃
g∈Ga

⋃
ΛΛΛ∈Lp−1\{Ip}

{
P
T E(n)
θθθ,g,ΛΛΛ

}
, the test φsc

θθθ is

locally asymptotically maximin at asymptotic level α.

We conclude that, when testing rotational symmetry about a specified location θθθ against tangent

elliptical alternatives, the location test Qloc
θθθ does not show any power, while the scatter test Qsc

θθθ is

optimal in the Le Cam sense, uniformly in the angular function g ∈ Ga.
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2.4. Non-null results under tangent vMF alternatives

To investigate the non-null behaviour of the proposed tests under tangent vMF alternatives, we consider

the semiparametric model
{

P
TM(n)
θθθ,g,µµµ,κ : θθθ ∈ Sp−1, g ∈ Ga,µµµ ∈ Sp−2, κ ≥ 0

}
, where P

TM(n)
θθθ,g,µµµ,κ denotes

the probability measure associated with observations X1, . . . ,Xn that are randomly sampled from the

tangent vMF distribution TMp(θθθ, g,µµµ, κ); for κ = 0, P
TM(n)
θθθ,g,µµµ,κ is defined as the rotationally symmetric

hypothesis P
(n)
θθθ,g (see the notation introduced in Section 2.3). To investigate optimality properties of tests

of rotational symmetry against such alternatives, it is convenient to parametrize this model with θθθ, δδδ, and

g, where we let δδδ := κµµµ; obviously, we will then use the notation P
TM(n)
θθθ,g,δδδ . In this new parametrization,

the null hypothesis of rotational symmetry coincides with H0 : δδδ = 0. The main advantage of the

parametrization in δδδ ∈ Rp−1 over the original one in (κ,µµµ) ∈ R+ ×Sp−2 is that the δδδ-parameter space is

standard (it is the Euclidean space Rp−1), while the (κ,µµµ)-one is curved.

As for tangent elliptical distributions, our investigation of optimality issues will then be based on a

LAN result, that takes here the following form (see Appendix A for the proof).

Theorem 2.4. Fix θθθ ∈ Sp−1 and g ∈ Ga. Let τττn := (t′n,d
′
n)′, where (tn) is a bounded sequence in Rp

such that θθθn := θθθ+n−1/2tn ∈ Sp−1 for any n, and δδδn := n−1/2dn with (dn) a bounded sequence in Rp−1.

Then, the tangent vMF log-likelihood ratio associated to local deviations δδδn from δδδ = 0 is

log
dP
TM(n)
θθθn,g,δδδn

dP
(n)
θθθ,g

= τττ ′n∆∆∆
TM(n)
θθθ,g − 1

2
τττ ′nΓΓΓTMθθθ,g τττn + oP(1),

as n→∞ under P
(n)
θθθ,g , where the central sequence

∆∆∆
TM(n)
θθθ,g :=

(
∆∆∆

(n)
θθθ,g;1

∆∆∆
TM(n)
θθθ;2

)
:=

(
1√
n

∑n
i=1 ϕg(Vi,θθθ)(1− V 2

i,θθθ)
1/2 ΓΓΓθθθUi,θθθ

1√
n

∑n
i=1 Ui,θθθ

)

is, still under P
(n)
θθθ,g , asymptotically normal with mean zero and covariance matrix

ΓΓΓTMθθθ,g :=

(
ΓΓΓθθθ,g;11 ΓΓΓTMθθθ,g;12

ΓΓΓTMθθθ,g;21 ΓΓΓTM22

)
:=

( Jp(g)
p−1 (Ip − θθθθθθ′) Ip(g)

p−1 ΓΓΓθθθ
Ip(g)
p−1 ΓΓΓ′θθθ

1
p−1 Ip−1

)
,

with Ip(g) :=
∫ 1

−1
ϕg(t)

√
1− t2 g̃p(t)dt.

Unlike for the LAN property in Theorem 2.3, the Fisher information matrix associated with the

LAN property above, namely ΓΓΓTMθθθ,g , is in not block-diagonal. Note also that Jensen’s inequality ensures

that Jp(g) ≥ I2
p(g), which confirms the finiteness of Ip(g) and the positive semidefiniteness of ΓΓΓTMθθθ,g . It

is also easy to check that the only angular functions for which Jensen’s inequality is actually an equality

(hence, for which ΓΓΓTMθθθ,g is singular) are of the form g(t) = C exp(κ arcsin(t)) for some real constants C

and κ.

Corollary 2.3. Fix θθθ ∈ Sp−1 and g ∈ Ga. Let (µµµn) be a sequence in Sp−2 that converges to µµµ.

Let κn := n−1/2kn, where (kn) is a sequence in R+
0 that converges to k > 0. Then, under P

TM(n)
θθθ,g,µµµn,κn

:

(i) Qloc
θθθ

D
 χ2

p−1(λ), with λ = k2/(p− 1); (ii) Qsc
θθθ

D
 χ2

(p−2)(p+1)/2.

The location test φloc
θθθ and the scatter test φsc

θθθ therefore exhibit opposite non-null behaviours under

tangent vMF alternatives, compared to what occurs under tangent elliptical alternatives in Section 2.3:
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under tangent vMF alternatives, φsc
θθθ has asymptotic power equal to the nominal level α, whereas φloc

θθθ

shows non-trivial asymptotic powers. Since the latter test is the test rejecting the null hypothesis of

rotational symmetry about θθθ whenever

Qloc
θθθ =

(
∆∆∆
TM(n)
θθθ;2

)′(
ΓΓΓTM22

)−1
∆∆∆
TM(n)
θθθ;2 > χ2

p−1,1−α,

it is actually locally asymptotically maximin when testing
{

P
(n)
θθθ,g

}
against

⋃
µµµ∈Sp−2

⋃
κ>0

{
P
TM(n)
θθθ,g,µµµ,κ

}
at

asymptotic level α. Moreover, since Qloc
θθθ does not depend on g, we have the following result.

Corollary 2.4. When testing
⋃
g∈Ga

{
P

(n)
θθθ,g

}
against

⋃
g∈Ga

⋃
µµµ∈Sp−2

⋃
κ>0

{
P
TM(n)
θθθ,g,µµµ,κ

}
, the test Qloc

θθθ

is locally asymptotically maximin at asymptotic level α.

We conclude that the location test φloc
θθθ and the scatter test φsc

θθθ are optimal in the Le Cam sense,

uniformly in g ∈ Ga, against tangent vMF alternatives and tangent elliptical alternatives, respectively.

3. Testing rotational symmetry about an unspecified θθθ

The tests φloc
θθθ and φsc

θθθ studied in the previous section allow to test for rotational symmetry about a given

location θθθ. Often, however, it is desirable to rather test for rotational symmetry about an unspecified θθθ.

Natural tests for this unspecified-θθθ problem are obtained by substituting an appropriate estimator θ̂θθ for θθθ

in φloc
θθθ and φsc

θθθ . In this section, we investigate whether or not this approach provides tests that are valid

(in the sense that they meet asymptotically the nominal level) or even optimal.

3.1. Scatter tests

We start by considering the test φsc
θθθ , which was showed in Section 2.3 to be optimal in the Le Cam

sense against tangent elliptical alternatives. First note that it is easy to show that the local asymptotic

normality results in Theorems 2.3–2.4 can be strengthened into Uniform Local Asymptotic Normality

(ULAN) ones. In such a ULAN setup, it is customary to use an estimator θ̂θθ satisfying the following

assumptions:

AG′ The estimator θ̂θθ (with values in Sp−1) is part of a sequence that is: (i) root-n consistent under

any g ∈ G′, i.e.,
√
n(θ̂θθ − θθθ) = OP(1) under

⋃
g∈G′

{
P

(n)
θθθ,g

}
; (ii) locally and asymptotically discrete,

i.e., for all θθθ and for all C > 0, there exists a positive integer M = M(C) such that the number of

possible values of θ̂θθ in balls of the form {t ∈ Sp−1 :
√
n ‖t− θθθ‖ ≤ C} is bounded by M , uniformly

as n→∞.

Part (i) of Assumption AG′ requires that the preliminary estimator is root-n consistent under the

null hypothesis of rotational symmetry for a broad range G′ of angular functions g. The restriction to a

proper subclass G′ of the full set of angular functions is explained by the fact that classical estimators

of θθθ typically address either monotone rotationally symmetric distributions (g is monotone increasing) or

axial ones (g(−t) = g(t) for any t), but cannot deal with mixed types, such as girdle-like distributions.

Practitioners are thus expected to take G′ as the collection of monotone or even angular functions,

depending on the types of directional data (unimodal or axial data) they are facing. In the unimodal

case, the most classical estimator that is root-n consistent under any (non-constant) monotone angular

function is the spherical mean θ̂θθ = X̄/‖X̄‖, with X̄ := 1
n

∑n
i=1 Xi. In the axial case, estimators of the

location θθθ are typically based on the eigenvectors of the sample covariance matrix.
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Part (ii) is a purely technical requirement (see, e.g., Ley et al. (2013)) with little practical implications

in the sense that, for fixed n, any estimate can be considered part of a locally and asymptotically discrete

sequence of estimators. This is because the precision in the (in principle, required) discretization of a

non-discrete estimator can be arbitrarily large; see, e.g., page 2467 in Ilmonen and Paindaveine (2011)

for a discussion.

Now, the block-diagonality of the Fisher information matrix in the LAN property of Theorem 2.3

entails that the replacement in Qsc
θθθ of θθθ with an estimator θ̂θθ satisfying AG′ has no asymptotic impact

under the null. More precisely, we have the following result.

Proposition 3.1. Let θ̂θθ satisfy AG′ . Then, for any θθθ ∈ Sp−1 and any g ∈ Ga∩G′, Qsc
θ̂θθ
−Qsc

θθθ = oP(1)

as n→∞ under P
(n)
θθθ,g .

