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Abstract We consider one of the most important problems in directional
statistics, namely the problem of testing the null hypothesis that the spike
direction θθθ of a Fisher–von Mises–Langevin distribution on the p-dimensional
unit hypersphere is equal to a given direction θθθ0. After a reduction through
invariance arguments, we derive local asymptotic normality (LAN) results in
a general high-dimensional framework where the dimension pn goes to infinity
at an arbitrary rate with the sample size n, and where the concentration κn
behaves in a completely free way with n, which offers a spectrum of problems
ranging from arbitrarily easy to arbitrarily challenging ones. We identify vari-
ous asymptotic regimes, depending on the convergence/divergence properties
of (κn), that yield different contiguity rates and different limiting experiments.
In each regime, we derive Le Cam optimal tests under specified κn and we com-
pute, from the Le Cam third lemma, asymptotic powers of the classical Watson
test under contiguous alternatives. We further establish LAN results with re-
spect to both spike direction and concentration, which allows us to discuss
optimality also under unspecified κn. To investigate the non-null behavior of
the Watson test outside the parametric framework above, we derive its local
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asymptotic powers through martingale CLTs in the broader, semiparametric,
model of rotationally symmetric distributions. A Monte Carlo study shows
that the finite-sample behaviors of the various tests remarkably agree with
our asymptotic results.

Keywords High-dimensional statistics · invariance · Le Cam’s asymptotic
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1 Introduction

In directional statistics, the sample space is the unit sphere Sp−1 = {x ∈ Rp :
‖x‖2 = x′x = 1} in Rp. By far the most classical distributions on Sp−1 are the
Fisher–von Mises–Langevin (FvML) ones; see, e.g., [27] or [28]. We say that
the random vector X with values in Sp−1 has an FvMLp(θθθ, κ) distribution,
with θθθ ∈ Sp−1 and κ ∈ (0,∞), if it admits the density (throughout, densities
on the unit sphere are with respect to the surface area measure)

x 7→ cp,κ
ωp−1

exp(κx′θθθ), (1.1)

where, denoting as Γ (·) the Euler Gamma function and as Iν(·) the order-ν
modified Bessel function of the first kind, ωp := (2πp/2)/Γ

(
p
2

)
is the surface

area of Sp−1 and

cp,κ := 1
/∫ 1

−1
(1− t2)(p−3)/2 exp(κt) dt =

(κ/2)(p/2)−1
√
π Γ
(
p−1
2

)
I p

2−1(κ)
·

Clearly, θθθ is a location parameter (θθθ is the modal location on the sphere),
that identifies the spike direction of the hyperspherical signal. In contrast, κ
is a scale or concentration parameter: the larger κ, the more concentrated
the distribution is about the modal location θθθ. As κ converges to zero, cp,κ
converges to cp := Γ

(
p
2

)
/(
√
π Γ
(
p−1
2

)
) and the density in (1.1) converges

to the density x 7→ 1/ωp of the uniform distribution over Sp−1. The other
extreme case, obtained for arbitrarily large values of κ, provides distributions
that converge to a point mass in θθθ. Of course, it is expected that the larger κ,
the easier it is to conduct inference on θθθ — that is, the more powerful the tests
on θθθ and the smaller the corresponding confidence zones.

In this paper, we consider inference on θθθ and focus on the generic testing
problem for which the null hypothesis H0 : θθθ = θθθ0, for a fixed θθθ0 ∈ Sp−1, is to
be tested against H1 : θθθ 6= θθθ0 on the basis of a random sample Xn1, . . . ,Xnn

from the FvMLp(θθθ, κ) distribution — the triangular array notation antici-
pates non-standard setups where p (hence, also θθθ) and/or κ will depend on n.
Inference problems on θθθ in the low-dimensional case have been considered
among others in [8], [9], [17], [19], [22], [26], [31] and [37]. The related spherical
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regression problem has been tackled in [14] and [33], while testing for location
on axial frames has been considered in [2].

Letting X̄n := 1
n

∑n
i=1 Xni, the most classical test for the testing problem

above is the Watson [37] test rejecting the null at asymptotic level α whenever

Wn :=
n(p− 1)X̄′n(Ip − θθθ0θθθ′0)X̄n

1− 1
n

∑n
i=1(X′niθθθ0)2

> χ2
p−1,1−α, (1.2)

where I` stands for the `-dimensional identity matrix and χ2
`,1−α denotes the

α-upper quantile of the chi-square distribution with ` degrees of freedom. In
the classical setup where p and κ are fixed, the asymptotic properties of the
Watson test are well-known, both under the null and under local alternatives;
see, e.g., [28] or [37]. Optimality properties in the Le Cam sense have been
studied in [30]. In the non-standard setup where κ = κn converges to zero,
[31] investigated the asymptotic null and non-null behaviors of the Watson
test. Interestingly, irrespective of the rate at which κn converges to zero (that
is, irrespective of how fast the inference problem becomes more challenging
as a function of n), the Watson test keeps meeting the asymptotic nominal
level constraint and maintains strong optimality properties; see [31] for details.
In the other non-standard, high-concentration, setup where κn diverges to
infinity, [32] showed the Watson test also enjoys strong optimality properties.

