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We consider the problem of testing, on the basis of a p-variate Gaus-
sian random sample, the null hypothesis H0 : θ1 = θ0

1 against the alterna-

tive H1 : θ1 �= θ0
1, where θ1 is the “first” eigenvector of the underlying co-

variance matrix and θ0
1 is a fixed unit p-vector. In the classical setup where

eigenvalues λ1 > λ2 ≥ · · · ≥ λp are fixed, the Anderson (Ann. Math. Stat.
34 (1963) 122–148) likelihood ratio test (LRT) and the Hallin, Paindaveine
and Verdebout (Ann. Statist. 38 (2010) 3245–3299) Le Cam optimal test for
this problem are asymptotically equivalent under the null hypothesis, hence
also under sequences of contiguous alternatives. We show that this equiv-
alence does not survive asymptotic scenarios where λn1/λn2 = 1 + O(rn)

with rn = O(1/
√

n). For such scenarios, the Le Cam optimal test still asymp-
totically meets the nominal level constraint, whereas the LRT severely over-
rejects the null hypothesis. Consequently, the former test should be favored
over the latter one whenever the two largest sample eigenvalues are close to
each other. By relying on the Le Cam’s asymptotic theory of statistical exper-
iments, we study the non-null and optimality properties of the Le Cam op-
timal test in the aforementioned asymptotic scenarios and show that the null
robustness of this test is not obtained at the expense of power. Our asymp-
totic investigation is extensive in the sense that it allows rn to converge to
zero at an arbitrary rate. While we restrict to single-spiked spectra of the
form λn1 > λn2 = · · · = λnp to make our results as striking as possible, we
extend our results to the more general elliptical case. Finally, we present an
illustrative real data example.

1. Introduction. Principal Component Analysis (PCA) is one of the most classical tools
in multivariate statistics. For a random p-vector X with mean zero and a covariance matrix
� admitting the spectral decomposition � = ∑p

j=1 λjθ jθ
′
j (λ1 ≥ · · · ≥ λp), the j th princi-

pal component is θ ′
j X, that is, the projection of X onto the j th unit eigenvector θ j of �. In

practice, � is usually unknown, so that one of the key issues in PCA is to perform inference
on eigenvectors. The seminal paper Anderson (1963) focused on the multinormal case and
derived asymptotic results for the maximum likelihood estimators of the θ j ’s and λj ’s. Later,
Tyler (1981, 1983) extended those results to the elliptical case, where, to avoid moment as-
sumptions, � is then the corresponding “scatter” matrix rather than the covariance matrix.
Still under ellipticity assumptions, Hallin, Paindaveine and Verdebout (2010) obtained Le
Cam optimal tests on eigenvectors and eigenvalues, whereas Hallin, Paindaveine and Verde-
bout (2014) developed efficient R-estimators for eigenvectors. Croux and Haesbroeck (2000),
Hubert, Rousseeuw and Vanden Branden (2005) and He et al. (2011) proposed various ro-
bust methods for PCA. Recently, Johnstone and Lu (2009), Berthet and Rigollet (2013) and
Han and Liu (2014) considered inference on eigenvectors of � in sparse high-dimensional
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situations. PCA has also been extensively considered in the functional case; see, for example,
Boente and Fraiman (2000), Bali et al. (2011) or the review paper Cuevas (2014).

In this work, we focus on the problem of testing the null hypothesis H0 : θ1 = θ0
1 against

the alternative H1 : θ1 �= θ0
1, where θ0

1 is a given unit vector of Rp . While, strictly speaking,
the fact that θ1 will below be defined up to a sign only should lead us to formulate the
null hypothesis as H0 : θ1 ∈ {θ0

1,−θ0
1}, we will stick to the formulation above, which is the

traditional one in the literature; we refer to the many references provided below. We restrict to
θ1 for the sake of simplicity only; our results could indeed be extended to null hypotheses of
the form H0 : θ j = θ0

j for any other j . While the emphasis in PCA is usually more on point
estimation, the testing problems above are also of high practical relevance. For instance, they
are of paramount importance in confirmatory PCA, that is, when it comes to testing that θ1
(or any other θ j ) coincides with an eigenvector obtained from an earlier real data analysis
(“historical data”) or with an eigenvector resulting from a theory or model. In line with this,
tests for the null hypothesis H0 : θ1 = θ0

1 have been used in, among others, Jackson (2005)
to analyze the concentration of a chemical component in a solution and in Sylvester, Kramer
and Jungers (2008) for the study of the geometric similarity in modern humans.

More specifically, we want to test H0 : θ1 = θ0
1 against H1 : θ1 �= θ0

1 on the basis of a ran-
dom sample X1, . . . ,Xn from the p-variate normal distribution with mean μμμ and covariance
matrix � (the extension to elliptical distributions will also be considered). Denoting as λ̂1 ≥
λ̂2 ≥ · · · ≥ λ̂p the eigenvalues of the sample covariance matrix S := 1

n

∑n
i=1(Xi −X̄)(Xi −X̄)′

(as usual, X̄ := 1
n

∑n
i=1 Xi here), the classical test for this problem is the Anderson (1963)

likelihood ratio test, φA say, rejecting the null hypothesis at asymptotic level α when

QA := n
(
λ̂1θ

0′
1 S−1θ0

1 + λ̂−1
1 θ0′

1 Sθ0
1 − 2

)
> χ2

p−1,1−α,

where χ2
�,1−α stands for the α-upper quantile of the chi-square distribution with � degrees of

freedom. Various extensions of this test have been proposed in the literature: to mention only
a few, Jolicoeur (1984) considered a small-sample test, Flury (1988) proposed an extension
to more eigenvectors, Tyler (1981, 1983) robustified the test to possible (elliptical) depar-
tures from multinormality, while Schwartzman, Mascarenhas and Taylor (2008) considered
extensions to the case of Gaussian random matrices. More recently, Hallin, Paindaveine and
Verdebout (2010) obtained the Le Cam optimal test for the problem above. This test, φHPV
say, rejects the null hypothesis at asymptotic level α when

QHPV := n

λ̂1

p∑
j=2

λ̂−1
j

(
θ̃

′
j Sθ0

1
)2

> χ2
p−1,1−α,

where θ̃ j , j = 2, . . . , p, defined recursively through

(1.1) θ̃ j := (Ip − θ0
1θ

0′
1 − ∑j−1

k=2 θ̃k θ̃
′
k)θ̂ j

‖(Ip − θ0
1θ

0′
1 − ∑j−1

k=2 θ̃k θ̃
′
k)θ̂ j‖

(with summation over an empty collection of indices being equal to zero), result from a
Gram–Schmidt orthogonalization of θ0

1, θ̂2, . . . , θ̂p , where θ̂ j is a unit eigenvector of S as-
sociated with the eigenvalue λ̂j , j = 2, . . . , p, and where we wrote I� for the �-dimensional
identity matrix. When the eigenvalues of � are fixed and satisfy λ1 > λ2 ≥ λ3 ≥ · · · ≥ λp

(the minimal condition under which θ1 is identified—up to an unimportant sign, as already
mentioned), both tests above are asymptotically equivalent under the null hypothesis, hence
also under sequences of contiguous alternatives, which implies that φA is also Le Cam opti-
mal; see Hallin, Paindaveine and Verdebout (2010). The tests φA and φHPV can therefore be
considered perfectly equivalent, at least asymptotically so.
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In the present paper, we compare the asymptotic behaviors of these tests in a nonstandard
asymptotic framework where eigenvalues may depend on n and where λn1/λn2 converges to
1 as n diverges to infinity. Such asymptotic scenarios provide weak identifiability since the
first eigenvector θ1 is not properly identified in the limit. To make our results as striking as
possible, we will restrict to single-spiked spectra of the form λn1 > λn2 = · · · = λnp . In other
words, we will consider triangular arrays of observations Xni , i = 1, . . . , n, n = 1,2, . . . ,

where Xn1, . . . ,Xnn form a random sample from the p-variate normal distribution with mean
μμμn and covariance matrix

�n := σ 2
n

(
Ip + rnvθ1θ

′
1
)

(1.2)
= σ 2

n (1 + rnv)θ1θ
′
1 + σ 2

n

(
Ip − θ1θ

′
1
)
,

where v is a positive real number, (σn) is a positive real sequence and (rn) is a bounded pos-
itive real sequence (again, the multinormality assumption will be relaxed later in the paper).
The eigenvalues of the covariance matrix �n are then λn1 = σ 2

n (1+ rnv) (with corresponding
eigenvector θ1) and λn2 = · · · = λnp = σ 2

n (with corresponding eigenspace being the orthogo-
nal complement of θ1 in R

p). If rn ≡ 1 (or more generally if rn stays away from 0 as n → ∞),
then this setup is similar to the classical one where the first eigenvector θ1 remains identified
in the limit. In contrast, if rn = o(1), then the resulting weak identifiability intuitively makes
the problem of testing H(n)