From contiguity, the null asymptotic equivalence in this proposition extends to local alternatives of the

form P
T E(n)
θθθ,g,ΛΛΛn

, with ΛΛΛn = Ip−1 + n−1/2Ln as in Theorem 2.3. Therefore, the test, φsc
† say, that rejects the

null of rotational symmetry about an unspecified location θθθ when Qsc
θ̂θθ
> χ2

(p−2)(p+1)/2,1−α remains optimal

in the Le Cam sense against the tangent elliptical alternatives introduced in Section 2.2. More precisely,

this test is locally asymptotically maximin at asymptotic level α when testing
⋃
θθθ∈Sp−1

⋃
g∈Ga∩G′{P

(n)
θθθ,g}

against
⋃
θθθ∈Sp−1

⋃
g∈Ga∩G′

⋃
ΛΛΛ∈Lp−1\{Ip}

{
P
T E(n)
θθθ,g,ΛΛΛ

}
. Of course, the same contiguity argument also implies

that φsc
† has asymptotic power α against the local tangent vMF alternatives considered in Corollary 2.3.

3.2. Location tests: the parametric case

Under the null of rotational symmetry, as well as under local tangent vMF/elliptical alternatives, the

replacement of θθθ with a suitable estimator θ̂θθ in Qsc
θθθ has no asymptotic impact due to the block-diagonality

of the Fisher information matrix. The story is very different for Qloc
θθθ : the ULAN extension of Theorem 2.4

yields that, if θ̂θθ is an estimator of θθθ satisfying AG′ , then

∆∆∆
TM(n)

θ̂θθ;2
−∆∆∆

TM(n)
θθθ;2 = −ΓΓΓTMθθθ,g;21

√
n(θ̂θθ − θθθ) + oP(1) (3.9)

as n → ∞ under P
(n)
θθθ,g , with g ∈ Ga ∩ G′, so that Qloc

θ̂θθ
is no more asymptotically chi-square distributed

under the same sequence of (null) hypotheses. Unlike for Qsc
θθθ , thus, the substitution of θ̂θθ for θθθ in Qloc

θθθ has

a non-negligible asymptotic impact. In order to examine this impact, we first focus on the parametric

case (specified g) and explore in the next section the semiparametric situation (unspecified g).

When the Fisher information matrix is not block-diagonal, it is well-known that inference on δδδ (we

consider the model and parametrization from Section 2.4) under unspecified θθθ is to be based on the

efficient central sequence

∆∆∆
TM(n)
θθθ,g;2∗ := ∆∆∆

TM(n)
θθθ;2 −ΓΓΓTMθθθ,g;21ΓΓΓ−θθθ,g;11∆∆∆

(n)
θθθ,g;1 =

1√
n

n∑
i=1

(
1− Ip(g)

Jp(g)
ϕg(Vi,θθθ)(1− V 2

i,θθθ)
1/2

)
Ui,θθθ (3.10)

(throughout, A− stands for the Moore-Penrose inverse of A). Under P
(n)
θθθ,g ,

∆∆∆
TM(n)
θθθ,g;2∗

D
 N

(
0,ΓΓΓTMg,22∗

)
, with ΓΓΓTMg,22∗ :=

1

p− 1

(
1−
I2
p(g)

Jp(g)

)
Ip−1,

and the corresponding test, φloc
θθθ,g∗ say, consists in rejecting the null of rotational symmetry (H0 : δδδ = 0)

at asymptotic level α whenever

Qloc
θθθ,g∗ :=

(
∆∆∆
TM(n)
θθθ,g;2∗

)′(
ΓΓΓTMg,22∗

)−1
∆∆∆
TM(n)
θθθ,g;2∗ > χ2

p−1,1−α.
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This test has asymptotic level α under P
(n)
θθθ,g and is locally asymptotically maximin, under angular func-

tion g ∈ Ga, in the unspecified-θθθ problem. A direct application of Le Cam’s third lemma yields that,

under the same sequence of alternatives as the one considered in Corollary 2.3,

∆∆∆
TM(n)
θθθ,g;2∗

D
 N

(
mg,ΓΓΓ

TM
g,22∗

)
, with mg := lim

n→∞
Eθθθ,g

[
∆∆∆
TM(n)
θθθ,g;2∗

(
∆∆∆
TM(n)
θθθ;2

)′]
dn =

1

p− 1

(
1−
I2
p(g)

Jp(g)

)
kµµµ,

so that Qloc
θθθ,g∗

D
 χ2

p−1(λ) with non-centrality parameter

λ = m′g
(
ΓΓΓTMg,22∗

)−1
mg =

k2

p− 1

(
1−
I2
p(g)

Jp(g)

)
.

Note that this non-centrality parameter is smaller than or equal to the one in Corollary 2.3. The comments

below Theorem 2.4 imply that the non-centrality parameter is larger than or equal to zero, with equality

if and only if g is of the form g(t) = C exp(κ arcsin(t)). In other words, it is only for angular densities of

the form g(t) = C exp(κ arcsin(t)) that the g-optimal unspecified-θθθ test has asymptotic power α.

Now, even if we are after the construction of a parametric (g-fixed) test, the test φloc
θθθ,g∗ is unfortunately

infeasible because θθθ in practice is unknown. Proposition 3.1 of Ley et al. (2013) directly implies that if θ̂θθ

satisfies AG′ , then

∆∆∆
(n)

θ̂θθ,g;1
= ∆∆∆

(n)
θθθ,g;1 −ΓΓΓθθθ,g;11

√
n(θ̂θθ − θθθ) + oP(1) (3.11)

as n→∞ under P
(n)
θθθ,g . Using this and (3.9), we then obtain that, again as n→∞ under P

(n)
θθθ,g ,

∆∆∆
TM(n)

θ̂θθ,g;2∗
= ∆∆∆

TM(n)

θ̂θθ;2
−ΓΓΓTM

θ̂θθ,g;21
ΓΓΓ−
θ̂θθ,g;11

∆∆∆
(n)

θ̂θθ,g;1

=
(
∆∆∆
TM(n)
θθθ;2 −ΓΓΓTMθθθ,g;21

√
n(θ̂θθ − θθθ)

)
−ΓΓΓTM

θ̂θθ,g;21
ΓΓΓ−
θ̂θθ,g;11

(∆∆∆
(n)
θθθ,g;1 −ΓΓΓθθθ,g;11

√
n(θ̂θθ − θθθ)) + oP(1)

= ∆∆∆
TM(n)
θθθ,g;2∗ −ΓΓΓTMθθθ,g;21

√
n(θ̂θθ − θθθ) + ΓΓΓTM

θ̂θθ,g;21
ΓΓΓ−
θ̂θθ,g;11

ΓΓΓθθθ,g;11

√
n(θ̂θθ − θθθ) + oP(1)

= ∆∆∆
TM(n)
θθθ,g;2∗ −ΓΓΓTMθθθ,g;21

√
n(θ̂θθ − θθθ) + ΓΓΓTMθθθ,g;21ΓΓΓ−θθθ,g;11ΓΓΓθθθ,g;11

√
n(θ̂θθ − θθθ) + oP(1)

= ∆∆∆
TM(n)
θθθ,g;2∗ + oP(1),

where the last equality follows from the fact that (Ip − θθθθθθ′)
√
n(θ̂θθ − θθθ) =

√
n(θ̂θθ − θθθ) + oP(1) as n → ∞

under P
(n)
θθθ,g . Consequently, under the same sequence of hypotheses (as well as under contiguous tangent

vMF alternatives),

Qloc
θ̂θθ,g∗ = Qloc

θθθ,g∗ + oP(1), (3.12)

so that the g-parametric test φloc
g∗ that rejects the null at asymptotic level α whenever Qloc

θ̂θθ,g∗
> χ2

p−1,1−α

has the exact same asymptotic properties as the infeasible test φloc
θθθ,g∗ above. In particular, like φloc

θθθ,g∗, the

test φloc
g∗ is locally asymptotically maximin at asymptotic level α when testing

⋃
θθθ∈Sp−1

{
P

(n)
θθθ,g

}
against⋃

θθθ∈Sp−1

⋃
µµµ∈Sp−2

⋃
κ>0

{
P
TM(n)
θθθ,g,µµµ,κ

}
. From contiguity, (3.12) also holds under the sequence of local tangent

elliptical alternatives considered in Corollary 2.1, which implies that φloc
g∗ has asymptotic power α under

such alternatives.

3.3. Location tests: the semiparametric case

The test φloc
g∗ constructed above is a purely parametric test: it requires the knowledge of the underlying

angular function g. In practice, of course, g may hardly be assumed to be known and it is therefore desir-

able to define a location test that would be valid (in the sense that is meets asymptotically the nominal
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level constraint) under a broad range of angular functions g. Two options are possible here. The first one

aims at uniform optimality in g by reconstructing, at any g, the test statistic Qloc
θ̂θθ,g∗

above. The form of

the g-efficient central sequence in (3.10) makes it clear that this requires estimating nonparametrically the

optimal score function ϕg, which typically requires large sample sizes and which makes it hard to control

the replacement of θθθ with θ̂θθ. We therefore favour the second approach, that consists in robustifying the

parametric test φloc
g∗ in such a way that it remains valid away from the target angular function at which

power optimality is to be achieved (of course, in general, the resulting test will not be optimal away from

the selected target density).

To be more specific, assume that we target optimality at the fixed angular function f . Our goal is

to define a test statistic that: (i) is asymptotically equivalent to Qloc
θ̂θθ,f∗

whenever f is the true angular

function (which will ensure asymptotic optimality of the resulting test at angular function f); (ii) re-

mains χ2
p−1 under the null with angular function g 6= f (which will guarantee the validity away from

angular function f). With these objectives in mind, consider the alternative efficient central sequence

∆∆∆
TM(n)
θθθ,f ;g;2∗ := ∆∆∆

TM(n)
θθθ;2 −ΓΓΓTMθθθ,g;21ΓΓΓ−θθθ,f ;g;11∆∆∆

(n)
θθθ,f ;1 =

1√
n

n∑
i=1

(
1− Ip(g)

Jp(f ; g)
ϕf (Vi,θθθ)(1− V 2

i,θθθ)
1/2

)
Ui,θθθ, (3.13)

where ΓΓΓθθθ,f ;g;11 := (Jp(f ; g)/(p− 1))(Ip − θθθθθθ′) involves the “cross-information” quantity

Jp(f ; g) :=

∫ 1

−1

ϕf (t)ϕg(t)(1− t2)g̃p(t)dt.