For a fixed dimension p, this essentially settles the investigation of the
properties of the Watson test and the study of the corresponding hypothe-
sis testing problem. Nowadays, however, increasingly many applications lead
to considering high-dimensional directional data: tests of uniformity on high-
dimensional spheres have been studied in [7], [10], [11] and [12], while high-
dimensional FvML distributions (or mixtures of high-dimensional FvML dis-
tributions) have been considered in magnetic resonance, gene-expression, and
text mining; see, among others, [3], [4] and [15]. This motivates considering
the high-dimensional spherical location problem, based on a random sam-
ple Xn1, . . . ,Xnn from the FvMLpn(θθθn, κn) distribution, with (pn) diverging
to infinity (the dimension of θθθn then depends on n, which justifies the nota-
tion). In this context, it was proved in [25] that the Watson test is robust to
high-dimensionality in the sense that, as pn goes to infinity with n, this test
still has asymptotic size α under H(n)

0 : θθθn = θθθn0. This does not require any
condition on the concentration sequence (κn) nor on the rate at which pn goes
to infinity, hence covers arbitrarily easy problems (κn large) and arbitrarily
challenging ones (κn small), as well as moderately high dimensions and ultra-
high dimensions. On its own, however, this null robustness result is obviously
far from sufficient to motivate using the Watson test in high dimensions, as it
might very well be that robustness under the null is obtained at the expense
of power (in the extreme case, the Watson test, in high dimensions, might ac-
tually asymptotically behave like the trivial α-level test that randomly rejects
the null with probability α).

These considerations raise many interesting questions, among which: are
there alternatives under which the Watson test is consistent in high dimen-
sions? What are the less severe alternatives (if any) under which the Watson
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test exhibits non-trivial asymptotic powers? Is the Watson test rate-optimal or,
on the contrary, are there tests that show asymptotic powers under less severe
alternatives than those detected by the Watson test? Does the Watson test
enjoy optimality properties in high dimensions? As we will show, answering
these questions will require considering several regimes fixing how the concen-
tration κn behaves as a function of the dimension pn and sample size n. Our
results, that will crucially depend on the regime considered, are extensive in
the sense that they answer the questions above in all possible regimes.

Our results will rely on two different approaches. (a) The first approach is
based on Le Cam’s asymptotic theory of statistical experiments. While this
theory is very general, it does not directly apply in the present context since
the high-dimensional spherical location problem involves a parametric space,
namely {(θθθn, κ) : θθθn ∈ Spn−1, κ ∈ (0,∞)}, that depends on n (through pn).
We solve this by exploiting the invariance properties of the testing problem
considered. In the image of the model by the corresponding maximal invari-
ant, indeed, the parametric space does not depend on n anymore, which opens
the door to studying the problem through the Le Cam approach. We derive
stochastic second-order expansions of the resulting log-likelihood ratios, which
is the main technical ingredient to establish the local asymptotic normality
(LAN) of the invariant model. The LAN property takes different forms and
involves different contiguity rates depending on the regime that is considered.
In each regime, we determine the Le Cam optimal test for the problem con-
sidered and apply the Le Cam third lemma to obtain the asymptotic powers
of this test and of the Watson test. This allows us to determine the regime(s)
in which the Watson test is Le Cam optimal, or only rate-optimal, or not even
rate-optimal. While this is first done under specified concentration κn, we fur-
ther provide LAN results with respect to both location and concentration to
be able to discuss optimality under unspecified κn. (b) While our investiga-
tion in (a) will fully characterize the asymptotic optimality properties of the
Watson test in the FvML case, it will not provide any insight on the non-
null behavior of this test outside this stringent parametric framework. This
motivates complementing our investigation by a second approach, based on
martingale CLTs. We will consider a broad, semiparametric, model, namely
the class of rotationally symmetric distributions, and will identify the alter-
natives (if any) under which the Watson test will show non-trivial asymptotic
powers in high dimensions. Again, this requires considering various regimes
according to the concentration pattern.