0 : θ1 = θ0
1 against H(n)

1 : θ1 �= θ0
1 increasingly hard as n diverges

to infinity.
Our results show that, while they are, as mentioned above, equivalent in the standard

asymptotic scenario associated with rn ≡ 1, the tests φHPV and φA actually exhibit very dif-
ferent behaviors under weak identifiability. More precisely, we show that this asymptotic
equivalence survives scenarios where rn = o(1) with

√
nrn → ∞, but not scenarios where

rn = O(1/
√

n). Irrespective of the asymptotic scenario considered, the test φHPV asymptoti-
cally meets the nominal level constraint, hence may be considered robust to weak identifiabil-
ity. On the contrary, in scenarios where rn = O(1/

√
n), the test φA dramatically overrejects

the null hypothesis. Consequently, despite the asymptotic equivalence of these tests in stan-
dard asymptotic scenarios, the test φHPV should be favored over φA.

Of course, this nice robustness property of φHPV only refers to the null asymptotic behav-
ior of this test, and it is of interest to investigate whether or not this null robustness is obtained
at the expense of power. In order to do so, we study the non-null and optimality properties of
φHPV under suitable local alternatives. This is done by exploiting the Le Cam’s asymptotic
theory of statistical experiments. In every asymptotic scenario considered, we show that the
corresponding sequence of experiments converges to a limiting experiment in the Le Cam
sense. Interestingly, (i) the corresponding contiguity rate crucially depends on the underly-
ing asymptotic scenario and (ii) the resulting limiting experiment is not always a Gaussian
shift experiment, such as in the standard local asymptotic normality (LAN) setup. In all cases,
however, we can derive the asymptotic non-null distribution of QHPV under contiguous al-
ternatives by resorting to the Le Cam third lemma, and we can establish that this test enjoys
excellent optimality properties.

The problem we consider in this paper is characterized by the fact that the parameter
of interest (here, the first eigenvector) is unidentified when a nuisance parameter is equal
to some given value (here, when the ratio of both largest eigenvalues is equal to one). Such
situations have already been considered in the statistics and econometrics literatures; we refer,
for example, to Dufour (1997), Pötscher (2002), Forchini and Hillier (2003), Dufour (2006),
or Paindaveine and Verdebout (2017). To the best of our knowledge, however, no results have
been obtained in PCA under weak identifiability. We think that, far from being of academic
interest only, our results are also crucial for practitioners: they indeed provide a clear warning
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that, when the underlying distribution is close to spherical (more generally, when both largest
sample eigenvalues are nearly equal), the daily-practice Gaussian test φA tends to overreject
the null hypothesis, hence may lead to wrong conclusions (false positives) with very high
probability, whereas the test φHPV remains a reliable procedure in such cases. We provide an
illustrative real data example that shows the practical relevance of our results.

The paper is organized as follows. In Section 2, we introduce the distributional setup
and notation to be used throughout and we derive preliminary results on the asymptotic be-
havior of sample eigenvalues/eigenvectors. In Section 3, we show that the null asymptotic
distribution of QHPV is χ2

p−1 under all asymptotic scenarios, whereas that of QA is χ2
p−1

only if
√

nrn → ∞. We also explicitly provide the null asymptotic distribution of QA when
rn = O(1/

√
n). In Section 4, we show that, in all asymptotic scenarios, the sequence of exper-

iments considered converges to a limiting experiment. Then, this is used to study the non-null
and optimality properties of φHPV. In Section 5, we extend our results to the more general
elliptical case. Theoretical findings in Sections 3 to 5 are illustrated through Monte Carlo ex-
ercises. We treat a real data illustration in Section 6. Finally, we wrap up and shortly discuss
research perspectives in Section 7. All proofs are provided in the Supplementary Material
Paindaveine, Remy and Verdebout (2019).

2. Preliminary results. As mentioned above, we will consider throughout triangular
arrays of observations Xni , i = 1, . . . , n, n = 1,2, . . . , where Xn1, . . . ,Xnn form a ran-
dom sample from the p-variate normal distribution with mean μμμn and covariance ma-
trix �n = σ 2

n (Ip + rnvθ1θ
′
1), where θ1 is a unit p-vector and σn, rn and v are positive

real numbers. The resulting hypothesis will be denoted as Pμμμn,σn,θ1,rn,v = P(n)
μμμn,σn,θ1,rn,v

(the superscript (n) will be dropped in the sequel). Throughout, X̄n := 1
n

∑n
i=1 Xni and

Sn := 1
n

∑n
i=1(Xni − X̄n)(Xni − X̄n)

′ will denote the sample average and sample covari-
ance matrix of Xn1, . . . ,Xnn. For any j = 1, . . . , p, the j th largest eigenvalue of Sn and
“the” corresponding unit eigenvector will be denoted as λ̂nj and θ̂nj , respectively (identifia-

bility is discussed at the end of this paragraph). With this notation, the tests φA = φ
(n)
A and

φHPV = φ
(n)
HPV from the Introduction reject the null hypothesis at asymptotic level α when

QA = Q
(n)
A = n

(
λ̂n1θ

0′
1 S−1

n θ0
1 + λ̂−1

n1 θ0′
1 Snθ

0
1 − 2

)
(2.1)

= n

λ̂n1

p∑
j=2

λ̂−1
nj (λ̂n1 − λ̂nj )

2(
θ̂

′
njθ

0
1
)2

> χ2
p−1,1−α

and

(2.2) QHPV = Q
(n)
HPV = n

λ̂n1

p∑
j=2

λ̂−1
nj

(
θ̃

′
nj Snθ

0
1
)2

> χ2
p−1,1−α,

respectively, where θ̃n2, . . . , θ̃np result from the Gram–Schmidt orthogonalization in (1.1) ap-
plied to θ0

1, θ̂n2, . . . , θ̂np . Under Pμμμn,σn,θ1,rn,v , the sample eigenvalue λ̂nj is uniquely defined

with probability one, but θ̂nj is, still with probability one, defined up to a sign only. Clearly,
this sign does not play any role in (2.1)–(2.2), hence will be fixed arbitrarily. At a few places
below, however, this sign will need to be fixed in an appropriate way.

For obvious reasons, the asymptotic behavior of Sn will play a crucial role when inves-
tigating the asymptotic properties of the tests above. To describe this behavior, we need to
introduce the following notation. For an � × � matrix A, denote as vec(A) the vector ob-
tained by stacking the columns of A on top of each other. We will let A⊗2 := A ⊗ A, where
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A ⊗ B is the Kronecker product of A and B. The commutation matrix Kk,�, that is such that
Kk,�(vec A) = vec(A′) for any k × � matrix A, satisfies Kp,k(A ⊗ B) = (B ⊗ A)Kq,� for any
k × � matrix A and p × q matrix B; see, for example, Magnus and Neudecker (2007). If
X is p-variate standard normal, then the covariance matrix of vec(XX′) is Ip2 + Kp , with
Kp := Kp,p; the Lévy–Lindeberg central limit theorem then easily provides the following
result.

LEMMA 2.1. Fix a unit p-vector θ1, v > 0 and a bounded positive real sequence (rn).
Then, under P0,1,θ1,rn,v ,

√
n(�

−1/2
n )⊗2vec(Sn − �n) is asymptotically normal with mean

zero and covariance matrix Ip2 + Kp . In particular, (i) if rn ≡ 1, then
√

nvec(Sn − �n)

is asymptotically normal with mean zero and covariance matrix (Ip2 + Kp)(�(v))⊗2, with
�(v) := Ip + vθ1θ

′
1; (ii) if rn is o(1), then

√
nvec(Sn − �n) is asymptotically normal with

mean zero and covariance matrix Ip2 + Kp .

Clearly, the tests φA and φHPV above are invariant under translations and scale transfor-
mations, that is, respectively, under transformations of the form (Xn1, . . . ,Xnn) �→ (Xn1 +
t, . . . ,Xnn + t), with t ∈ R

p , and (Xn1, . . . ,Xnn) �→ (sXn1, . . . , sXnn), with s > 0. This
implies that, when investigating the behavior of these tests, we may assume without loss
of generality that μμμn ≡ 0 and σn ≡ 1, that is, we may restrict to hypotheses of the form
Pθ1,rn,v := P0,1,θ1,rn,v , as we already did in Lemma 2.1. We therefore restrict to such hy-
potheses in the rest of the paper.