First note that, for g = f , this alternative efficient central sequence ∆∆∆
TM(n)
θθθ,f ;g;2∗ coincides with the f -version

of the efficient central sequence in (3.10), so that a test based on (3.13) will meet the objective (i) above.

As for the objective (ii), Proposition 3.1 of Ley et al. (2013) actually shows that the asymptotic linearity

property in (3.11) generalizes into

∆∆∆
(n)

θ̂θθ,f ;1
= ∆∆∆

(n)
θθθ,f ;1 −ΓΓΓθθθ,f ;g;11

√
n(θ̂θθ − θθθ) + oP(1)

as n→∞ under P
(n)
θθθ,g , which, jointly with (3.9), provides

∆∆∆
TM(n)

θ̂θθ,f ;g;2∗
= ∆∆∆

TM(n)

θ̂θθ;2
−ΓΓΓTM

θ̂θθ,g;21
ΓΓΓ−
θ̂θθ,f ;g;11

∆∆∆
(n)

θ̂θθ,f ;1

=
(
∆∆∆
TM(n)
θθθ;2 −ΓΓΓTMθθθ,g;21

√
n(θ̂θθ − θθθ)

)
−ΓΓΓTM

θ̂θθ,g;21
ΓΓΓ−
θ̂θθ,f ;g;11

(∆∆∆
(n)
θθθ,f ;1 −ΓΓΓθθθ,f ;g;11

√
n(θ̂θθ − θθθ)) + oP(1)

= ∆∆∆
TM(n)
θθθ,f ;g;2∗ −ΓΓΓTMθθθ,g;21

√
n(θ̂θθ − θθθ) + ΓΓΓTM

θ̂θθ,g;21
ΓΓΓ−
θ̂θθ,f ;g;11

ΓΓΓθθθ,f ;g;11

√
n(θ̂θθ − θθθ) + oP(1)

= ∆∆∆
TM(n)
θθθ,f ;g;2∗ + oP(1)

as n → ∞ under P
(n)
θθθ,g . This confirms that the alternative efficient central sequence above is defined in

such a way that the replacement of θθθ with θ̂θθ has no asymptotic impact also under g 6= f .

Since, under P
(n)
θθθ,g ,

∆∆∆
TM(n)
θθθ,f ;g;2∗

D
 N

(
0,ΓΓΓTMf ;g;22∗

)
, with ΓΓΓTMf ;g;22∗ :=

1

p− 1

(
1− 2Ip(g)Hp(f ; g)

Jp(f ; g)
+
I2
p(g)Kp(f ; g)

J 2
p (f ; g)

)
Ip−1,

where we let

Hp(f ; g) :=

∫ 1

−1

ϕf (t)(1− t2)1/2g̃p(t)dt and Kp(f ; g) :=

∫ 1

−1

ϕ2
f (t)(1− t2)g̃p(t)dt,
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the resulting test rejects the null at asymptotic level α whenever

Qloc
θ̂θθ,f ;g∗ :=

(
∆∆∆
TM(n)

θ̂θθ,f ;g;2∗

)′(
ΓΓΓTMf ;g;22∗

)−1
∆∆∆
TM(n)

θ̂θθ,f ;g;2∗
> χ2

p−1,1−α. (3.14)

Le Cam’s third lemma allows to show that, under the sequence of alternatives considered in Corollary 2.3,

∆∆∆
TM(n)
θθθ,f ;g;2∗ is asymptotically normal with covariance ΓΓΓTMf ;g;22∗ and mean

mf ;g := lim
n→∞

Eθθθ,g
[
∆∆∆
TM(n)
θθθ,f ;g;2∗

(
∆∆∆
TM(n)
θθθ;2

)′]
knµµµ =

1

p− 1

(
1− Ip(f)Hp(f ; g)

Jp(f ; g)

)
kµµµ,

so that Qloc
θθθ;f ;g∗ (hence also, Qloc

θ̂θθ;f ;g∗
) is asymptotically χ2

p−1(λ) with non-centrality parameter λ given by

m′f ;g

(
ΓΓΓTMf ;g;22∗

)−1
mf ;g =

k2

p− 1

(
1− Ip(g)Hp(f ; g)

Jp(f ; g)

)2/(
1− 2Ip(g)Hp(f ; g)

Jp(f ; g)
+
I2
p(g)Kp(f ; g)

J 2
p (f ; g)

)
. (3.15)

Now, since the test statistic (3.14) still depends on the unknown underlying angular function g, turn-

ing this pseudo-test into a genuine test requires estimating consistently the quantities Ip(g), Jp(f ; g),

Hp(f ; g), and Kp(f ; g). To that aim, we express them as

Ip(g) = (p− 2) Eθθθ,g

[
V1,θθθ

(1− V 2
1,θθθ)

1/2

]
, Jp(f ; g) = (p− 1) Eθθθ,g[ϕf (V1,θθθ)V1,θθθ]− Eθθθ,g[ϕ

′
f (V1,θθθ)(1− V 2

1,θθθ)],

Hp(f ; g) := Eθθθ,g[ϕf (V1,θθθ)(1− V 2
1,θθθ)

1/2], Kp(f ; g) := Eθθθ,g[ϕ
2
f (V1,θθθ)(1− V 2

1,θθθ)]

(the fist two identities are obtained from integration by parts, assuming that ϕf is differentiable). Natural

estimators of these quantities are

Îp(g) :=
p− 2

n

n∑
i=1

Vi,θ̂θθ
(1− V 2

i,θ̂θθ
)1/2

, Ĵp(f ; g) :=
p− 1

n

n∑
i=1

ϕf (Vi,θ̂θθ)Vi,θ̂θθ −
1

n

∑
i=1

ϕ′f (Vi,θ̂θθ)(1− V
2
i,θ̂θθ

),

Ĥp(f ; g) :=
1

n

n∑
i=1

ϕf (Vi,θ̂θθ)(1− V
2
i,θ̂θθ

)1/2, K̂p(f ; g) :=
1

n

n∑
i=1

ϕ2
f (Vi,θ̂θθ)(1− V

2
i,θ̂θθ

),

at any g for which Ip(g), Jp(f ; g), Hp(f ; g), and Kp(f ; g) are finite. Consistency follows by successively

applying the weak law of large numbers, under P
(n)

θθθ+n1/2tn,g
, with θθθ+ n1/2tn ∈ Sp−1, to random variables

of the form n−1
∑n
i=1Hf (Vi,θθθ+n1/2tn) (with Hf a suitable function), the general version of the Le Cam’s

third lemma (see, e.g., Theorem 6.6 in van der Vaart (1998)), and then Lemma 4.4 from Kreiss (1987).

We consider now the important particular case fη(r) = exp(ηr) and derive an applicable version

of (3.14). Since fη ∈ Ga is the vMF angular function with concentration parameter η (we avoid using

the standard notation κ, as this notation was used to denote the skewness intensity in the tangent vMF

model), we have ϕfη (r) = η. Letting

Dp,g :=
(p− 2) Eθθθ,g[V1,θθθ(1− V 2

1,θθθ)
−1/2]

(p− 1) Eθθθ,g[V1,θθθ]
,

we have

∆∆∆
TM(n)
θθθ,vMF,g;2∗ := ∆∆∆

TM(n)
θθθ,fη;g;2∗ =

1√
n

n∑
i=1

(
1−Dp,g (1− V 2

i,θθθ)
1/2
)
Ui,θθθ

and

ΓΓΓ
TM(n)
vMF,g;22∗ := ΓΓΓTMfη ;g;22∗ =

1

p− 1

(
1− 2Dp,gEθθθ,g[(1− V 2

1,θθθ)
1/2] +D2

p,g(1− Eθθθ,g[V
2
1,θθθ])

)
Ip−1,
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where the notation is justified by the fact that, quite nicely, the fη-efficient central sequence and cor-

responding Fisher information matrix do not depend on η. In the present case, the quantities to be

estimated consistently are therefore

Eθθθ,g[V1,θθθ(1− V 2
1,θθθ)
−1/2], Eθθθ,g[(1− V 2

1,θθθ)
1/2], Eθθθ,g[V1,θθθ], and Eθθθ,g[V

2
1,θθθ], (3.16)

and the corresponding estimators are

1

n

n∑
i=1

Vi,θ̂θθ(1− V
2
i,θ̂θθ

)−1/2,
1

n

n∑
i=1

(1− V 2
i,θ̂θθ

)1/2,
1

n

n∑
i=1

Vi,θ̂θθ, and
1

n

n∑
i=1

V 2
i,θ̂θθ
, (3.17)

respectively. The same argument as above proves consistency of these estimators at any g in the collec-

tion Gb of angular functions for which (the rest of expectations in (3.16) are trivially finite for any g)

Eθθθ,g[V1,θθθ(1− V 2
1,θθθ)
−1/2] =

∫ 1

−1

t(1− t2)−1/2 g̃p(t) dt <∞. (3.18)

The resulting test, φloc
vMF say, rejects the null whenever

Qloc
vMF :=

(
∆̂∆∆
TM(n)

θ̂θθ,vMF;g;2∗
)′(

Γ̂ΓΓ
TM(n)

vMF;g;22∗
)−1

∆̂∆∆
TM(n)

θ̂θθ,vMF;g;2∗ > χ2
p−1,1−α,

where ∆̂∆∆
TM(n)

θθθ,vMF;g;2∗ and Γ̂ΓΓ
TM(n)

θθθ,vMF;g;22∗ result from ∆∆∆
TM(n)
θθθ,vMF;g;2∗ and ΓΓΓ

TM(n)
vMF;g;22∗, respectively, by replacing θθθ

with θ̂θθ and the quantities in (3.16) with their consistent estimators in (3.17). This test was built to be

locally asymptotically maximin at asymptotic level α when testing⋃
θθθ∈Sp−1

⋃
g∈Ga∩Gb∩G′

{
P

(n)
θθθ,g

}
against

⋃
θθθ∈Sp−1

⋃
µµµ∈Sp−2

⋃
κ>0

{
P
TM(n)
θθθ,fη,µµµ,κ

}
.