The outline of the paper is as follows. In Section 2, we consider the high-
dimensional version of the FvML spherical location problem. In Section 2.1,
we describe the invariance approach that allows us to later rely on Le Cam’s
asymptotic theory of statistical experiments. In Section 2.2, we provide a
stochastic second-order expansion of the resulting invariant log-likelihood ra-
tios and prove, in various regimes that we identify, that these invariant models
are locally asymptotically normal. This allows us to derive the corresponding
Le Cam optimal tests for the specified concentration problem and to study the
non-null asymptotic behavior of the Watson test in the light of these results.
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In Section 2.3, we tackle the unspecified concentration problem through the
derivation of LAN results that are with respect to both location and concen-
tration. In Section 3, we conduct a systematic investigation of the non-null
asymptotic properties of the Watson test in the broader context of rotation-
ally symmetric distributions. This in particular confirms the FvML results
obtained in Section 2. In Section 4, we conduct a Monte Carlo study to in-
vestigate how well the finite-sample behaviors of the various tests reflect our
theoretical asymptotic results. In Section 5, we summarize the results obtained
in the paper and shortly discuss research perspectives. Finally, an appendix
contains all proofs.

2 Invariance and Le Cam optimality

As already mentioned in the introduction, the high-dimensional spherical lo-
cation problem requires considering triangular arrays of observations of the
form Xni, i = 1, . . . , n, n = 1, 2, . . . For any sequence (θθθn) such that θθθn be-
longs to Spn−1 for any n and any sequence (κn) in (0,∞), we denote as P

(n)
θθθn,κn

the hypothesis under which Xni, i = 1, . . . , n, form a random sample from the
FvMLpn(θθθn, κn) distribution. The resulting sequence of statistical models is
then associated with

P(n) =
{

P
(n)
θθθn,κ

: (θθθn, κ) ∈ ΘΘΘn := Spn−1 × (0,∞)
}

(2.3)

(the index in the parameter θθθn in principle is superfluous but is used here
to stress the dependence of this parameter on pn, hence on n). The spheri-

cal location problem consists in testing the null hypothesis H(n)
0 : θθθn = θθθn0

against the alternative H(n)
0 : θθθn 6= θθθn0, where (θθθ0n) is a fixed sequence such

that θθθ0n belongs to Spn−1 for any n. Clearly, θθθn is the parameter of interest,
whereas κn plays the role of a nuisance. Our main objective in this section is
to derive Le Cam optimality results for this problem, referring to sequences

of local alternatives of the form P
(n)
θθθn,κn

, with θθθn = θθθn0 + νnτττn, where the se-

quence (νn) and the bounded sequence (τττn), respectively in (0,∞) and Rpn ,
are such that θθθn ∈ Spn−1 for any n, which imposes that

θθθ′n0τττn = −1

2
νn‖τττn‖2 (2.4)

for any n; throughout, “the sequence (τττn) in Rpn is bounded” means that τττn ∈
Rpn for any n and that ‖τττn‖ = O(1) as n→∞. The obvious lack of identifia-
bility of νn and τττn will be no problem in the sequel (only the locally perturbed
parameter values θθθn = θθθ0+νnτττn are of interest, hence not the individual quan-
tities νn and τττn themselves) and this form of local alternatives is actually the
standard one in the Le Cam theory; see, e.g., Chapter 6 in [23] or Defini-
tion 7.14 in [36]. Whenever local asymptotic powers will be considered below,
we will assume that ‖τττn‖ is O(1) without being o(1), so that νn will charac-
terize (the rate of) the severity of the local alternatives θθθn = θθθ0 + νnτττn (the
slower νn goes to zero, the more severe the corresponding local alternatives).
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Since the sequence of “statistical experiments” associated with (2.3) in-
volves parametric spaces ΘΘΘn that depend on n, applying Le Cam’s theory will
require the following reduction of the problem through invariance arguments.

2.1 Reduction through invariance

Denoting as SOp(θθθ) the collection of p×p orthogonal matrices satisfying Oθθθ =

θθθ, the null hypothesis H(n)
0 is invariant under the group Gn, ◦ collecting the

transformations

(Xn1, . . . ,Xnn) 7→ gnO(Xn1, . . . ,Xnn) = (OXn1, . . . ,OXnn),

with O ∈ SOpn(θθθn0). The transformation gnO induces a transformation of the
parametric space ΘΘΘn defined through (θθθn, κ) 7→ (Oθθθn, κ). The orbits of the
resulting induced group are Cu,κ(θθθn0) := {θθθn ∈ Spn−1 : θθθ′nθθθn0 = u} × {κ},
with u ∈ [−1, 1] and κ ∈ (0,∞). In such a context, the invariance principle
(see, e.g., [24], Chapter 6) leads to restricting to tests φn that are invariant with
respect to the group Gn,◦. Denoting as Tn = Tn(Xn1, . . . ,Xnn) a maximal
invariant statistic for Gn,◦, the class of invariant tests coincides with the class
of Tn-measurable tests. Invariant tests thus are to be defined in the image