The tests φA and φHPV are based on statistics that do not only involve the sample co-
variance matrix Sn, but also the corresponding sample eigenvalues and eigenvectors. It is
therefore no surprise that investigating the asymptotic behavior of these tests under weak
identifiability will require controlling the asymptotic behaviors of sample eigenvalues and
eigenvectors. For eigenvalues, we have the following result (throughout, diag(A1, . . . ,Am)

stands for the block-diagonal matrix with diagonal blocks A1, . . . ,Am).

LEMMA 2.2. Fix a unit p-vector θ1, v > 0 and a bounded positive real sequence (rn).
Let Z(v) be a p × p random matrix such that vec(Z(v)) ∼N (0, (Ip2 + Kp)(�(v))⊗2), with
�(v) := diag(1 + v,1, . . . ,1), and let Z22(v) be the matrix obtained from Z(v) by deleting
its first row and first column. Write Z := Z(0) and Z22 := Z22(0). Then, under Pθ1,rn,v ,

���n := (√
n
(
λ̂n1 − (1 + rnv)

)
,
√

n(λ̂n2 − 1), . . . ,
√

n(λ̂np − 1)
)′ D→ ��� = (�1, . . . , �p)′,

where
D→ denotes weak convergence and where ��� is as follows:

(i) if rn ≡ 1, then �1 and (�2, . . . , �p)′ are mutually independent, �1 is normal with mean
zero and variance 2(1 + v)2, and �2 ≥ · · · ≥ �p are the eigenvalues of Z22(v);

(ii) if rn is o(1) with
√

nrn → ∞, then �1 and (�2, . . . , �p)′ are mutually independent, �1
is normal with mean zero and variance 2, and �2 ≥ · · · ≥ �p are the eigenvalues of Z22;

(iii) if rn = 1/
√

n, then �1 is the largest eigenvalue of Z − diag(0, v, . . . , v) and �2 ≥
· · · ≥ �p are the p − 1 smallest eigenvalues of Z + diag(v,0, . . . ,0);

(iv) if rn = o(1/
√

n), then ��� is the vector of eigenvalues of Z (in decreasing order), hence
has density

(2.3) (�1, . . . , �p)′ �→ bpexp

(
−1

4

p∑
j=1

�2
j

)( ∏
1≤k<j≤p

(�k − �j )

)
I[�1 ≥ · · · ≥ �p],

where bp is a normalizing constant and where I[A] is the indicator function of A.
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Lemma 2.2 shows that, unlike the sample covariance matrix Sn, sample eigenvalues exhibit
an asymptotic behavior that crucially depends on (rn). The important threshold, associated
with rn = 1/

√
n, provides sequences of hypotheses Pθ1,rn,v that are contiguous to the spheri-

cal hypotheses Pθ1,0,v under which the first eigenvector θ1 is unidentified (contiguity follows,
e.g., from Proposition 2.1 in Hallin and Paindaveine (2006)). Lemma 2.2 then identifies four
regimes that will be present throughout our double asymptotic investigation below, namely
away from contiguity (rn ≡ 1, case (i)), above contiguity (rn is o(1) with

√
nrn → ∞, case

(ii)), under contiguity (rn = 1/
√

n, case (iii)), and under strict contiguity (rn = o(1/
√

n),
case (iv)).

In the high-dimensional setup where p = pn is such that p/n → γ −2 ∈ (0,1], a related
phase transition phenomenon has been identified in Baik, Ben Arous and Péché (2005), in
the case of complex-valued Gaussian observations. More precisely, in the single-spiked case
considered in the present paper, Theorem 1.1 of Baik, Ben Arous and Péché (2005) proves
that the asymptotic behavior of λ̂n1 crucially depends on the ratio ρ of λn1 to the common
value of λnj , j = 2, . . . , p; there, ρ is essentially of the form ρ = 1+C

√
p/n(→ 1+Cγ −1),

for some constant C ≥ 1 whose value is showed to strongly impact the weak limit and consis-
tency rate of λ̂n1. Note that, in contrast, several rates are considered for ρ = ρn in Lemma 2.2
above, and that λ̂n1 exhibits the same consistency rate in each case.

While Lemmas 2.1–2.2 will be sufficient to study the asymptotic behavior of φHPV, the test
φA, as hinted by the expression in (2.1), will further require investigating the joint asymptotic

behavior of θ̂
′
n2θ

0
1, . . . , θ̂

′
npθ0

1. To do so, fix arbitrary p-vectors θ2, . . . , θp such that � :=
(θ0

1, θ2, . . . , θp) is orthogonal. Let further �̂n := (θ̂n1, . . . , θ̂np), where the “signs” of θ̂nj ,
j = 1, . . . , p, are fixed by the constraint that, with probability one, all entries in the first
column of

(2.4) En := �̂
′
n� =

(
En,11 En,12
En,21 En,22

)

are positive (note that all entries of En are almost surely nonzero). With this notation, En,21

collects the random variables θ̂
′
n2θ

0
1, . . . , θ̂

′
npθ0

1 of interest above. We then have the following
result.

LEMMA 2.3. Fix a unit p-vector θ1, v > 0 and a bounded positive real sequence
(rn). Let Z be a p × p random matrix such that vec(Z) ∼ N (0, Ip2 + Kp). Let E(v) :=
(w1(v), . . . ,wp(v))′, where wj (v) = (wj1(v), . . . ,wjp(v))′ is the unit eigenvector associ-
ated with the j th largest eigenvalue of Z + diag(v,0, . . . ,0) and such that wj1(v) > 0 almost
surely. Extending the definitions to the case v = 0, write E := E(0). Then, we have the fol-
lowing under Pθ1,rn,v :

(i) if rn ≡ 1, then En,11 = 1 + oP(1), En,22E′
n,22 = Ip−1 + oP(1),

√
nEn,21 = OP(1), and

both
√

nE′
n,22En,21 and

√
nE′

n,12 are asymptotically normal with mean zero and covariance

matrix v−2(1 + v)Ip−1;
(ii) if rn is o(1) with

√
nrn → ∞, then En,11 = 1 + oP(1), En,22E′

n,22 = Ip−1 + oP(1),√
nrnEn,21 = OP(1), and both

√
nrnE′

n,22En,21 and
√

nrnE′
n,12 are asymptotically normal

with mean zero and covariance matrix v−2Ip−1;
(iii) if rn = 1/

√
n, then En converges weakly to E(v);

(iv) if rn = o(1/
√

n), then En converges weakly to E.

This result shows that the asymptotic behavior of En,21, which, as mentioned above, is the
only part of En involved in the Anderson test statistic QA, depends on the regimes identified
in Lemma 2.2. (i) Away from contiguity, En,21 converges to the zero vector in probability at
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the standard root-n rate. (ii) Above contiguity, En,21 is still oP(1), but the rate of convergence
is slower. (iii) Under contiguity, consistency is lost and En,21 converges weakly to a distri-
bution that still depends on v. (iv) Under strict contiguity, on the contrary, the asymptotic
distribution of En does not depend on v and inspection of the proof of Lemma 2.3 reveals
that this asymptotic distribution is the same as the one we would obtain for v = 0. In other
words, the asymptotic distribution of En is then the same as in the spherical Gaussian case, so
that, up to the fact that E has almost surely positive entries in its first column (a constraint in-
herited from the corresponding one on En), this asymptotic distribution is the invariant Haar
distribution on the group of p × p orthogonal matrices; see Anderson (1963), page 126.

3. Null results. In this section, we will study the null asymptotic behaviors of φA and
φHPV under weak identifiability, that is, we do so under the sequences of (null) hypotheses
Pθ0

1,rn,v introduced in the previous section. Before doing so theoretically, we consider the fol-
lowing Monte Carlo exercise. For any � = 0,1, . . . ,5, we generated M = 10,000 mutually
independent random samples X(�)

i , i = 1, . . . , n, from the (p = 10)-variate normal distribu-
tion with mean zero and covariance matrix

(3.1) �(�)
n := Ip + n−�/6θ0

1θ
0′
1 ,

where θ0
1 is the first vector of the canonical basis of R

p . For each sample, we performed

the tests φHPV and φA for H(n)
0 : θ1 = θ0

1 at nominal level 5%. The value of � allows to
consider the various regimes above, namely (i) away from contiguity (� = 0), (ii) beyond
contiguity (� = 1,2), (iii) under contiguity (� = 3), and (iv) under strict contiguity (� = 4,5).
Increasing values of � therefore provide harder and harder inference problems. Figure 1,
that reports the resulting rejection frequencies for n = 200 and n = 500,000, suggests that
φHPV asymptotically shows the target Type 1 risk in all regimes, hence is validity-robust to
weak identifiability. In sharp contrast, φA seems to exhibit the right asymptotic null size in
regimes (i)–(ii) only, as it dramatically overrejects the null hypothesis (even asymptotically)
in regimes (iii)–(iv).