Note that, for p ≥ 3, the finiteness condition in (3.18) holds as soon as the angular function g is bounded

in a neighbourhood of 1. Remarkably, Qloc
vMF does not depend on η, so that φloc

vMF is locally asymptotically

maximin at asymptotic level α when testing⋃
θθθ∈Sp−1

⋃
g∈Ga∩Gb∩G′

{
P

(n)
θθθ,g

}
against

⋃
θθθ∈Sp−1

⋃
η>0

⋃
µµµ∈Sp−2

⋃
κ>0

{
P
TM(n)
θθθ,fη,µµµ,κ

}
(in other words, when testing rotational symmetry with (θθθ, g) unspecified against TMp(θθθ, fη, κ) distri-

butions, with (θθθ, η, κ) unspecified), that is, it is optimal in the Le Cam sense as soon as the underlying

angular function g is vMF, irrespectively of the corresponding concentration η. It is easy to show, however,

that this vMF location test still has asymptotic power α against the local tangent elliptical alternatives

considered in Corollary 2.1.

4. Hybrid tests

The location and scatter tests, either in the θθθ-specified or θθθ-unspecified situations, are based on the

empirical checking of the moment conditions (2.3) and (2.4). Both are necessary conditions for the

uniformity of the sign vector uθθθ(X) over Sp−2, and hence for rotational symmetry. For the families

of alternatives introduced in Section 2.2, the tests present rather extreme behaviours: either they are

optimal in the Le Cam sense, or they are blind to the alternatives. While this antithesis is desirable

for testing against a specific kind of alternative, it is also a double-edged sword, since knowing the

alternative on which rotational symmetry might be violated is sometimes hard in practice, specially for
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high dimensional settings. As we explain below, a possible way out is to construct hybrid tests that

show non-trivial asymptotic powers against both types of alternatives considered (without being optimal

against any of them).

Consider first the problem of testing rotational symmetry about a specified location θθθ. Since vec (Ui,θθθU
′
i,θθθ)

and Ui,θθθ are uncorrelated, then ∆∆∆
T E(n)
θθθ;2 and ∆∆∆

TM(n)
θθθ;2 are uncorrelated, too. The CLT then readily entails

that, under P
(n)
θθθ,g ,

(
∆∆∆
TM(n)
θθθ;2

∆∆∆
T E(n)
θθθ;2

)
D
 N

((
0

0

)
,

(
ΓΓΓTM22 0

0 ΓΓΓT Eθθθ;22

))
, (4.19)

which implies that, under H0,θθθ,

Qhyb
θθθ := Qloc

θθθ +Qsc
θθθ =

(
∆∆∆
TM(n)
θθθ;2

)′(
ΓΓΓTM22

)−1
∆∆∆
TM(n)
θθθ;2 +

(
∆∆∆
T E(n)
θθθ;2

)′(
ΓΓΓT Eθθθ;22

)−1
∆∆∆
T E(n)
θθθ;2

D
 χ2

(p−1)+(p−2)(p+1)/2.

The resulting hybrid test, φhyb
θθθ say, then rejects the null at asymptotic level α whenever

Qhyb
θθθ > χ2

(p−1)+(p−2)(p+1)/2,1−α. (4.20)

As announced, this test can detect both contiguous tangent elliptical and tangent vMF alternatives. More

precisely, we have the following result.

Corollary 4.1. Fix θθθ ∈ Sp−1 and g ∈ Ga. Let ΛΛΛn, (Ln), κn, and (kn) be as in Corollaries 2.1

and 2.3. Then: (i) under P
T E(n)
θθθ,g,ΛΛΛn

, Qhyb
θθθ

D
 χ2

(p−1)+(p−2)(p+1)/2(λ), with λ = (p − 1)tr[L2]/(2(p + 1));

(ii) under P
TM(n)
θθθ,g,µµµn,κn

, Qhyb
θθθ

D
 χ2

(p−1)+(p−2)(p+1)/2(λ), with λ = k2/(p− 1).

Let us then turn to the θθθ-unspecified problem. In the parametric case considered in Section 3.2,

∆∆∆
TM(n)
θθθ,g;2∗ and ∆∆∆

T E(n)
θθθ;2 are still asymptotically normal with a block diagonal asymptotic covariance matrix,

which leads to considering the hybrid test statistic Qhyb
θθθ,g∗ := Qloc

θθθ,g∗ + Qsc
θθθ . This test statistic, hence also

(in view of (3.12)) its feasible version Qhyb

θ̂θθ,g∗
, is asymptotically χ2

(p−1)+(p−2)(p+1)/2 under P
(n)
θθθ,g , so that the

resulting parametric hybrid test rejects the null at asymptotic level α if Qhyb

θ̂θθ,g∗
exceeds the same critical

value as in (4.20). The same argument entails that, for the semiparametric case of Section 3.3, Qhyb

θ̂θθ,f ;g∗
:=

Qloc
θ̂θθ,f ;g∗

+Qsc
θ̂θθ

and Qhyb
vMF := Qsc

vMF +Qsc
θ̂θθ

converge in law to a χ2
(p−1)+(p−2)(p+1)/2 under P

(n)
θθθ,g ; in the sequel,

we denote as φhyb
vMF the test rejecting the null at asymptotic level α when Qhyb

vMF > χ2
(p−1)+(p−2)(p+1)/2,1−α.

It is easy to check that, like their θθθ-specified counterpart φhyb
θθθ , these hybrid θθθ-unspecified tests can detect

both types of alternatives considered. This fact is of key practical importance in data applications for

which the alternative to rotational symmetry is unknown, as evidenced by the real data examples given

in Section 6.

5. Simulations

In this section, we investigate the finite-sample performances of the proposed tests through Monte Carlo

studies. In the specified-θθθ problem, we will consider the tests φloc
θθθ and φsc

θθθ from Section 2.1, as well as

the hybrid test φhyb
θθθ from Section 4. As explained in Section 2.1, these tests look for possible departures

from rotational symmetry about θθθ by checking whether or not the sign vector is uniformly distributed

over Sp−2. Clearly, competing tests for rotational symmetry about θθθ can be obtained by applying other

tests of uniformity over Sp−2, such as (for p = 3) the well-known Kuiper’s test or (for p > 3) the Giné’s
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test; see pages 99 and 209 of Mardia and Jupp (2000), respectively. This generates a Kuiper test φKui
θθθ

of rotational symmetry on S2 and a Giné test φGin
θθθ of rotational symmetry on Sp−1 with p > 3, both

about a specified θθθ. Since they are based on omnibus tests of uniformity over Sp−2, both φKui
θθθ , and φGin

θθθ

are expected to show some power against both tangent vMF and tangent elliptical alternatives. Still for

the specified-θθθ problem, we will also consider the semiparametric test from Ley and Verdebout (2017b),

denoted as φLV
θθθ . Now, for the θθθ-unspecified problem, we will restrict to the proposed semiparametric

tests φsc
† , φloc

vMF, and φhyb
vMF, from Sections 3.1, 3.3, and 4, respectively. To the best of our knowledge,

indeed, these unspecified-θθθ tests have no competitors in the literature. In particular, it is unclear how to

turn the omnibus specified-θθθ tests φKui
θθθ and φGin

θθθ into unspecified-θθθ ones.

5.1. The unspecified-θθθ problem on S2

The first simulation exercise focuses on the unspecified-θθθ problem and intends to show, in particular, that

using specified-θθθ tests with a misspecified value of θθθ leads to violation of the nominal level constraint.

For two sample sizes (n = 100, 200) and two types of alternatives to rotational symmetry (r = 1, 2), we

generated N = 5000 mutually independent random samples of the form

X
(r)
i;` , i = 1, . . . , n, ` = 0, . . . , 5, r = 1, 2,

with values in S2. The X
(1)
i;` ’s follow a T E3(θθθ0, g1,ΛΛΛ`) with location θθθ0 := (1/

√
2,−1/

√
2, 0)′, angu-

lar function t 7→ g1(t) := exp(2t), and shape ΛΛΛ` := diag(1 + `/2, 1)/(2 + `/2). The X
(2)
i;` ’s follow a

TM3(θθθ0, g1,µµµ, κ`) with skewness direction µµµ := (1, 0)′ and skewness intensity κ` := `. In both cases,

` = 0 corresponds to the null of rotational symmetry, whereas ` = 1, . . . , 5 provide increasingly severe

alternatives. For each replication, we performed, at asymptotic level α = 5%, the specified-θθθ tests φloc
θθθ ,

φsc
θθθ , φhyb

θθθ , φLV
θθθ , and φKui

θθθ , all based on the misspecified location value θθθ := (1, 0, 0)′, and the unspecified-θθθ

tests φsc
† , φloc

vMF, and φhyb
vMF, all computed with the spherical mean to estimate θθθ.
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Fig. 2. Null rejection frequencies, for sample sizes n = 100 and n = 200, of the unspecified-θθθ tests φsc
† (u-sc), φloc

vMF

(u-loc), and φhyb
vMF (u-hyb), as well as the (mis)specified-θθθ tests φsc

θθθ (s-sc), φloc
θθθ (s-loc), φhyb

θθθ (s-hyb), φLV
θθθ (LV), and

φKui
θθθ (KU). All tests are performed at asymptotic level 5%; see Section 5.1 for details.
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Due to misspecification, it is expected that only the unspecified-θθθ tests will exhibit null rejection

frequencies close to 5%. This is confirmed in Figure 2, that shows that all (mis)specified-θθθ tests are

severely liberal. For the two samples sizes and the two types of alternatives considered, Figure 3 plots

the empirical powers of the three unspecified-θθθ tests (a power comparison involving the specified-θθθ tests

would be meaningless since these tests do not meet the level constraint). Inspection of Figure 3 reveals

that: (i) as expected, φsc
† dominates φloc

† under tangent elliptical alternatives while the opposite occurs

under tangent vMF alternatives; (ii) the hybrid test detects both types of alternatives and performs

particularly well against tangent vMF ones.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=100

ℓ

Ta
ng

en
t e

lli
pt

ic
al

u-sc
u-loc
u-hyb

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=200

ℓ

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ta
ng

en
t v

M
F

ℓ
0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

Fig. 3. Rejection frequencies, under tangent elliptical alternatives (top row) and tangent vMF ones (bottom row), of
the unspecified-θθθ tests φsc

† , φloc
vMF, and φhyb

vMF for n = 100 (left column) and n = 200 (right column). Both tests are
performed at asymptotic level 5%; see Section 5.1 for details.