P(n)Tn =
{

P(n)Tn
u,κ : (u, κ) ∈ ΨΨΨ := [−1, 1]× (0,∞)

}
(2.5)

of the model P(n) by Tn, where P
(n)Tn
u,κ denotes the common distribution

of Tn under any P
(n)
θθθn,κ

with (θθθn, κ) ∈ Cu,κ(θθθn0). Unlike the original sequence

of statistical experiments in (2.3), the invariant one in (2.5) involves a fixed
parametric space ΨΨΨ , which makes it in principle possible to rely on Le Cam’s
asymptotic theory.

Now, the original local log-likelihood ratios log(dP
(n)
θθθn,κn

/dP
(n)
θθθn0,κn

) associ-
ated with the generic local alternatives θθθn = θθθn0 + νnτττn above correspond, in
view of (2.4), to the invariant local log-likelihood ratios

Λ
(n)inv
θθθn/θθθn0;κn

:= log
dP

(n)Tn
1−ν2

n‖τττn‖2/2,κn

dP
(n)Tn
1,κn

· (2.6)

Deriving local asymptotic normality (LAN) results requires investigating the
asymptotic behavior of such invariant log-likelihood ratios, which in turn re-
quires evaluating the corresponding likelihoods. While obtaining a closed-form
expression for Tn and its distribution is a very challenging task, these likeli-
hoods can be obtained from Lemma 2.5.1 in [16], which, denoting as mn the
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surface area measure on Spn−1 × . . .× Spn−1 (n times), yields

dP
(n)Tn
1−ν2

n‖τττn‖2/2,κn
dmn

=

∫
SOpn (θθθn0)

dP
(n)
θθθn,κn

dmn
(OXn1, . . . ,OXnn) dO

=

∫
SOpn (θθθn0)

n∏
i=1

(
cpn,κn
ωpn−1

exp
(
κn(OXni)

′θθθn
))

dO

=
cnpn,κn
ωnpn−1

∫
SOpn (θθθn0)

exp
(
nκnX̄nO′θθθn

)
dO, (2.7)

where integration is with respect to the Haar measure on SOpn(θθθn0). Note

that (2.7) shows that the invariant null probability measure P
(n)Tn
1,κn

coincides
with the original null probability measure P

(n)
θθθn0,κn

. In other words, it is only
for non-null probability measures that the invariance reduction above is non-
trivial.

2.2 Optimal testing under specified κn

The main ingredient needed to obtain LAN results is Theorem 1 below, that
provides a stochastic second-order expansion of the invariant log-likelihood
ratios in (2.6). To state this theorem, we need to introduce the following no-
tation. We will refer to the decomposition Xni = Uniθθθn0 + VniSn, with

Uni = X′niθθθn0, Vni = (1− U2
ni)

1/2 and Sni =
(Ipn − θθθn0θθθ

′
n0)Xni

‖(Ipn − θθθn0θθθ
′
n0)Xni‖

,

as the tangent-normal decomposition of Xni with respect to θθθn0. Under the

hypothesis P
(n)
θθθn0,κn

, Uni has probability density function

u 7→ cpn,κn(1− u2)(pn−3)/2 exp(κnu) I[u ∈ [−1, 1]], (2.8)

where I[A] denotes the indicator function of A, Sni is uniformly distributed
over the “equator” {x ∈ Spn−1 : x′θθθn0 = 0}, and Uni and Sni are mutually
independent. Throughout, we will denote as en` = E[U `ni] and ẽn` = E[(Uni −
en1)`], ` = 1, 2, . . . the non-central and central moments of Uni under P

(n)
θθθn0,κn

,
and as fn` = E[V `ni] the corresponding non-central moments of Vni. Although
this is not stressed in the notation, these moments clearly depend on pn and κn;
for instance,

en1 =
I pn

2
(κn)

I pn
2 −1(κn)

, ẽn2 = 1− pn − 1

κn
en1 − e2n1 and fn2 =

pn − 1

κn
en1 (2.9)

(this readily follows from (2)–(3) in [34] by using the standard properties of
exponential families; see also Lemma S.2.1 in [13]). We can now state the
stochastic second-order expansion result of the invariant log-likelihood ratios
in (2.6).
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Theorem 1 Let (pn) be a sequence of integers that diverges to infinity and (κn)
be an arbitrary sequence in (0,∞). Let (θθθn0), (νn) and (τττn) be sequences such
that θθθn0 and θθθn = θθθn0 + νnτττn belong to Spn−1 for any n, with (τττn) bounded
and (νn) such that