We now turn to the theoretical investigation of the null asymptotic behaviors of φA and
φHPV under weak identifiability. Obviously, this will heavily rely on Lemmas 2.2–2.3. For
φHPV, we have the following result.

FIG. 1. Empirical rejection frequencies, under the null hypothesis, of the tests φHPV and φA performed at
nominal level 5%. Results are based on M = 10,000 independent ten-dimensional Gaussian random samples of
size n = 200 (left) and size n = 500,000 (right). Increasing values of � bring the underlying spiked covariance
matrix closer and closer to a multiple of the identity matrix; see Section 3 for details. The link between the values
of � and the asymptotic regimes (i)–(iv) from Section 2 is provided in each barplot.
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THEOREM 3.1. Fix a unit p-vector θ0
1, v > 0 and a bounded positive real sequence (rn).

Then, under Pθ0
1,rn,v ,

QHPV
D→ χ2

p−1,

so that, in all regimes (i)–(iv) from the previous section, the test φHPV has asymptotic size α

under the null hypothesis.

This result confirms that the test φHPV is validity-robust to weak identifiability in the sense
that it will asymptotically meet the nominal level constraint in scenarios that are arbitrarily
close to the spherical case. As hinted by the above Monte Carlo exercise, the situation is more
complex for the Anderson test φA. We have the following result.

THEOREM 3.2. Fix a unit p-vector θ0
1, v > 0 and a bounded positive real sequence (rn).

Let Z be a p × p random matrix such that vec(Z) ∼ N (0, Ip2 + Kp). Then, we have the
following under Pθ0

1,rn,v :

(i)–(ii) if rn ≡ 1 or if rn is o(1) with
√

nrn → ∞, then

QA
D→ χ2

p−1,

so that the test φA has asymptotic size α under the null hypothesis;
(iii) if rn = 1/

√
n, then

QA
D→

p∑
j=2

(
�1(v) − �j (v)

)2(
wj1(v)

)2
,

where �1(v) ≥ · · · ≥ �p(v) are the eigenvalues of Z + diag(v,0, . . . ,0) and wj (v) =
(wj1(v), . . . ,wjp(v))′ is an arbitrary unit eigenvector associated with �j (v) (with proba-
bility one, the only freedom in the choice of wj (v) is in the sign of wj1(v), that is clearly
irrelevant here);

(iv) if rn = o(1/
√

n), then

QA
D→

p∑
j=2

(�1 − �j )
2w2

j1,

where �1 ≥ · · · ≥ �p are the eigenvalues of Z and wj = (wj1, . . . ,wjp)′ is an arbitrary unit
eigenvector associated with �j .

This result ensures that the Anderson test asymptotically meets the nominal level con-
straint in regimes (i)–(ii). To see whether or not this extends to regimes (iii)–(iv), we need to
investigate the asymptotic distributions in Theorem 3.2(iii)–(iv). We consider first the asymp-
totic distribution of QA under Pθ0

1,1/
√

n,v , that is, in the contiguity regime (iii). To do so, we
generated, for various dimensions p and for each v = 8(�−1)/19, � = 1, . . . ,20, in a regular
grid of 20 v-values in [0,8], a collection of M = 106 independent values Z1(v), . . . ,ZM(v)

from the asymptotic distribution in Theorem 3.2(iii). For each p and v, we then recorded

(3.2) r
(iii)
p,0.95(v) := 1

M

M∑
m=1

I
[
Zm(v) > χ2

p−1,0.95
]
,

which is an excellent approximation of the asymptotic null size of the 5%-level Anderson test
under Pθ0

1,1/
√

n,v (a 99%-confidence interval for the true asymptotic size has a length smaller
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FIG. 2. (Left) Plots, for various dimensions p, of the approximate asymptotic Type I risk r
(iii)
p,0.95(v) (see (3.2))

of the 5%-level Anderson test for H0 : θ1 = θ0
1 under P

θ0
1,rn,v

, with rn = 1/
√

n (regime (iii)). The dashed curves

report the corresponding rejection frequencies for sample size n = 10,000 (a regular grid of 20 v-values in [0,8]
was considered and rejection frequencies were computed from 2,500 independent replications in each case).

(Right) Plots, for the same dimensions p, of the approximate asymptotic Type I risk r
(iv)
p,α (see (3.3)) of the level-α

Anderson test for H0 : θ1 = θ0
1 under P

θ0
1,rn,v

, with rn = o(1/
√

n) (regime (iv)). The dashed curves report the cor-

responding rejection frequencies computed from 2500 independent standard normal samples of size n = 10,000.
The thin curves represent what the asymptotic Type I risk of the level-α Anderson test would be if the null asymp-
totic distribution of QA in regime (iv) would be 4χ2

p−1; see the discussion below Corollary 3.1.

than 0.0026). The left panel of Figure 2 plots r
(iii)
p,0.95(v) as a function of v for several dimen-

sions p. Clearly, the Anderson test is, irrespective of p and v, asymptotically overrejecting
the null hypothesis. The asymptotic Type I risk increases with p and decreases with v (let-
ting v go to infinity essentially provides regime (ii), which explains that the Type I risk then
converges to the nominal level). In the right panel of Figure 2, we generated, still for various
values of p, M = 106 independent values Z1, . . . ,ZM from the asymptotic distribution in
Theorem 3.2(iv) and plotted the function mapping α to

(3.3) r(iv)
p,α := 1

M

M∑
m=1

I
[
Zm > χ2

p−1,1−α

]
,

which accurately approximates the asymptotic Type I risk of the level-α Anderson test in
regime (iv). Irrespective of α, the Anderson test is still overrejecting the null hypothesis
asymptotically and the asymptotic Type I risk increases with p. Overrejection is dramatic: for
instance, in dimension 10, the asymptotic Type I risk of the 5%-level Anderson test exceeds
92%. Empirical rejection frequencies of the Anderson test, which are also showed in Figure 2,
clearly support the asymptotic results in Theorem 3.2(iii)–(iv).

The asymptotic distributions in Theorem 3.2(iii)–(iv) are explicitly described yet are quite
complicated. Remarkably, for regime (iv), the asymptotic distribution is a classical one in the
bivariate case p = 2. More precisely, we have the following result.

COROLLARY 3.1. Fix p = 2, a unit p-vector θ0
1, v > 0 and a positive real sequence (rn)

such that
√

nrn → 0. Then, under Pθ0
1,rn,v ,

QA
D→ 4χ2

1 ,
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so that, irrespective of α ∈ (0,1), the asymptotic size of φA under the null hypothesis is strictly
larger than α.

This result shows in a striking way the impact weak identifiability may have, in the bi-
variate case, on the null asymptotic distribution of the Anderson test statistic QA: away
from contiguity and beyond contiguity (regimes (i)–(ii)), QA is asymptotically χ2

1 under the
null hypothesis (Theorem 3.2), whereas under strict contiguity (regime (iv)), this statistic is
asymptotically 4χ2

1 under the null hypothesis. The result also allows us to quantify, for any
nominal level α, how much the bivariate Anderson test will asymptotically overreject the null
hypothesis in regime (iv). More precisely, the Type 1 risk, in this regime, of the level-α bivari-
ate Anderson test converges to P[4Z2 > χ2

1,1−α], where Z is standard normal. For α = 0.1%,
1% and 5%, this provides in regime (iv) an asymptotic Type 1 risk of about 10%, 19.8%
and 32.7%, respectively (which exceeds the nominal level by about a factor 100, 20 and 6.5,
respectively)! In dimensions p ≥ 3, the null asymptotic distribution of QA in regime (iv), as
showed in the right panel of Figure 2, is very close to 4χ2

p−1, particularly so for p = 3. Yet

the distribution is not 4χ2
p−1. For instance, in dimension p = 3, it can be showed that the null

asymptotic distribution of QA in regime (iv) has mean 49/6, whereas the distribution 4χ2
2

has mean 8 = 48/6 (also, computing the variance of the null asymptotic distribution of QA
shows that this distribution is not of the form λχ2

2 for any λ > 0).
We close this section with a last simulation illustrating Theorem 3.2 and its consequences.