5.2. The specified-θθθ problem on S2

The second simulation exercise focuses on the specified-θθθ problem on S2. We generated N = 5000

mutually independent random samples of the form

X
(r)
i;` , i = 1, . . . , n, ` = 0, . . . , 5, r = 1, 2, 3,
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Fig. 4. Rejection frequencies, under tangent elliptical alternatives (top row), tangent vMF alternatives (middle row),
and Fisher-Bingham alternatives (bottom row), of the specified-θθθ tests φsc

θθθ (s-sc), φloc
θθθ (s-loc), φhyb

θθθ (s-hyb), φLV
θθθ

(LV), and φKui
θθθ (KU), as well as the unspecified-θθθ tests φsc

† (u-sc), φloc
vMF (u-loc), and φhyb

† (u-hyb). Sample sizes are
n = 100 (left column) and n = 200 (right column). All tests are performed at asymptotic level 5%; see Section 5.2
for details.

with values in S2. The X
(1)
i;` ’s follow a T E3(θθθ, g2,ΛΛΛ`), whereas the X

(2)
i;` ’s follow a TM3(θθθ, g2,µµµ, κ`) with

angular function t 7→ g2(t) := exp(5t) and skewness intensity κ` := `/6. The X
(3)
i;` ’s have a Fisher-

Bingham distribution with location θθθ, concentration 2, and shape matrix A` := diag(0, `/2,−`/2); we

refer to Mardia and Jupp (2000) for details on Fisher-Bingham distributions, which, for the zero shape

matrix, reduce to a vMF distribution. For r = 1, 2, 3, thus, the value ` = 0 corresponds to the null

of rotational symmetry about θθθ, whereas ` = 1, . . . , 5 provide increasingly severe alternatives. For each

replication, we performed, at asymptotic level α = 5%, the specified-θθθ tests φloc
θθθ , φsc

θθθ , φhyb
θθθ , φLV

θθθ , and φKui
θθθ

(based on the true value of θθθ). For the sake of comparison, we also considered the unspecified-θθθ tests φsc
† ,
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φloc
vMF, and φhyb

vMF, based on the spherical mean.

Figure 4 plots the resulting empirical power curves for sample sizes n = 100 and n = 200. Inspection

of the figure confirms the theoretical results: (i) φsc
θθθ dominates the other tests under tangent elliptical

alternatives, whereas φloc
θθθ dominates the other tests under tangent vMF alternatives (even if the latter

dominance is less prominent); (ii) φsc
θθθ and φsc

† exhibit extremely similar performances, which is in line with

their asymptotic equivalence (see Proposition 3.1 and the comments below that result); (iii) the tests φhyb
θθθ

and φKui
θθθ show non-trivial powers against each type of alternatives but are always dominated by some other

test. Moreover, it should be noted that φsc
θθθ and φhyb

θθθ perform well under Fisher-Bingham alternatives,

which was expected since, parallel to tangent elliptical alternatives, Fisher-Bingham alternatives are of

an elliptical nature.

It may be surprising at first that, under tangent vMF alternatives, the (optimal) unspecified-θθθ

test φloc
vMF shows little power compared to the specified-θθθ test φloc

θθθ . This, however, only reflects the

fact that the cost of the unspecification of θθθ is high for the (vMF) angular function considered. Actu-

ally, the results of the previous sections allow to quantify this cost theoretically. Under the sequence of

alternatives considered in Corollary 2.3, the Asymptotic Relative Efficiency (ARE) of the unspecified-θθθ

test φloc
vMF with respect to the specified-θθθ test φloc

θθθ is as usual obtained as the ratio of the correspond-

ing non-centrality parameters in the asymptotic non-null chi-square distributions of the corresponding

statistics. If follows from (3.15) and Corollary 2.3 that, at the vMF with concentration η, ARE(η) =

1 − I2
p(gη)/Jp(gη) = 1 −

(
2Γ
(
p
2

)2
I p−1

2
(η)2

)/(
(p − 1)Γ

(
p−1

2

)2
I p−2

2
(η)I p

2
(η)
)
, where gη(r) = exp(ηr) is

the angular function of the vMF distribution with concentration η. Figure 5 provides plots of this ARE

as a function of η, for various values of p. For the tangent vMF alternatives considered in the present

simulation exercise (for which η = 5 and p = 3), the ARE is equal about 0.171, which explains the

relatively poor performance of φloc
vMF compared to φloc

θθθ . This, of course, is not incompatible with the fact

that φloc
vMF is optimal in the unspecified-θθθ problem.
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Fig. 5. Plots, for several dimensions p, of the asymptotic relative efficiency, as a function of η, of the unspecified-θθθ
test φloc

vMF with respect to the specified-θθθ test φloc
θθθ under the sequence of alternatives considered in Corollary 2.3 at

the vMF with concentration η.
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5.3. The specified-θθθ problem on S3
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Fig. 6. Rejection frequencies, under tangent elliptical alternatives (top row) and tangent vMF alternatives (bottom
row), of the specified-θθθ tests φsc

θθθ (s-sc), φloc
θθθ (s-loc), φhyb

θθθ (s-hyb), φLV
θθθ (LV), and φGin

θθθ (GI), as well as the unspecified-θθθ
tests φsc

† (u-sc), φloc
vMF (u-loc), and φhyb

vMF (u-loc). Sample sizes are n = 100 (left column) and n = 200 (right column).
All tests are performed at asymptotic level 5%; see Section 5.3 for details.

The third and last simulation exercise essentially replicates the second one on S3. Since the Kuiper

test φKui
θθθ only applies for data on S2, we replaced it with the Giné test φGin

θθθ , that, as the Kuiper test, is

an omnibus test addressing the specified-θθθ problem. For sample sizes n = 100 and n = 200 and for two

types of alternatives to rotational symmetry (r = 1, 2), we generated N = 5000 mutually independent

random samples of the form

X
(r)
i;` , i = 1, . . . , n, ` = 0, . . . , 5, r = 1, 2,

with values in S3. The X
(1)
i;` ’s follow a T E4(θθθ, g2,ΛΛΛ`) with location θθθ := (1, 0, 0, 0)′ and shape ΛΛΛ` :=
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diag(1 + `/2, 1, 1)/(3 + `/2). The X
(2)
i;` ’s follow a TM4(θθθ, g2,µµµ, κ`) with skewness direction µµµ = (1, 0, 0)′

and skewness intensity κ` := `/8. As in the previous simulation exercises, ` = 0 corresponds to the

null of rotational symmetry about θθθ and ` = 1, . . . , 5 provide increasingly severe alternatives. For each

replication, we performed, at asymptotic level 5%, the specified-θθθ tests φloc
θθθ , φsc

θθθ , φhyb
θθθ , φLV

θθθ , and the Giné

test φGin
θθθ , as well as the unspecified-θθθ tests φsc

† , φloc
vMF, and φhyb

vMF (still based on the spherical mean). The

resulting empirical power curves, that are provided in Figure 6, lead to conclusions that are very similar

to those reported in the simulation exercise conducted in Section 5.2.

6. Real data applications

6.1. Paleozoic red-beds data

We consider magnetic remanence measurements made on samples collected from Paleozoic red-beds in

Argentina. The data, that consists in n = 26 observations on S2, is showed in Figure 7. In line with the

fact that the location θθθ is unknown a priori, Ley et al. (2013) considered the problem of estimating θθθ under

the assumption of rotational symmetry. One may wonder, however, whether or not this assumption is

appropriate in the present context. Visual inspection of Figure 7 indeed reveals that the density contours

in the tangent space to the mode θθθ could be ellipses rather than circles. We therefore intend to test for

rotational symmetry (about an unspecified θθθ) for the data at hand.

Fig. 7. Paleozoic red-beds data on S2.

We consider three unspecified-θθθ tests of rotational symmetry, namely the tests φsc
† and φloc

vMF, that

are optimal against tangent elliptical and tangent vMF alternatives respectively (but are blind to the

other type of alternatives), as well as the hybrid test φhyb
vMF designed to show powers against both types of

alternatives. For the data at hand, φsc
† , φloc

vMF, and φhyb
vMF, when based on the spherical mean, provide p-

values equal to 0.00065, 0.90, and 0.005, respectively. As a consequence, the null hypothesis of rotational

symmetry is rejected in favour of tangent elliptical alternatives.

Now, Figure 7 shows that the data are actually highly concentrated. In the vMF parametric model,
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the maximum likelihood estimator of κ takes the value 69.544. It is unclear that, at the present small

sample size (n = 26), the three tests above are robust to such a high concentration. To investigate this

robustness (and to illustrate the relative behaviours of these tests), we performed the following simulation

exercise: we generated 5000 mutually independent random samples of the form Xi;`, i = 1, . . . , n = 26,

` = 0, . . . , 5, where Xi;` ∼ T E3(θθθ, g,ΛΛΛ`) with location θθθ := (1, 0, 0)′, shape ΛΛΛ` := diag(1+`, 1)/(2+`), and

angular function t 7→ g(t) := exp(69.544 t). We therefore matched both the sample size and concentration

met in the real data example. The value ` = 0 corresponds to the null of rotational symmetry, whereas ` =

1, . . . , 5 provide increasingly severe alternatives. We performed, at asymptotic level α = 5%, the tests φsc
† ,

φloc
vMF, and φhyb

vMF, still based on the spherical mean. The resulting rejection frequencies are provided in

Figure 8. Clearly, the three tests show null rejection frequencies that are close to the nominal level

5%, hence are robust to the high-concentration/small sample situation we face in the real data example

considered.
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Fig. 8. Rejection frequencies, under tangent elliptical alternatives with vMF angular density, of the unspecified-θθθ
tests φsc

† (u-sc), φloc
vMF (u-loc), and φhyb

vMF (u-hyb). The sample size (n = 26) and concentration of the vMF (κ =

69.544) match those in the Paleozoic red-beds data. All tests are performed at asymptotic level 5%; see Section 6.1
for details.