ν2n = O
( √pn
nκnen1

)
. (2.10)

Then, letting

Zn :=

√
n(X̄′nθθθ0 − en1)√

ẽn2
and W̃n :=

Wn − (pn − 1)√
2(pn − 1)

,

we have that

Λ
(n)inv
θθθn/θθθn0;κn

= −1

2

√
nκnν

2
n

√
ẽn2 ‖τττn‖2Zn +

nκnν
2
nen1√

2p
1/2
n

‖τττn‖2
(

1− 1

4
ν2n‖τττn‖2

)
W̃n

−1

8
nκnν

4
nen1‖τττn‖4 −

n2κ2nν
4
ne

2
n1

4pn
‖τττn‖4

(
1− 1

4
ν2n‖τττn‖2

)2
+ oP(1),

as n→∞ under P
(n)
θθθn0,κn

.

Recalling that the log-likelihood ratio Λ
(n)inv
θθθn/θθθn0;κn

refers to the local per-

turbation θθθ′nθθθn0 = 1 − ν2n‖τττn‖2/2 of the null reference value θθθ′n0θθθn0 = 1, the
result in Theorem 1 essentially shows that the invariant model considered en-
joys a local asymptotic quadraticity (LAQ) structure in the vicinity of the null

hypothesis H(n)
0 : θθθn = θθθn0; see, e.g., [23], page 120. Actually, quadraticity,

which is supposed to be in the increment −ν2n‖τττn‖2/2, only holds for arbitrar-
ily small values of this increment, hence only in regimes where νn will converge
to zero (in regimes below where, in contrast, νn will be constant, the non-flat
manifold structure of the hypersphere actually prevents a standard quadratic-
ity property). This LAQ result hints that optimal testing for the specified-κn
problem at hand is obtained by rejecting the null for small values of Zn (that
is, when X̄n and θθθn0 project far from each other onto the axis ±θθθn0), for large

values of W̃n (that is, when X̄n and θθθn0 project far from each other onto the
orthogonal complement to θθθn0 in Rpn), or, more generally, for large values of
a hybrid test statistic of the form

Qµ,λn = µW̃n + λ(−Zn),

with non-negative weights µ and λ. While any Qµ,λn provides a reasonable
test statistic for the problem at hand, only one set of weights will yield a Le
Cam optimal test and, interestingly, this set of weights depends on the way κn
behaves with pn and n. This will be one of the many consequences of the
following LAN result.
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Theorem 2 Let (pn) be a sequence of integers that diverges to infinity, (κn)
be a sequence in (0,∞), and (θθθn0) be a sequence such that θθθn0 belongs to Spn−1
for any n. Then, there exist a sequence (νn) in (0,∞) and a sequence of random
variables (∆n) that is asymptotically normal with zero mean and variance Γ

under P
(n)
θθθn0,κn

such that, for any bounded sequence (τττn) such that θθθn = θθθn0 +

νnτττn belongs to Spn−1 for any n,

Λ
(n)inv
θθθn/θθθn0;κn

= ‖τττn‖2∆n −
1

2
‖τττn‖4Γ + oP(1)

as n→∞ under P
(n)
θθθn0,κn

. If (i) κn/pn →∞, then

νn =
p
1/4
n√
nκn

, ∆n =
W̃n√

2
, and Γ =

1

2
;

if (ii) κn/pn → ξ > 0, then, letting cξ := 1
2 +

√
1
4 + ξ2,

νn =

√
cξ p

3/4
n√

nκn
, ∆n =

W̃n√
2
, and Γ =

1

2
;

if (iii) κn/pn → 0 with
√
nκn/pn →∞, then

νn =
p
3/4
n√
nκn

, ∆n =
W̃n√

2
, and Γ =

1

2
;

if (iv)
√
nκn/pn → ξ > 0, then

νn =
p
3/4
n√
nκn

, ∆n =
W̃n√

2
− Zn

2ξ
, and Γ =

1

2
+

1

4ξ2
;

if (v)
√
nκn/pn → 0 with

√
nκn/

√
pn →∞, then

νn =
p
1/4
n

n1/4
√
κn
, ∆n = −Zn

2
, and Γ =

1

4
;

if (vi)
√
nκn/

√
pn → ξ > 0, then

νn = 1, ∆n = −ξZn
2
, and Γ =

ξ2

4
;

finally, if (vii)
√
nκn/

√
pn → 0, then, even with νn = 1, the invariant log-

likelihood ratio Λ
(n)inv
θθθn/θθθn0;κn

is oP(1) as n→∞ under P
(n)
θθθn0,κn

.
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In the image model (2.5), the spherical location problem consists in test-
ing H(n)