To do so, we generated, for any � = 0,1, . . . ,5, a collection of M = 10,000 mutually in-
dependent random samples of size n = 500,000 from the bivariate normal distribution with
mean zero and covariance matrix �(�)

n := I2 +n−�/6θ0
1θ

0′
1 , with θ0

1 = (1,0)′. This is therefore
essentially the bivariate version of the ten-dimensional numerical exercise leading to Figure 1.
For each value of �, Figure 3 provides histograms of the resulting M values of the Ander-
son test statistic QA, along with plots of the densities of the χ2

1 and 4χ2
1 distributions, that

is, densities of the null asymptotic distribution of QA in regimes (i)–(ii) and in regime (iv),
respectively. In these three regimes, the histograms are perfectly fitted by the corresponding
density. The figure also provides the empirical Type 1 risks of the level-α Anderson test for
α = 0.1%, 1% and 5%. Clearly, these Type 1 risks are close to the theoretical asymptotic ones
both in regimes (i)–(ii) (namely, α) and in regime (iv) (namely, the Type 1 risks provided in
the previous paragraph).

4. Non-null and optimality results. The previous section shows that, unlike φA, the test
φHPV is validity-robust to weak identifiability. However, the trivial level-α test, that randomly
rejects the null hypothesis with probability α, of course enjoys the same robustness property.
This motivates investigating whether or not the validity-robustness of φHPV is obtained at
the expense of power. In this section, we therefore study the asymptotic non-null behavior
of φHPV and show that this test actually still enjoys strong optimality properties under weak
identifiability.

Throughout, optimality is to be understood in the Le Cam sense. In the present hypothesis
testing context, Le Cam optimality requires studying local log-likelihood ratios of the form

(4.1) 
n := log
dPθ0

1+νnτn,rn,v

dPθ0
1,rn,v

,

where the bounded sequence (τn) in R
p and the positive real sequence (νn) are such that, for

any n, θ0
1 + νnτn is a unit p-vector, hence, is an admissible perturbation of θ0

1. This imposes
that (τn) satisfies

(4.2) θ0′
1 τn = −νn

2
‖τn‖2
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FIG. 3. For each � = 0,1, . . . ,5, histograms of values of QA from M = 10,000 independent (null) Gaussian
random samples of size n = 500,000 and dimension p = 2. Increasing values of � bring the underlying spiked
covariance matrix closer and closer to a multiple of the identity matrix; see Section 3 for details. The links between
the values of � and the asymptotic regimes (i)–(iv) from Section 2 are provided in each case. For any value of �,
the density of the null asymptotic distribution of QA in regimes (i)–(ii) (resp., in regime (iv)) is plotted in orange
(resp., in blue) and the empirical Type 1 risk of the level-α Anderson test is provided for α = 0.1%, 1% and 5%.

for any n. The following result then describes, in each of the four regimes (i)–(iv) considered
in the previous sections, the asymptotic behavior of the log-likelihood ratio 
n.

THEOREM 4.1. Fix a unit p-vector θ0
1, v > 0 and a bounded positive real sequence (rn).

Then, we have the following under Pθ0
1,rn,v :

(i) if rn ≡ 1, then, with νn = 1/
√

n,

�n = v

1 + v

√
n
(
Ip − θ0

1θ
0′
1

)
(Sn − �n)θ

0
1 and � = v2

1 + v

(
Ip − θ0

1θ
0′
1

)
,

we have that 
n = τ ′
n�n − 1

2τ ′
n�τn +oP(1) and that �n is asymptotically normal with mean

zero and covariance matrix �;
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(ii) if rn is o(1) with
√

nrn → ∞, then, with νn = 1/(
√

nrn),

�n = v
√

n
(
Ip − θ0

1θ
0′
1

)
(Sn − �n)θ

0
1 and � = v2(

Ip − θ0
1θ

0′
1

)
,

we similarly have that 
n = τ ′
n�n − 1

2τ ′
n�τn + oP(1) and that �n is still asymptotically

normal with mean zero and covariance matrix �;
(iii) if rn = 1/

√
n, then, letting νn ≡ 1,


n = τ ′
n

[
v
√

n(Sn − �n)

(
θ0

1 + 1

2
τn

)]
(4.3)

− v2

2
‖τn‖2 + v2

8
‖τn‖4 + oP(1),

where, if (τn) → τ , then τ ′
n

√
n(Sn − �n)(θ

0
1 + 1

2τn) is asymptotically normal with mean
zero and variance ‖τ‖2 − 1

4‖τ‖4;
(iv) if rn = o(1/

√
n), then, even with νn ≡ 1, we have that 
n is oP(1).

This result shows that, for any fixed v > 0 and for any fixed sequence (rn) associated with
regime (i) (away from contiguity) or regime (ii) (beyond contiguity), the sequence of models
{Pθ1,rn,v : θ1 ∈ Sp−1} is LAN (locally asymptotically normal), with central sequence

(4.4) �n,δ :=
√

nv

1 + δv

(
Ip − θ0

1θ
0′
1

)
(Sn − �n)θ

0
1

and Fisher information matrix

(4.5) �δ := v2

1 + δv

(
Ip − θ0

1θ
0′
1

)
,

where δ := 1 if regime (i) is considered and δ := 0 otherwise. Denoting as A− the Moore–
Penrose inverse of A, it follows that the locally asymptotically maximin test for H(n)

0 : θ1 =
θ0

1 against H(n)
1 : θ1 �= θ0

1 rejects the null hypothesis at asymptotic level α when

(4.6) Qδ = �′
n,δ�

−
δ �n,δ = n

1 + δv
θ0′

1 Sn

(
Ip − θ0

1θ
0′
1

)
Snθ

0
1 > χ2

p−1,1−α.

In view of (S.2.1) in the proof of Theorem 3.1, we have that QHPV = Qδ + oP(1) under
Pθ0

1,rn,v , for any v > 0 and any bounded positive sequence (rn), hence also, from contiguity,
under local alternatives of the form Pθ0

1+τn/(
√

nrn),rn,v . We may therefore conclude that, away
from contiguity and beyond contiguity, the test φHPV is Le Cam optimal for the problem at
hand. We have the following result.

THEOREM 4.2. Fix a unit p-vector θ0
1, v > 0 and a positive real sequence (rn) satisfying

(i) rn ≡ 1 or (ii) rn = o(1) with
√

nrn → ∞. Then, the test φHPV is locally asymptotically
maximin at level α when testing H(n)

0 : θ1 = θ0
1 against H(n)

1 : θ1 �= θ0
1. Moreover, under

Pθ0
1+τn/(

√
nrn),rn,v , with (τn) → τ , the statistic QHPV is asymptotically noncentral chi-square

with p − 1 degrees of freedom and with noncentrality parameter (v2/(1 + δv))‖τ‖2.

Under strict contiguity (Theorem 4.1(iv)), no asymptotic level-α test can show nontrivial
asymptotic powers against the most severe alternatives of the form θ0

1 + τ . Therefore, the
test φHPV is also optimal in regime (iv), even though this optimality is degenerate since the
trivial level-α test is also optimal in this regime. We then turn to Theorem 4.1(iii), where the
situation is much less standard, as the sequence of experiments {Pθ1,1/

√
n,v : θ1 ∈ Sp−1} there
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is neither LAN, nor LAMN (locally asymptotically mixed normal), nor LAQ (locally asymp-
totically quadratic); see Jeganathan (1995) and Roussas and Bhattacharya (2011). While, to
the best of our knowledge, the form of optimal tests in such nonstandard limiting experi-
ments remains unknown, we will still be able below to draw conclusions about optimality
for small values of τ . Before doing so, note that, by using the Le Cam first lemma (see, e.g.,
Lemma 6.4 in van der Vaart (1998)), Theorem 4.1(iii) readily entails that, for any v > 0,
the sequences of hypotheses Pθ0

1,1/
√

n,v and Pθ0
1+τn,1/

√
n,v , with (τn) → τ , are mutually con-

tiguous. Consequently, the asymptotic non-null distribution of the test statistic QHPV under
contiguous alternatives may still be obtained from the Le Cam third lemma. We have the
following result.