6.2. Protein structure

We study now the presence of rotational symmetry in the Cα representation of a protein’s backbone.

Proteins are polypeptide chains built up by amino acids, each of them having a central carbon atom,

denoted Cα. During protein synthesis, the carboxyl group of the first amino acid condenses with the

amino group of the next, yielding a peptide bond, and this process is repeated as the chain elongates.

The final output is a folded three-dimensional structure determined by the backbone, a chain of peptide

units that go from one Cα atom to the next. Motivated by the key role of Cα atoms in the protein’s

backbone, Levitt (1976) proposed a simplified representation of the backbone that employs, sequentially,
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the Cα atom’s positions. Given the coordinates of a Cα atom, Levitt (1976)’s representation encodes the

location of the next Cα from the pseudo-bond joining them (the term pseudo emphasizes that the atoms

are not linked by a single chemical bond but rather by several). Since the distance of pseudo-bonds can

be considered constant (around 3.8 Å), the sequence of Cα atoms can be represented as a sequence of

vectors in the sphere of radius r = 3.8 with the parametrization

x = (cos(θ), sin(θ) cos(τ), sin(θ) sin(τ)) , θ ∈ [0, π), τ ∈ [−π, π),

where the origin is set as the previous Cα atom (θ is not related with the axis of symmetry θθθ, is the notation

used in Levitt (1976)’s representation). This codification is employed in the hidden Markov model of

Hamelryck et al. (2006), which considered Kent (1982)’s FB5 non-rotationally symmetric distribution

to model dynamically the position of the next Cα atom from the information associated to the former:

pseudo-bond direction, amino acid type, and secondary structure label (helix, β-strand, or coil).

In proteins, θ usually lies in [80◦, 150◦] due to atom clash-avoiding constraints, whereas τ can adopt

all values in [−180◦, 180◦). Thus the vectors x are in between two meridians in a girdle-like spherical

distribution, which might suggest the presence of rotational symmetry around θθθ = (1, 0, 0). However, it

is evident from Figure 9 that the overall distribution of these spherical vectors is highly non-symmetric.

For example, there is a massive non-rotationally symmetric cluster associated to a α-helix conformation

(around (50◦, 90◦)). Yet, a less evident question to answer is whether there are particular protein features

associated with rotational symmetry of the pseudo-bond directions, or, on the contrary, whether non-

rotational symmetry is a systematic and persistent pattern in pseudo-bonds. In order to address this

inquiry, we extracted the pseudo-bond directions of the Cα atoms from the top500 dataset (Word et al.,

1999), consisting of 500 high precision and non-redundant protein structures, using the Bio.PDB module

(Hamelryck and Manderick, 2003). The covariates for each direction are its associated Amino Acid

(AA; 20 kinds), its associated Secondary Structure (SS; 7 possible labels), and its depth in the protein

backbone. This depth is standardized so that 1 represents the most central Cα atom and 0 stands both

for the initial and final Cα atoms of the backbone.

When θθθ = (1, 0, 0) is specified, rotational symmetry is consistently not present in any of the Cα atoms

related to individual data features. Specifically, both φloc
θθθ and φsc

θθθ reject rotational symmetry of Cα

directions associated to: any of the 20 AAs, any of the 7 SS labels, and any of the blocks of Cα’s with

depths within [di, di+1), di = i−1
20 , i = 1, . . . , 21. The p-values for φsc

θθθ and φloc
θθθ strongly reject the null

hypothesis, being the largest p-value of the two tests, in all subgroups, of order 10−31. We inspect next the

association of Cα directions with respect to the transitions of amino acids. To that aim, we partitioned

the data into 20× 20 subgroups for the transitions AAi →AAi+1, and we tested rotational symmetry on

them. The results from both tests are not coherent, since both are looking for different deviations from

the null hypothesis that are present in the data. Precisely, at level α = 0.05, φsc
θθθ does not reject for 2

pairs of amino acids (Figure 10, left plot), and φloc
θθθ does the same for 27 pairs (Figure 10, central plot).

Careful visual inspection revealed the presence of multimodality patterns on the multivariate signs that

leaded to non-rejections for φloc
θθθ (e.g. the signs for G→T, with n = 579, are antipodally bimodal), even

if the data showed clear non-rotationally symmetric patterns. This evidences the practical necessity of

accounting for a test that is consistent against both location and scatter deviations, such as φhyb
θθθ . The

test φhyb
θθθ consistently rejects rotational symmetry for any transition of amino acids (Figure 10, right

plot), except for the transitions of C (Cysteine) to M (Methionine, p-value= 0.013) and W (Tryptophan,

p-value= 0.198), both extremely rare (less than 0.05% of the analysed transitions). We conclude then

that rotational symmetry is emphatically not associated to particular amino acids transitions, except
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Fig. 9. Scatterplot of the pseudo-angles (θ, τ) forming the spherical band around θθθ = (1, 0, 0), at colatitudes (if θθθ is
regarded as North pole) between 80◦ and 150◦. Sample size is n = 107778.

for two transitions from Cysteine, for which the significance of the test is more questionable, given the

p-values and sample sizes.
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Fig. 10. p-values for testing rotational symmetry on the Cα pseudo-bonds associated to amino acid changes
AAi →AAi+1. Left shows the p-values for φsc

θθθ , centre for φloc
θθθ , and right for φhyb

θθθ . Sample size is indicated for the
p-values above 0.01.

7. Perspective for future research

As explained in Section 2.1, the random vector X with values on Sp−1 is rotationally symmetric about θθθ if

and only if, using the notation introduced in (2.1), (i) the random vector uθθθ(X) is uniformly distributed
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over Sp−2 and (ii) uθθθ(X) is independent of vθθθ(X). The tests proposed in this paper are designed to

detect deviations from rotational symmetry by testing that (i) holds. As a consequence, they will be

blind to alternatives of rotational symmetry for which (i) holds but (ii) does not. This could be fixed

by testing that the covariance between uθθθ(X) and vθθθ(X) is zero, which can be based on a statistic of the

form

∆∆∆
cov(n)
θθθ :=

1√
n

n∑
i=1

vθθθ(Xi)uθθθ(Xi).

Since ∆∆∆
cov(n)
θθθ is asymptotically normal with mean zero and covariance matrix (p− 1)−1Eθθθ,g[v

2
θθθ(X1)]Ip−1

under P
(n)
θθθ,g , the resulting test would, at asymptotic level α, reject the null hypothesis of rotational

symmetry about θθθ whenever

p− 1∑n
i=1 v

2
θθθ(Xi)

n∑
i,j=1

vθθθ(Xi)vθθθ(Xj)u
′
θθθ(Xi)uθθθ(Xj) > χ2

p−1,1−α.

Such a test of course would detect violations of (ii) only and it is natural to design a test that would be

able to detect deviations from both (i) and (ii) by considering test statistics that are quadratic forms

in
((

∆∆∆
cov(n)
θθθ

)′
,
(
∆∆∆
T E(n)
θθθ;2

)′)′
or in

((
∆∆∆

cov(n)
θθθ

)′
,
(
∆∆∆
TM(n)
θθθ;2

)′)′
, depending on whether tangent elliptical or tan-

gent vMF alternatives are considered. In the spirit of the hybrid test from Section 4, detecting both types

of alternatives can be achieved by considering a quadratic form in
((

∆∆∆
cov(n)
θθθ

)′
,
(
∆∆∆
T E(n)
θθθ;2

)′
,
(
∆∆∆
TM(n)
θθθ;2

)′)′
.

The quadratic form to be used in each case naturally follows from the asymptotic covariance matrix in

the (null) joint asymptotic normal distribution of these random vectors.

Another perspective for future research derived from the construction of new distributions is the

following. In Section 2.2, we proposed new distributions on the unit sphere Sp−1, namely tangent vMF

distributions, by imposing that uθθθ(X) = uθθθ1;p−2(X) follows its own vMF distribution over Sp−2 with

location µµµ = θθθ2 ∈ Sp−2. In turn, one could specify that uθθθ2;p−3(X) follows a vMF distribution over Sp−3

with location θθθ3. Iterating this construction will provide “nested” tangent vMF distributions that are

associated with mutually orthogonal directions θθθi, i = 1, . . . , p (strictly speaking, θθθi ∈ Sp−i but they can

all be considered embedded in the original unit sphere Sp−1). These directions, in some sense, provide

analogues of principal directions on the sphere and should therefore be related to the principal nested

spheres of Jung et al. (2012). Such distributions provide flexible models on the sphere that are likely to

be relevant in various applications of directional statistics.
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A. Proofs of the main results

The lemmas given in Appendix B are used to prove the main results.

Proof (Theorem 2.1). Consider first the case X ∼ T Ep(θθθ0, g,ΛΛΛ), with θθθ0 := (1, 0, . . . , 0)′ ∈ Rp.
Clearly, X = (V, (1 − V 2)1/2U′)′, with V := vθθθ0(X) = X1 and U := uθθθ0(X) = (X2, . . . , Xp)

′/
√

1−X2
1 ,

where we used the notation introduced in (2.1). By definition, U takes its values in Sp−2, with density u 7→
cAp−1,ΛΛΛ(u′ΛΛΛ−1u)−(p−1)/2 with respect to σp−2. Therefore, conditional on V = v, (1 − V 2)1/2U takes its

values on the hypersphere Sp−2(rv) ⊂ Rp−1 with radius rv := (1− v2)1/2. Its density with respect to the

surface area measure σp−2,r on Sp−2(rv) is (recall that V and U are mutually independent)

w 7→ cAp−1,ΛΛΛ

(
w′ΛΛΛ−1w

r2
v

)−(p−1)/2

r−(p−2)
v ,
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where r−(p−2) is the Jacobian of the radial projection of Sp−2(r) onto Sp−2. Since dσp−2,r = rp−2dσp−2,

the density of X with respect to the product measure µ×σp−2 (where µ stands for the Lebesgue measure

on [−1, 1]) is

x 7→ cAp−1,ΛΛΛ

(
u′θθθ0(x)ΛΛΛ−1uθθθ0(x)

)−(p−1)/2 dPVθθθ0,g,ΛΛΛ
dµ

(vθθθ0(x))

= cAp−1,ΛΛΛ

(
u′θθθ0(x)ΛΛΛ−1uθθθ0(x)

)−(p−1)/2
ωp−1cp,g(1− v2

θθθ0
(x))(p−3)/2g(vθθθ0(x)).