0 : u = 1 against H(n)
0 : u < 1. In the localized at u = u0 = 1

experiments, parametrized by u = u0 − 1
2ν

2
n‖τττn‖2 as in (2.6), this reduces to

testing H(n)
0 : ‖τττn‖ = 0 against H(n)

1 : ‖τττn‖ > 0. In any given regime (i)–(vii)
from Theorem 2, it directly follows from this theorem that a locally asymptot-
ically most powerful test for this problem — hence, locally asymptotically most
powerful invariant test for the original spherical location problem — rejects
the null at asymptotic level α whenever

∆n/
√
Γ > Φ−1(1− α), (2.11)

where Φ denotes the cumulative distribution function of the standard normal
distribution (in the rest of the paper, the term “optimal” will refer to this par-
ticular Le Cam optimality concept). A routine application of the Le Cam third
lemma then shows that, in each regime, the asymptotic distribution of ∆n, un-

der the corresponding contiguous alternatives P
(n)
θθθn0+νnτττn,κn

with ‖τττn‖ → t, is
normal with mean Γt2 and variance Γ , so that the resulting asymptotic power
of the optimal test in (2.11) is

lim
n→∞

P
(n)
θθθn0+νnτττn,κn

[
∆n/
√
Γ > Φ−1(1− α)

]
= 1− Φ

(
Φ−1(1− α)−

√
Γt2
)
. (2.12)

In each regime (i)–(vii), νn is the contiguity rate, which implies that the
least severe alternatives under which a test may have non-trivial asymptotic
powers are of the form P

(n)
θθθn0+νnτττn,κn

, with a sequence (‖τττn‖) that is O(1) but

not o(1). Theorem 2 shows that this contiguity rate depends on the regime con-
sidered and does so in a monotonic fashion, which is intuitively reasonable: the
larger κn (that is, the easier the inference problem), the faster νn goes to zero,
that is, the less severe the alternatives that can be detected by rate-consistent
tests. Because the unit sphere Spn−1 has a fixed diameter, νn = 1 character-
izes the most severe alternatives that can be considered. In regime (vi), no
tests will therefore be consistent under such most severe alternatives, while, in
regime (vii), the distribution is so close to the uniform distribution on Spn−1
that no tests can show non-trivial asymptotic powers under such alternatives,
so that even the trivial α-test is optimal.

One of the most striking consequences of Theorem 2 is that the optimal
test depends on the regime considered. In regimes (v)–(vii), the optimal test
in (2.11) rejects the null when Zn < Φ−1(α); of course, this optimality is
degenerate in regime (vii), where any invariant test with asymptotic level α
would also be optimal. In contrast, the optimal α-level test in regimes (i)–(iii)
rejects the null when

W̃n =
Wn − (pn − 1)√

2(pn − 1)
> Φ−1(1− α).
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Since the chi-square distribution with p−1 degrees of freedom converges, after
standardization via its mean p − 1 and standard deviation

√
2(p− 1), to the

standard normal distribution as p diverges to infinity, this test is asymptot-
ically equivalent to the Watson test in (1.2), based obviously on the dimen-
sion p = pn at hand. This shows that, in regimes (i)–(iii), the traditional,
low-dimensional, Watson test is optimal in high dimensions. In regime (iv),
which is at the frontier between these regimes where the optimal test is the
Watson test and those where the optimal test is based on Zn, the optimal test
is quite naturally based on a linear combination of W̃n and Zn.

Finally, the Le Cam third lemma allows us to derive the asymptotic non-
null behavior of the Watson test under the contiguous alternatives considered
in any regime (i)–(vii). In regimes (i)–(iv), the limiting powers under contigu-
ous alternatives of the form P

(n)
θθθn0+νnτττn,κn

, with ‖τττn‖ → t, are given by

1− Φ
(
Φ−1(1− α)− t2√

2

)
. (2.13)

In regimes (i)–(iii), the Watson test is the optimal test and these asymptotic
powers are equal to those in (2.12), whereas in regime (iv), the Watson test is
only rate-consistent, as the corresponding asymptotic powers of the optimal
test are

1− Φ
(
Φ−1(1− α)− t2

√
1

2
+

1

4ξ2

)
. (2.14)

In regimes (v)–(vi), the Le Cam third lemma shows that the limiting powers
of the Watson test, still under the corresponding contiguous alternatives, are
equal to the nominal level α, so that the Watson test is not even rate-consistent
in those regimes. Finally, as already discussed, the Watson test is optimal in
regime (vii), but trivially so since the trivial α-test there also is.