THEOREM 4.3. Fix a unit p-vector θ0
1, v > 0 and a positive real sequence (rn) satisfy-

ing (iii) rn = 1/
√

n or (iv) rn = o(1/
√

n). Then, in case (iii), the test statistic QHPV, under
Pθ0

1+τn,rn,v , with (τn) → τ , is asymptotically noncentral chi-square with p − 1 degrees of
freedom and with noncentrality parameter

(4.7)
v2

16
‖τ‖2(

4 − ‖τ‖2)(
2 − ‖τ‖2)2

,

so that the test φHPV is rate-consistent. In case (iv), this test is locally asymptotically max-
imin at level α when testing H(n)

0 : θ1 = θ0
1 against H(n)

1 : θ1 �= θ0
1, but trivially so since its

asymptotic power against any sequence of alternatives Pθ0
1+τn,rn,v , with (τn) → τ , is then

equal to α.

Figure 4 plots the noncentrality parameter in (4.7) as a function of τ ∈ [0,
√

2] (since θ1

is defined up to a sign, one may restrict to alternatives θ0
1 + τ in the hemisphere centered at

θ0
1), as well as the resulting asymptotic powers of the test φHPV in dimensions p = 2,3. This

test shows no asymptotic power when ‖τ‖ = √
2 (that is, when θ1 is orthogonal to θ0

1), hence
clearly does not enjoy global-in-τ optimality properties in regime (iii). As we now explain,
however, φHPV exhibits excellent local-in-τ optimality properties in this regime. In order to
see this, note that decomposing Ip into (Ip − θ0

1θ
0′
1 )+ θ0

1θ
0′
1 and using repeatedly (4.2) allows

FIG. 4. (Left) Noncentrality parameters (4.7) and (4.10), as a function of ‖τ‖(∈ [0,
√

2]), in the asymptotic
noncentral chi-square distributions of the test statistics of φHPV and φoracle, respectively, under alternatives of
the form P

θ0
1+τ ,1/

√
n,1. (Right) The corresponding asymptotic power curves in dimensions p = 2 and p = 3, as

well as the empirical power curves resulting from the Monte Carlo exercise described at the end of Section 4.
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us to rewrite (4.3) as


n = τ ′
n�n,0 − 1

2
τ ′

n�0τn

(4.8)

−
√

nv

2
‖τn‖2θ0′

1 (Sn − �n)θ
0
1 +

√
nv

2
τ ′

n(Sn − �n)τn + oP(1),

where �n,0 and �0 were defined in (4.4) and (4.5), respectively. For small perturbations τn,
the righthand side of (4.8), after neglecting the second-order random terms in τn, becomes

τ ′
n�n,0 − 1

2
τ ′

n�0τn + oP(1),

so that the sequence of experiments is then LAN again, with central sequence �n,0 and Fisher
information matrix �0. This implies that the test in (4.6) and (in view of the asymptotic
equivalence stated below (4.6)) the test φHPV are locally(-in-τ ) asymptotically maximin.

Now, if the objective is to construct a test that will perform well also for large perturbations
τn in regime (iii), it may be tempting to consider as a test statistic the linear-in-τ part of
the random term in (4.3), namely �̃n := v

√
n(Sn − �n)θ

0
1. Since �̃n, under Pθ0

1,1/
√

n,v , is

asymptotically normal with mean zero and covariance �̃ := v2(Ip + θ0
1θ

0′
1 ), the resulting test,

φoracle say, rejects the null hypothesis at asymptotic level α when

Q̃ := �̃
′
n�̃

−1
�̃n = nθ0′

1 (Sn − �n)
(
Ip + θ0

1θ
0′
1

)−1
(Sn − �n)θ

0
1

= n

(
Snθ

0
1 −

(
1 + v√

n

)
θ0

1

)′(
Ip − 1

2
θ0

1θ
0′
1

)(
Snθ

0
1 −

(
1 + v√

n

)
θ0

1

)
(4.9)

> χ2
p,1−α;

the terminology “oracle” stresses that this test requires knowing the true value of v. The Le
Cam third lemma entails that �̃n, under Pθ0

1+τn,1/
√

n,v , with (τn) → τ , is asymptotically

normal with mean v2(1 − 1
2‖τ‖2)τ − (v2/2)‖τ‖2θ0

1 and covariance matrix �̃. Therefore,
under the same sequence of hypotheses, Q̃ is asymptotically noncentral chi-square with p

degrees of freedom and with noncentrality parameter

(4.10)
v2

16
‖τ‖2(

4 − ‖τ‖2)(
4 − 2‖τ‖2 + 1

2
‖τ‖4

)
.

Note that the difference between this noncentrality parameter and the one in (4.7) is O(‖τ‖4)

as ‖τ‖ goes to zero. Since φHPV is based on a smaller number of degrees of freedom (p − 1,
versus p for the oracle test), it will therefore exhibit larger asymptotic powers than the oracle
test for small values of τ , which reflects the aforementioned local-in-τ optimality of φHPV.

Figure 4 also plots the noncentrality parameter in (4.10) as a function of ‖τ‖, as well as
the asymptotic powers of the oracle test in dimensions p = 2,3. As predicted above, φHPV
dominates φoracle for small values of ‖τ‖, that is, for small perturbations. The opposite hap-
pens for large values of the perturbation and it is seen that φoracle overall is quite efficient.
It is important to recall, however, that this test cannot be used in practice since it requires
knowing the value of v. The figure further reports the results of a Monte Carlo exercise we
conducted to check correctness of the highly nonstandard asymptotic results obtained in the
present regime (iii). In this simulation, we generated M = 200,000 mutually independent ran-
dom samples X(k)

i , i = 1, . . . , n = 10,000, k = 0,1, . . . ,20, of p-variate (p = 2,3) Gaussian
random vectors with mean zero and covariance matrix

(4.11) �(k)
n := Ip + n−1/2(

θ0
1 + τ k

)(
θ0

1 + τ k

)′
,
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where θ0
1 = (1,0, . . . ,0)′ ∈ R

p and θ0
1 + τ k = (cos(kπ/40), sin(kπ/40),0, . . . ,0)′ ∈ R

p . In

each replication, we performed the tests φHPV and φoracle for H(n)
0 : θ1 = θ0

1 at nominal level
5%. The value k = 0 is associated with the null hypothesis, whereas the values k = 1, . . . ,20
provide increasingly severe alternatives, the most severe of which involves a first eigenvector
that is orthogonal to θ0

1. The resulting rejection frequencies are plotted in the right panel of
Figure 4. Clearly, they are in perfect agreement with the asymptotic powers, which supports
our theoretical results.

We conclude this section by stressing that, as announced in the Introduction, the contiguity
rate in Theorem 4.1 depends on the regime considered. Clearly, the weaker the identifiability
(that is, the closer the underlying distribution to the spherical Gaussian one), the slower the
contiguity rate, that is, the hardest the inference problem on θ1.

5. Extension to the elliptical case. Since we focused so far on multinormal distribu-
tions, a natural question is whether or not our results extend away from the Gaussian case.
In this section, we discuss this in the framework of the most classical extension of multinor-
mal distributions, namely in the class of elliptical distributions. More specifically, we will
consider triangular arrays of p-variate observations Xni , i = 1, . . . , n, n = 1,2, . . . , where
Xn1, . . . ,Xnn form a random sample from the p-variate elliptical distribution with location
μμμn, covariance matrix �n = σn(Ip + rnvθ1θ

′
1) (as in (1.2)) and radial density f . That is,

we assume that Xni admits the probability density function (with respect to the Lebesgue
measure on R

p)

(5.1) x �→ cp,f

(det�n)1/2 f
(√

(x −μμμn)
′�−1

n (x −μμμn)
)
,

where cp,f > 0 is a normalization factor and where the radial density f : R+ → R
+ is such

that the covariance matrix of Xni exists and is equal to �n; f is not a genuine density (as it
does not integrate to one), but it determines the density of the Mahalanobis distance

dni :=
√

(Xni −μμμn)
′�−1

n (Xni −μμμn),

which is given by r �→ (μp−1,f )−1rp−1f (r)I[r ≥ 0], with μ�,f := ∫ ∞
0 r�f (r) dr . In this

section, we will assume that Xni , or equivalently dni , has finite fourth-order moments, that
is, we will assume that f belongs to the collection F of radial densities f above that further
satisfy μp+3,f < ∞. This guarantees finiteness of the elliptical kurtosis coefficient

(5.2) κp(f ) := pE[d4
ni]

(p + 2)(E[d2
ni])2

− 1
(
= pμp−1,f μp+3,f

(p + 2)μ2
p+1,f

− 1
)
;

see, for example, page 54 of Anderson (2003). Classical radial densities in F include the
Gaussian one φ(r) = exp(−r2/2) or the Student tν one fν(r) = (1 + r2/(ν − 2))−(p+ν)/2,
with ν > 4. The sequence of hypotheses associated with the triangular arrays of observations
above will be denoted as Pμμμn,σn,θ1,rn,v,f .