The result for θθθ = θθθ0 then follows from the fact that (see, e.g., page 44 of Watson (1983))

d(µ× σp−2)

dσp−1
(x) = (1− v2

θθθ0
(x))(p−3)/2.

To obtain the result for an arbitrary value of θθθ, let X ∼ T Ep(θθθ, g,ΛΛΛ) and pick a p×p orthogonal matrix O

such that Oθθθ = θθθ0. Since OΓΓΓθθθ = ΓΓΓθθθ0 , we have that OX ∼ T Ep(θθθ0, g,ΛΛΛ). Therefore, the result for θθθ = θθθ0

implies that the density of X with respect to σp−1 is

x 7→ |det O|ωp−1c
A
p−1,ΛΛΛcp,gg(vθθθ0(Ox))

(
u′θθθ0(Ox)ΛΛΛ−1uθθθ0(Ox)

)−(p−1)/2

= ωp−1c
A
p−1,ΛΛΛcp,gg(vθθθ(x))

(
u′θθθ(x)ΛΛΛ−1uθθθ(x)

)−(p−1)/2
,

as was to be proved. �

Proof (Theorem 2.3). Lemma B.3 readily entails that

log
dP
T E(n)
θθθn,g,ΛΛΛn

dP
(n)
θθθ,g

= log
dP
T E(n)
θθθn,g,ΛΛΛn

dP
(n)
θθθn,g

+ log
dP

(n)
θθθn,g

dP
(n)
θθθ,g

= log
dP
T E(n)
θθθn,g,ΛΛΛn

dP
(n)
θθθn,g

+ t′n∆∆∆
(n)
θθθ,g;1 −

1

2
t′nΓΓΓθθθ,g;11tn + oP(1)

as n→∞ under P
(n)
θθθ,g . Therefore, we only need to show that

Ln := log
dP
T E(n)
θθθn,g,ΛΛΛn

dP
(n)
θθθn,g

= (ve
◦
chLn)′∆∆∆

T E(n)
θθθ;2 − 1

2
(ve
◦
chLn)′ΓΓΓT Eθθθ;22(ve

◦
chLn) + oP(1)

as n→∞ under P
(n)
θθθ,g . First note that Theorem 2.1 gives

Ln = −n
2

log
(
detΛΛΛn

)
− p− 1

2

n∑
i=1

log
(
U′i,θθθnΛΛΛ−1

n Ui,θθθn

)
=: Ln,1 + Ln,2, (A.21)

say. Since log(det(Ip−1 + A)) = tr[A]− 1
2 tr[A2] + o(‖A‖2) as ‖A‖ → 0, we have that

Ln,1 = −n
2

log
(
det(Ip−1 + n−1/2Ln)

)
=

1

4
tr[L2

n] + o(1) (A.22)

as n→∞ (recall that tr[Ln] = 0). Now, write

Ln,2 = −p− 1

2

n∑
i=1

log
(
1 + U′i,θθθn(ΛΛΛ−1

n − Ip−1)Ui,θθθn

)
= −p− 1

2

n∑
i=1

log
(
1 + tr[Ui,θθθnU

′
i,θθθn

(ΛΛΛ−1
n − Ip−1)]

)
=: −p− 1

2

n∑
i=1

log
(
1 + Ti,n

)
.
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Using (9)–(10) in pages 218–219 from Magnus and Neudecker (2007), Ti,n = −n−1/2U′i,θθθnLnUi,θθθn +

n−1U′i,θθθnL
2
nUi,θθθn + Ri,n, where (due to the uniform boundedness of the Ui,θθθn ’s) maxi=1,...,nRi,n =

OP(n−3/2) as n→∞ under P
(n)
θθθ,g . Using the fact that log(1 + x) = x− 1

2x
2 + o(x2) as x→ 0, it follows

that

Ln,2 = −p− 1

2

n∑
i=1

log

(
1− 1√

n
U′i,θθθnLnUi,θθθn +

1

n
U′i,θθθnL

2
nUi,θθθn +Ri,n

)

= −p− 1

2

n∑
i=1

{
− 1√

n
U′i,θθθnLnUi,θθθn +

1

n
U′i,θθθnL

2
nUi,θθθn −

1

2n
(U′i,θθθnLnUi,θθθn)2

}
+ oP(1)

as n→∞ under P
(n)
θθθ,g . Using Lemma B.2, the law of large numbers for triangular arrays then yields

Ln,2 =

(
p− 1

2
√
n

n∑
i=1

U′i,θθθnLnUi,θθθn

)
− p− 1

2
E

[
U′1,θθθnL

2
nU1,θθθn −

1

2
(U′1,θθθnLnU1,θθθn)2

]
+ oP(1)

=
p− 1

2
√
n

(vecLn)′
n∑
i=1

vec (Ui,θθθnU
′
i,θθθn

)

− p− 1

2
(vecLn)′

[
1

p− 1
I(p−1)2 −

1

2(p2 − 1)
(I(p−1)2 + Kp−1 + Jp−1)

]
(vecLn) + oP(1)

as n → ∞ under P
(n)
θθθ,g . Applying Lemma (iiiT E) in B.4, and using the identities Kp−1(vecA) =

vec (A′) and (vecA)′(vecB) = tr[A′B] (which implies that (vecLn)′(vec Ip−1) = tr[Ln] = 0, hence

that Jp−1(vecLn) = 0), we obtain

Ln,2 =
p− 1

2
√
n

(vecLn)′
n∑
i=1

vec

(
Ui,θθθU

′
i,θθθ −

1

p− 1
Ip−1

)
− p

2(p+ 1)
tr[L2

n] + oP(1) (A.23)

as n→∞ under P
(n)
θθθ,g . Plugging (A.22)–(A.23) in (A.21) then provides

Ln =
p− 1

2
√
n

(vecLn)′
n∑
i=1

vec

(
Ui,θθθU

′
i,θθθ −

1

p− 1
Ip−1

)
− p− 1

4(p+ 1)
tr[L2

n] + oP(1),

as n→∞ under P
(n)
θθθ,g , which, by using the definition of Mp and the matrix identities above, yields (2.7).

Finally, the CLT ensures that, under P
(n)
θθθ,g , ∆∆∆

T E(n)
θθθ;2

D
 N

(
0,ΓΓΓT Eθθθ;22

)
with

Mp

(
p− 1

4(p+ 1)
(I(p−1)2 + Kp−1 + Jp−1)− 1

4
Jp−1

)
M′p =

p− 1

4(p+ 1)
Mp

(
I(p−1)2 + Kp−1

)
M′p = ΓΓΓT Eθθθ;22,

where we used the fact that Mp(vec Ip−1) = 0 (see (v) in Lemma 4.2 of Paindaveine (2008)). �

Proof (Theorem 2.4). First note that

log
dP
TM(n)
θθθn,g,δδδn

dP
(n)
θθθ,g

= log
dP
TM(n)
θθθn,g,δδδn

dP
(n)
θθθn,g

+ log
dP

(n)
θθθn,g

dP
(n)
θθθ,g

= log
dP
TM(n)
θθθn,g,δδδn

dP
(n)
θθθn,g

+ t′n∆∆∆
(n)
θθθ,g;1 −

1

2
t′nΓΓΓθθθ,g;11tn + oP(1).

In the parametrization adopted in Theorem 2.4, recall that δδδn corresponds to a skewness direction µµµn :=

δδδn/‖δδδn‖ = dn/‖dn‖ and a skewness intensity κn := ‖δδδn‖ = n−1/2‖dn‖. From Theorem 2.2, we then

readily obtain

Gn := log
dP
TM(n)
θθθn,g,δδδn

dP
(n)
θθθn,g

= n
(

log(cp−1,n−1/2‖d(n)‖)− log(cp−1,0)
)

+
(
d(n)

)′ 1√
n

n∑
i=1

Ui,θθθn .
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Lemma A.1 in Cutting et al. (2017) implies that

n
(

log(cp−1,n−1/2‖d(n)‖)− log(cp−1,0)
)

= − 1

2(p− 1)
‖d(n)‖2 + o(1)

as n→∞, which, by using (iiiTM) in Lemma B.4, yields

Gn = (d(n))′
1√
n

n∑
i=1

Ui,θθθn −
1

2(p− 1)
‖d(n)‖2 + oP(1)

= (d(n))′
[

1√
n

n∑
i=1

Ui,θθθ −
Ip(g)

p− 1
ΓΓΓ′θθθtn

]
− 1

2(p− 1)
‖d(n)‖2 + oP(1)

as n→∞ under P
(n)
θθθ,g . Therefore,

log
dP
TM(n)
θθθn,g,δδδn

dP
(n)
θθθ,g

= t′n∆∆∆
(n)
1,θθθ + (d(n))′

1√
n

n∑
i=1

Ui,θθθ

− 1

2

(
t′nΓΓΓθθθ,g;11tn +

2Ip(g)

p− 1
(d(n))′ΓΓΓ′θθθtn +

1

p− 1
‖d(n)‖2

)
+ oP(1),

as n→∞ under P
(n)
θθθ,g , which establishes the result. �

B. Required lemmas

Lemma B.1. For any θθθ ∈ Sp−1 and g ∈ G, under P
(n)
θθθ,g :

(i) E[U1,θθθ] = 0,

(ii) E[U1,θθθU
′
1,θθθ] = 1

p−1Ip−1,

(iii) E[vec (U1,θθθU
′
1,θθθ)vec (U1,θθθU

′
1,θθθ)
′] = 1

p2−1

(
I(p−1)2 + Kp−1 + Jp−1

)
.