2.3 Optimal testing under unspecified κn

The optimal test in regimes (i)–(iii), namely the Watson test, is a genuine test
in the sense that it can be applied on the basis of the observations only. In
contrast, the optimal tests in regimes (iv)–(vi) are “oracle” tests since they
require knowing the values of en1 and ẽn2, or equivalently (see (2.9)), the value
of the concentration κn. This concentration, however, can hardly be assumed
to be specified in practice, so that it is natural to wonder what is the optimal
test, in regimes (iv)–(vi), when κn is treated as a nuisance parameter.

We first focus on regime (iv). There, the concentration κn is asymptotically
of the form κn = pnξ/

√
n for some ξ > 0. Within regime (iv), ξ, obviously, is

a perfectly valid alternative concentration parameter. Inspired by the classi-
cal treatment of asymptotically optimal inference in the presence of nuisance
parameters (see, e.g., [5]), this suggests studying the asymptotic behavior of
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invariant log-likelihood ratios of the form

Λ
(n)inv
θθθn,κn,s/θθθn0,κn

:= log
dP

(n)Tn
1−ν2

n‖τττn‖2/2,κn,s

dP
(n)Tn
1,κn

,

where κn,s := pn(ξ + ϑns)/
√
n is a suitable sequence of perturbed concentra-

tions. We have the following result.

Theorem 3 Let (pn) be a sequence of integers that diverges to infinity with
pn = o(n2) as n → ∞. Let κn := pnξ/

√
n, with ξ > 0, and κn,s := pn(ξ +

s/
√
pn)/
√
n, where s is such that ξ + s/

√
pn > 0 for any n. Let the se-

quence (θθθn0) in Spn−1 and the bounded sequence (τττn) in Rpn be such that
θθθn0 and θθθn = θθθn0 + νnτττn, with the νn below, belong to Spn−1 for any n. Then,
putting tn := (‖τττn‖2, s)′,

νn :=
p
3/4
n√
nκn

, ∆∆∆n :=

(
W̃n√

2
− Zn

2ξ

Zn

)
, and ΓΓΓ :=

(
1
2 + 1

4ξ2 −
1
2ξ

− 1
2ξ 1

)
,

we have

Λ
(n)inv
θθθn,κn,s/θθθn0,κn

= t′n∆∆∆n −
1

2
t′nΓΓΓ tn + oP(1) (2.15)

as n → ∞ under P
(n)
θθθn0,κn

, where ∆∆∆n, under the same sequence of hypotheses,
is asymptotically normal with mean zero and covariance matrix ΓΓΓ .

Theorem 3 shows that, in regime (iv), the sequence of high-dimensional
FvML experiments is jointly LAN in the location and concentration param-
eters. The corresponding Fisher information matrix ΓΓΓ = (Γij) is not diago-
nal, which entails that the unspecification of the concentration parameter has
asymptotically a positive cost when performing inference on the location pa-
rameter. In the present joint LAN framework, Le Cam optimal inference for
location under unspecified concentration is to be based (see again [5]) on the
residual of the regression (in the limiting Gaussian shift experiment) of the
location part ∆n1 of the central sequence ∆∆∆ = (∆n1, ∆n2)′ with respect to the
concentration part ∆n2, that is, is to be based on the efficient central sequence

∆∗n1 := ∆n1 −
Γ12

Γ22
∆n2. (2.16)

Under the null, ∆∗n1 is asymptotically normal with mean zero and variance Γ ∗11
= Γ11 − Γ 2

12/Γ22, and the Le Cam optimal location test under unspecified κn
rejects the null at asymptotical level α when

∆∗n1/
√
Γ ∗11 = W̃n > Φ−1(1− α).

As a corollary, provided that pn = o(n2), the unspecified-κn optimal test in
regime (iv) is the Watson test. Consequently, the difference between the local
asymptotic powers in (2.13) and (2.14), associated with the Watson test and
the specified-κn optimal test in regime (iv), respectively, can be interpreted
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as the asymptotic cost of the unspecification of the concentration when per-
forming inference on location in the regime considered. Note that the optimal
specified-κn test and optimal unspecified-κn test exhibit the same consistency
rates, so that the cost of not knowing κn lies in the difference of powers these
tests show under contiguous alternatives.