When it comes to testing the null hypothesis H(n)
0 : θ1 = θ0

1, it is well known that, even
in the standard regime (i) (rn ≡ 1), the Anderson test statistic QA in (2.1) and the HPV
test statistic QHPV in (2.2) are asymptotically χ2

p−1 under the sequence of null hypotheses
Pμμμn,σn,θ0

1,rn,v,f if and only if κp(f ) takes the same value κp(φ) = 0 as in the Gaussian case;
see, for example, Hallin, Paindaveine and Verdebout (2010). Consequently, there is no guar-
antee, even in regime (i), that the corresponding tests φA and φHPV meet the asymptotic
nominal level constraint under ellipticity, and it therefore makes little sense, in the elliptical
case, to investigate the robustness of these tests to weak identifiability. This explains why we
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will rather focus on their robustified versions φ
†
A and φ

†
HPV, that reject the null hypothesis at

asymptotic level α whenever

(5.3) Q
(n)†
A := Q

(n)
A

1 + κ̂
(n)
p

> χ2
p−1,1−α and Q

(n)†
HPV := Q

(n)
HPV

1 + κ̂
(n)
p

> χ2
p−1,1−α,

respectively, where

κ̂ (n)
p := p{ 1

n

∑n
i=1((Xni − X̄n)

′S−1
n (Xni − X̄n))

2}
(p + 2){ 1

n

∑n
i=1(Xni − X̄n)′S−1

n (Xni − X̄n)}2
− 1

(5.4)

= 1

np(p + 2)

n∑
i=1

(
(Xni − X̄n)

′S−1
n (Xni − X̄n)

)2 − 1

is the natural estimator of the kurtosis coefficient κp(f ). In the standard regime (i), Tyler
(1981, 1983) showed that φ

†
A has asymptotic size α under Pμμμn,σn,θ0

1,rn,v,f , whereas Hallin,

Paindaveine and Verdebout (2010) proved the same result for φ
†
HPV and established the

asymptotic equivalence of both tests in probability. In the Gaussian case, these tests are, still
in regime (i), asymptotically equivalent to their original versions φA and φHPV, hence inherit
the optimality properties of the latter. The tests φ

†
A and φ

†
HPV may therefore be considered

pseudo-Gaussian versions of their antecedents, since they extend their validity to the class of
elliptical distributions with finite fourth-order moments without sacrificing optimality in the
Gaussian case.

The above considerations make it natural to investigate the robustness of these pseudo-
Gaussian tests to weak identifiability. Since these tests are invariant under translations and
scale transformations, we will still assume, without loss of generality, that μμμn ≡ 0 and
σn ≡ 1 (see the discussion below Lemma 2.1), and we will write accordingly Pθ1,rn,v,f :=
P000,1,θ1,rn,v,f . Note that the Gaussian hypotheses Pθ1,rn,v = Pθ1,rn,v,φ are those we consid-
ered in the previous sections of the paper. Our results will build on the following elliptical
extension of Lemma 2.1.

LEMMA 5.1. Fix a unit p-vector θ0
1, v > 0, a bounded positive real sequence (rn), and

f ∈ F . Then, under Pθ1,rn,v,f ,
√

n(�
−1/2
n )⊗2vec(Sn − �n) is asymptotically normal with

mean zero and covariance matrix (1 + κp(f ))(Ip2 + Kp) + κp(f )(vec Ip)(vec Ip)′. In par-
ticular, (i) if rn ≡ 1, then

√
nvec(Sn − �n) is asymptotically normal with mean zero and

covariance matrix (1 + κp(f ))(Ip2 + Kp)(�(v))⊗2 + κp(f )(vec�(v))(vec�(v))′, still with
�(v) := Ip + vθ1θ

′
1; (ii) if rn is o(1), then

√
nvec(Sn − �n) is asymptotically normal with

mean zero and covariance matrix (1 + κp(f ))(Ip2 + Kp) + κp(f )(vec Ip)(vec Ip)′.

The main result of this section is the following theorem, that in particular extends Theo-
rem 3.1 to the elliptical setup.

THEOREM 5.1. Fix a unit p-vector θ0
1, v > 0, a bounded positive real sequence (rn),

and f ∈F . Then, under Pθ0
1,rn,v,f ,

Q
(n)†
HPV

D→ χ2
p−1,

so that, in all regimes (i)–(iv), the test φ
†
HPV, irrespective of the radial density f ∈ F , has

asymptotic size α under the null hypothesis. Moreover, under Pθ0
1,rn,v,φ ,

(5.5) Q
(n)†
HPV = Q

(n)
HPV + oP(1)

as n → ∞.
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FIG. 5. Empirical rejection frequencies, under the null hypothesis, of the tests φ
†
HPV and φ

†
A performed at nomi-

nal level 5%. Results are based on M = 10,000 independent ten-dimensional random samples of size n = 200 and
size n = 500,000, drawn from t6, t9, t12 and Gaussian distributions. Increasing values of � bring the underlying
spiked covariance matrix closer and closer to a multiple of the identity matrix; see Section 5 for details.

This result shows that the pseudo-Gaussian version φ
†
HPV of φHPV is robust to weak iden-

tifiability under any elliptical distribution with finite fourth-order moments. Since the asymp-
totic equivalence in (5.5) extends, from contiguity, to the (Gaussian) local alternatives iden-
tified in Theorem 4.1, it also directly follows from Theorem 5.1 that φ

†
HPV inherits the opti-

mality properties of φHPV in the multinormal case. For the sake of completeness, we men-
tion that, by using elliptical extensions of Lemmas 2.2–2.3 (see Lemmas S.4.1–S.4.2 in the
Supplementary Material Paindaveine, Remy and Verdebout (2019)), it can be showed that,
irrespective of the elliptical distribution considered, the pseudo-Gaussian test φ

†
A asymptoti-

cally meets the nominal level constraint in regimes (i)–(ii) only, hence is not robust to weak
identifiability. Remarkably, by using the same results, it can also be showed that, under any
bivariate elliptical distribution with finite fourth-order moments, the null asymptotic distribu-
tion of Q

(n)†
A is still 4χ2

1 in regime (iv), which extends Corollary 3.1 to the elliptical setup.
We now illustrate these results through a Monte Carlo exercise that extends to the ellip-

tical setup the one conducted in Figure 1. To do so, for any � = 0,1, . . . ,5, we generated
M = 10,000 mutually independent random samples X(�,s)

i , i = 1, . . . , n, from the (p = 10)-
variate t6 (s = 1), t9 (s = 2), t12 (s = 3), and normal (s = 4) distributions with mean zero and
covariance matrix �(�)

n := Ip + n−�/6θ0
1θ

0′
1 , where θ0

1 is still the first vector of the canoni-
cal basis of Rp . As in Figure 1, this covers regimes (i) (� = 0), (ii) (� = 1,2), (iii) (� = 3),
and (iv) (� = 4,5). Figure 5 reports, for n = 200 and n = 500,000, the resulting rejection
frequencies of the pseudo-Gaussian tests φ

†
HPV and φ

†
A for H(n)

0 : θ1 = θ0
1 at nominal level

5%. Clearly, the results confirm that, irrespective of the underlying elliptical distribution, the
pseudo-Gaussian HPV test is robust to weak identifiability, while the pseudo-Gaussian An-
derson test meets the asymptotic level constraint only in regimes (i)–(ii) (this test strongly
overrejects the null hypothesis in other regimes).

6. Real data example. We now provide a real data illustration on the celebrated Swiss
banknote dataset, which has been considered in numerous multivariate statistics monographs,
such as Flury and Riedwyl (1988), Atkinson, Riani and Cerioli (2004), Härdle and Simar
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(2007) and Koch (2014), but also in many research papers; see, for example, Salibián-Barrera,
Van Aelst and Willems (2006) or Burman and Polonik (2009). The dataset, that is available in
the R package uskewfactors (Murray, Browne and McNicholas (2016)), offers six mea-
surements on 100 genuine and 100 counterfeit old Swiss 1000-franc banknotes. This dataset
was often used to illustrate various multivariate statistics procedures such as, for example, lin-
ear discriminant analysis (Flury and Riedwyl (1988)), principal component analysis (Flury
(1988)), or independent component analysis (Girolami (1999)); we also refer to Shinmura
(2016) for a recent account on discriminant analysis for this dataset.