Proof (Lemma B.1). The result is a direct consequence of Lemma A.2 in Paindaveine and Verde-

bout (2016). �

Lemma B.2. For any θθθ ∈ Sp−1, g ∈ G, and any bounded sequence (tn) in Rp such that θθθn =

θθθ + n−1/2tn ∈ Sp−1 for any n, we have that, as n→∞ under P
(n)
θθθ,g :

(i) E[U1,θθθn ] = o(1),

(ii) E[U1,θθθnU
′
1,θθθn

] = 1
p−1Ip−1 + o(1),

(iii) E[vec (U1,θθθnU
′
1,θθθn

)vec (U1,θθθnU
′
1,θθθn

)′] = 1
p2−1 (I(p−1)2 + Kp−1 + Jp−1) + o(1).

Proof (Lemma B.2). All expectations in this proof are under P
(n)
θθθ,g and all convergences are as

n→∞. For (i) first note that, letting Z1,θθθ := ΓΓΓ′θθθX1 and d1,θθθ := ‖Z1,θθθ‖, we have

‖U1,θθθn −U1,θθθ‖ ≤
∥∥∥∥Z1,θθθn

d1,θθθn

−
Z1,θθθn

d1,θθθ

∥∥∥∥+

∥∥∥∥Z1,θθθn

d1,θθθ
−

Z1,θθθ

d1,θθθ

∥∥∥∥
≤
∣∣∣∣ 1

d1,θθθn

− 1

d1,θθθ

∣∣∣∣ ‖Z1,θθθn‖+
1

d1,θθθ
‖Z1,θθθn − Z1,θθθ‖

≤
|d1,θθθn − d1,θθθ|

d1,θθθ
+

1

d1,θθθ
‖Z1,θθθn − Z1,θθθ‖

≤
2‖Z1,θθθn − Z1,θθθ‖

d1,θθθ
,
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which implies that ‖U1,θθθn −U1,θθθ‖ = oP(1). Uniform integrability follows because ‖U1,θθθn −U1,θθθ‖ ≤ 2

almost surely, hence

E[‖U1,θθθn −U1,θθθ‖2] = o(1). (B.24)

Since ‖E[U1,θθθn ]‖2 = ‖E[U1,θθθn −U1,θθθ]‖2 ≤
(
E[‖U1,θθθn −U1,θθθ‖]

)2 ≤ E[‖U1,θθθn −U1,θθθ‖2], the result then

follows from (i) in Lemma B.1. For proving (ii), we have that, since (ii) in Lemma B.1 entails that∥∥∥∥vec

(
E[U1,θθθnU

′
1,θθθn

]− 1

p− 1
Ip−1

)∥∥∥∥2

=
∥∥E[vec (U1,θθθnU

′
1,θθθn

)− vec (U1,θθθU
′
1,θθθ)]

∥∥2
,

it is enough to show that

E[‖vec (U1,θθθnU
′
1,θθθn

)− vec (U1,θθθU
′
1,θθθ)‖2] = o(1). (B.25)

This follows from (B.24), the fact that ‖vec(U1,θθθnU
′
1,θθθn

)−vec(U1,θθθU
′
1,θθθ)‖2 = tr[(U1,θθθnU

′
1,θθθn
−U1,θθθU

′
1,θθθ)

2] =

2(1 − (U′1,θθθnU1,θθθ)
2) = ‖U1,θθθn −U1,θθθ‖2, and the arguments in the proof of (i). For (iii), we proceed as

above and use that (iii) in Lemma B.1 entails that it is sufficient to show that

wn := E[‖vec (U1,θθθnU
′
1,θθθn

)vec (U1,θθθnU
′
1,θθθn

)′ − vec (U1,θθθU
′
1,θθθ)vec (U1,θθθU

′
1,θθθ)
′‖2] = o(1).

Since wn ≤ 2(w1n + w2n), with

w1n := E[‖(vec (U1,θθθnU
′
1,θθθn

)− vec (U1,θθθU
′
1,θθθ))vec (U1,θθθnU

′
1,θθθn

)′‖2],

w2n := E[‖vec (U1,θθθU
′
1,θθθ)(vec (U1,θθθnU

′
1,θθθn

)− vec (U1,θθθU
′
1,θθθ)
′)‖2],

and since U1,θθθn and U1,θθθ are bounded almost surely, the result follows from (B.25). �

Lemma B.3. Fix θθθ ∈ Sp−1, g ∈ Ga, and let (tn) be a bounded sequence in Rp such that θθθn :=

θθθ + n−1/2tn ∈ Sp−1 for any n. Then,

log
dP

(n)
θθθn,g

dP
(n)
θθθ,g

= t′n∆∆∆
(n)
θθθ,g;1 −

1

2
t′nΓΓΓθθθ,g;11tn + oP(1),

as n→∞ under P
(n)
θθθ,g , where ∆∆∆

(n)
θθθ,g;1 and ΓΓΓθθθ,g;11 are as in Theorems 2.3 and 2.4.

Proof (Lemma B.3). This follows from Proposition 2.2 in Ley et al. (2013). �

Lemma B.4. For any θθθ ∈ Sp−1, g ∈ Ga, and any bounded sequence (tn) in Rp such that θθθn :=

θθθ + n−1/2tn ∈ Sp−1 for any n, we have that, as n→∞ under P
(n)
θθθ,g :

(iTM) 1√
n

∑n
i=1

(
Ui,θθθn −Ui,θθθ − E[Ui,θθθn ]

)
= oP(1),

(iiTM) 1√
n

∑n
i=1 E[Ui,θθθn ] = −Ip(g)

p−1 ΓΓΓ′θθθtn + o(1),

(iiiTM) 1√
n

∑n
i=1(Ui,θθθn −Ui,θθθ) = −Ip(g)

p−1 ΓΓΓ′θθθtn + oP(1),

(iT E)
1√
n

∑n
i=1

(
Ui,θθθnU

′
i,θθθn
−Ui,θθθU

′
i,θθθ − E[Ui,θθθnU

′
i,θθθn

] + 1
p−1 Ip−1

)
= oP(1),

(iiT E)
1√
n

∑n
i=1

(
E[Ui,θθθnU

′
i,θθθn

]− 1
p−1 Ip−1

)
= o(1),
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(iiiT E)
1√
n

∑n
i=1

(
Ui,θθθnU

′
i,θθθn
−Ui,θθθU

′
i,θθθ

)
= oP(1).

Proof (Lemma B.4). Throughout this proof, expectations are under P
(n)
θθθ,g , convergences are as n→

∞, and superscript T stands for “TM (respectively, T E)”. For (iTM)–(iT E), let NTMi,n := Ui,θθθn −Ui,θθθ

and NT Ei,n := vec(Ui,θθθnU
′
i,θθθn

)− vec(Ui,θθθU
′
i,θθθ). We have to show that

TTn = n−1/2
n∑
i=1

(NTi,n − E[NTi,n]) = oP(1).

Since E[‖TTn ‖2] = n−1
∑n
i,j=1 E[(NTi,n − E[NTi,n])′(NTjn − E[NTjn])] = E[‖NT1n − E[NT1n]‖2] ≤ E[‖NT1n‖2],

the result follows from (B.24) for TM, and from (B.25) for T E . For (iiTM)–(iiT E), we consider

S
TM(n)
θθθ :=

1√
n

n∑
i=1

Ui,θθθ and S
T E(n)
θθθ :=

1√
n

n∑
i=1

vec

(
Ui,θθθU

′
i,θθθ −

1

p− 1
Ip−1

)
.

By using Lemma B.1, the CLT for triangular arrays implies that, under P
(n)
θθθn,g

,(
S
T (n)
θθθ

∆∆∆
(n)
θθθn,g;1

)
D
 N

(
0,

(
ΣΣΣT (CTθθθ )′

CTθθθ ΓΓΓθθθ,g;11

))
, (B.26)

where CTMθθθ =
Ip(g)
p−1 ΓΓΓθθθ, C

T E
θθθ = 0, ΣΣΣTM := 1

p−1 Ip−1, and

ΣΣΣT E :=
1

p2 − 1
(I(p−1)2 + Kp−1 + Jp−1)− 1

(p− 1)2
Jp−1.

By using Lemma B.3, Le Cam’s first lemma implies that P
(n)
θθθn,g

and P
(n)
θθθ,g are mutually contiguous. There-

fore, one can apply Le Cam’s third lemma to the joint asymptotic normality results in (B.26), which

yields that, under P
(n)
θθθ,g ,

1√
n

n∑
i=1

Ui,θθθn +
Ip(g)

p− 1
ΓΓΓ′θθθtn = S

TM(n)
θθθn

+ (CTMθθθ )′tn
D
 N

(
0,ΣΣΣTM

)
(B.27)

and

1√
n

n∑
i=1

vec

(
Ui,θθθnU

′
i,θθθn
− 1

p− 1
Ip−1

)
= S

T E(n)
θθθn

+ (CT Eθθθ )′tn
D
 N

(
0,ΣΣΣT E

)
. (B.28)

Now, by using Lemma B.2, the CLT for triangular arrays shows that, still under P
(n)
θθθ,g ,

1√
n

n∑
i=1

(Ui,θθθn − E[Ui,θθθn ])
D
 N

(
0,ΣΣΣTM

)
, (B.29)

and

1√
n

n∑
i=1

vec
(
Ui,θθθnU

′
i,θθθn
− E[Ui,θθθnU

′
i,θθθn

]
) D
 N

(
0,ΣΣΣT E

)
, (B.30)

where the expectations are under P
(n)
θθθ,g . The result (iiTM) then follows from (B.27) and (B.29), whereas

(iiT E) similarly follows from (B.28) and (B.30). Finally, (iiiTM)–(iiiT E) are a direct consequence

of (iTM)–(iT E) and (iiTM)–(iiT E). �
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