Here, we aim to complement the PCA analysis conducted in Flury (1988) (see pages 41–
43), hence use the exact same subset of the Swiss banknote data as the one considered there.
More precisely, (i) we focus on four of the six available measurements, namely the width
L of the left side of the banknote, the width R on its right side, the width B of the bottom
margin and the width T of the top margin, all measured in mm×10−1 (rather than in the
original mm); (ii) we also restrict to n = 85 counterfeit bills made by the same forger (it is
well known that the 100 counterfeit bills were made by two different forgers; see, e.g., Flury
and Riedwyl (1988), page 250, or Fritz, García-Escudero and Mayo-Iscar (2012), page 22).
Letting cn = (n − 1)/n ≈ 0.99, the resulting sample covariance matrix is

S = cn

⎛
⎜⎜⎝

6.41 4.89 2.89 −1.30
4.89 9.40 −1.09 0.71
2.89 −1.09 72.42 −43.30

−1.30 0.71 −43.30 40.39

⎞
⎟⎟⎠ ,

with eigenvalues of λ̂1 = 102.69cn, λ̂2 = 13.05cn, λ̂3 = 10.23cn and λ̂4 = 2.66cn, and corre-
sponding eigenvectors

θ̂1 =

⎛
⎜⎜⎝

0.032
−0.012
0.820

−0.571

⎞
⎟⎟⎠ , θ̂2 =

⎛
⎜⎜⎝

0.593
0.797
0.057
0.097

⎞
⎟⎟⎠ ,

θ̂3 =

⎛
⎜⎜⎝

−0.015
−0.129
0.566
0.814

⎞
⎟⎟⎠ and θ̂4 =

⎛
⎜⎜⎝

0.804
−0.590
−0.064
−0.035

⎞
⎟⎟⎠ ;

the unimportant factor cn is used here to ease the comparison with Flury (1988), where the
unbiased version of the sample covariance matrix was adopted throughout. From these es-
timates, Flury concludes that the first principal component is a contrast between B and T ,
hence can be interpreted as the vertical position of the print image on the bill. It is tempting
to interpret the second principal component as an aggregate of L and R, that is, essentially as
the vertical size of the bill. Flury, however, explicitly writes “beware: the second and third
roots are quite close and so the computation of standard errors for the coefficients of θ̂2 and
θ̂3 may be hazardous”. He reports that these eigenvectors should be considered spherical and
that the corresponding standard errors should be ignored. In other words, Flury, due to the
structure of the spectrum, refrains from drawing any conclusion about the second component.

The considerations above make it natural to test that L and R contribute equally to the
second principal component and that they are the only variables to contribute to it. In other
words, it is natural to test the null hypothesis H0 : θ2 = θ0

2, with θ0
2 := (1,1,0,0)′/

√
2. While

the tests discussed in the present paper address testing problems on the first eigenvector θ1,
obvious modifications of these tests allow performing inference on any eigenvector θ j , j =
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FIG. 6. Boxplots of the 85 “leave-one-out” p-values of the Anderson test in (6.1) (left) and HPV test in (6.2)
(right) when testing the null hypothesis H0 : θ2 := (1,1,0,0)′/

√
2. More precisely, these p-values are those ob-

tained when applying the corresponding tests to the 85 subsample of size 84 obtained by removing one observation
in the real data set considered in the PCA analysis of Flury (1988), pages 41–43.

2, . . . , p. In particular, the Anderson test φ
(n)
A and HPV test φ

(n)
HPV for H0 : θ2 = θ0

2 against
H1 : θ2 �= θ0

2 reject the null hypothesis at asymptotic level α whenever

(6.1) n
(
λ̂2θ

0′
2 S−1θ0

2 + λ̂−1
2 θ0′

2 Sθ0
2 − 2

)
> χ2

p−1,1−α

and

(6.2)
n

λ̂2

p∑
j=1,j �=2

λ̂−1
j

(
θ̃

′
j Sθ0

2
)2

> χ2
p−1,1−α,

respectively, where, parallel to (1.1), θ̃1, θ
0
2, θ̃3, . . . , θ̃p results from a Gram–Schmidt or-

thogonalization of θ̂1, θ
0
2, θ̂3, . . . , θ̂p . When applied with θ0

2 := (1,1,0,0)′/
√

2, this HPV
test provides a p-value equal to 0.177, hence does not lead to rejection of the null hypothesis
at any usual nominal level. In contrast, the p-value of the Anderson test in (6.1) is 0.099, so
that this test rejects the null hypothesis at the level 10%. Since the results of this paper show
that the Anderson test tends to strongly overreject the null hypothesis when eigenvalues are
close, practitioners should here be confident that the HPV test provides the right decision.

To somewhat assess the robustness of this result, we performed the same HPV and An-
derson tests on the 85 subsamples obtained by removing one observation from the sample
considered above. For each test, a boxplot of the resulting 85 “leave-one-out” p-values is
provided in Figure 6. Clearly, these boxplots reveal that the Anderson test rejects the null hy-
pothesis much more often than the HPV test. Again, the results of the paper provide a strong
motivation to rely on the outcome of the HPV test in the present context.

7. Wrap up and perspectives. In this paper, we tackled the problem of testing the null
hypothesis H(n)

0 : θ1 = θ0
1 against the alternative H(n)

1 : θ1 �= θ0
1, where θ1 is the eigenvector

associated with the largest eigenvalue of the underlying covariance matrix and where θ0
1 is

some fixed unit vector. We analyzed the asymptotic behavior of the classical Anderson (1963)
test φA and of the Hallin, Paindaveine and Verdebout (2010) test φHPV under sequences
of p-variate Gaussian models with spiked covariance matrices of the form �n = σ 2

n (Ip +
rnvθ1θ

′
1), where (σn) is a positive sequence, v > 0 is fixed, and (rn) is a positive sequence

that converges to zero. We showed that in these situations where θ1 is closer and closer to
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being unidentified, φHPV performs better than φA: (i) φHPV, unlike φA, meets asymptotically
the nominal level constraint without any condition on the rate at which rn converges to zero,
and (ii) φHPV remains locally asymptotically maximin in all regimes, but in the contiguity
regime rn = 1/

√
n where φHPV still enjoys the same optimality property locally in τ . These

considerations, along with the asymptotic equivalence of φHPV and φA in the standard case
rn ≡ 1, clearly imply that the test φHPV, for all practical purposes, should be favored over φA,
all the more so that the results above extend to elliptical distributions if the Anderson and
HPV tests are replaced with their pseudo-Gaussian versions φ

†
A and φ

†
HPV.

To conclude, we discuss some research perspectives. Throughout the paper, we assumed
that the dimension p is fixed. It would be of interest to consider tests that can cope with
high-dimensional situations where p is as large as n or even larger than n, and to investigate
the robustness of these tests to weak identifiability. The tests considered in the present paper,
however, are not suitable in high dimensions. This is clear for the Anderson test φA since this
test requires inverting the sample covariance matrix Sn, that fails to be invertible for p ≥ n. As
for the HPV test φHPV, our investigation of the asymptotic behavior of this test in the fixed-
p case crucially relied on the consistency of the eigenvalues λ̂nj of S; in high-dimensional
regimes where p = pn → ∞ so that pn/n → c, however, these sample eigenvalues are no
longer consistent (see, e.g., Baik, Ben Arous and Péché (2005)), which suggests that φHPV
is not robust to high dimensionality. To explore this, we conducted the following Monte
Carlo exercise: for n = 200 and each value of p = cn, with c ∈ {0.5,0.75,1,1.5,2}, we
generated 2000 mutually independent random samples X1, . . . ,Xn from the p-variate normal
distribution with mean zero and covariance matrix � = Ip +θ0

1θ
0′
1 , where θ0

1 is the first vector
of the canonical basis of Rp . The resulting rejection frequencies of the test φHPV (resp., of the
test φA), conducted at asymptotic level 5%, are 0.9255 (resp., 1) for c = 0.5, 0.9240 (resp.,
1) for c = 0.75, 0.5000 (resp., —) for c = 1, 0.1985 (resp., —) for c = 1.5, and 0.1715 (resp.,
—) for c = 2 (as indicated above, the Anderson test cannot be used for p ≥ n). This confirms
that neither φHPV nor φA can cope with high dimensionality. As a result, the problem of
providing a suitable test in the high-dimensional setup and of studying its robustness to weak
identifiability is widely open and should be investigated in future research.
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ity” (DOI: 10.1214/18-AOS1805SUPP; .pdf). In this supplement, we prove all theoretical
results of the present paper.
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