We now turn to regime (vi), where the concentration κn is asymptotically
of the form κn =

√
pnξ/

√
n. In this regime, taking νn = 1 (as in Theorem 2)

and perturbed concentrations of the form κn,s :=
√
pn(ξ + s)/

√
n, it is easy

to show, by working along the same lines as in the proof of Theorem 3, that
the sequence of experiments is also jointly LAN in location and concentration,
this time without any condition on pn. The corresponding central sequence
and Fisher information matrix are

∆∆∆n :=

(
∆n1

∆n2

)
=

(−Zn/2
Zn

)
and ΓΓΓ :=

(
1/4 −1/2

−1/2 1

)
. (2.17)

The collinearity between the location part ∆n1 and concentration part ∆n2

of the central sequence implies that the efficient central sequence ∆∗n1 is zero
in regime (vi). As a result, for the unspecified concentration problem, no test
can detect alternatives in νn = 1 in regime (vi), which is in line with the
corresponding trivial asymptotic powers of the Watson test in Section 2.2.
Since νn = 1 provides the most severe location alternatives than can be con-
sidered, we conclude that, for the unspecified concentration problem, no test
in regime (vi) can do asymptotically better than the trivial α-level test that
randomly rejects the null with probability α. Under unspecified κn, thus, the
Watson test is optimal in regime (vi), too, even if it is in a degenerate way.

Finally, we consider regime (v), where the situation is more complicated.
This regime is associated with κn = pnrnξ/

√
n, where ξ > 0 and (rn) is

a positive sequence satisfying rn = o(1) and rn
√
pn → ∞. If one takes νn =

p
1/4
n /(n1/4

√
κn) (still as in Theorem 2) and considers perturbed concentrations

of the form κn,s = pnrn(ξ + s/(
√
pnrn))/

√
n, then it can be shown that,

provided that pn = o(n2r−6n ), the resulting sequence of experiments is still
jointly LAN in location and concentration, with the same central sequence
and Fisher information matrix as in (2.17). Consequently, the corresponding
efficient central sequence ∆∗n1 is zero again, so that no unspecified-κn test can
detect deviations from the null hypothesis at the νn-rate in regime (v). Unlike
in regime (vi), however, alternatives that are more severe than the contiguous
ones can be considered in regime (v). As a consequence, several important
questions are left wide open in regime (v) for the unspecified-κn problem:
(1) are there alternatives that can be detected by an unspecified-κn test? (2)
If so, what are the least severe ones that can be detected by such a test and
(3) what is the Le Cam optimal test (if any)? (4) Are there alternatives that
can be detected by the Watson test? (5) Does this test enjoy any Le Cam
optimality property in this regime?

To answer these questions, one needs to orthogonalize the parameter of
interest u = θθθ′nθθθn0 and concentration parameter κ. In regime (iv), this orthog-
onalization was achieved, within the LAN framework of Theorem 3, by the ef-
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ficient central sequence in (2.16). In regime (v), where the consistency rates of
the Zn and W̃n tests do not match, this approach does not work and it is needed
to perform orthogonalization by introducing explicitly a new parametrization
(such an orthogonalization through reparametrization is suitable when Fisher
information matrices are singular; see, e.g., [18]). The following LAN result re-
lates to this new parametrization of the statistical experiments at hand, that
involves the same parameter of interest u = θθθ′nθθθn0 and the alternative con-
centration parameter κ̄n = κn/u (of course, this reparametrization requires
restricting to the hemisphere associated with u > 0, which still allows us to
consider “local” alternatives).

Theorem 4 Let (pn) be a sequence of integers that diverges to infinity with
pn = o(n2r−4n ) as n→∞, where (rn) is a positive real sequence such that rn =
o(1) and

√
pnrn →∞. Let (θθθn0) be a sequence in Spn−1 and (τττn) be a bounded

sequence in Rpn such that θθθn = θθθn0+νnτττn, with the νn below, belongs to Spn−1
for any n. Let κn := pnrnξ/

√
n, with ξ > 0 and

κn,s,τττn =
pnrn(ξ + s/(

√
pnrn))

√
n(1− 1

2ν
2
n‖τττn‖2)

=:
ρnpnrn√

n
(ξ + s/(

√
pnrn)),

where s is such that ξ+s/(
√
pnrn) > 0 for any n. Assume that, still with the νn

below, 1
2ν

2
n‖τττn‖2 is upper-bounded by 1− δ for some δ > 0. Then, putting

(a) νn =
p
3/4
n√
nκn

, Cn =

(
1 0

0 1

)
, ∆∆∆n =

( W̃n√
2

Zn

)
, and ΓΓΓ =

( 1
2 0

0 1

)
,

(b) νn = 1, Cn =

(
ξ2
(
1− ‖τττn‖

2

4

)
0

0 1

)
, ∆∆∆n =

( W̃n√
2

Zn

)
, and ΓΓΓ =

( 1
2 0

0 1

)
,

or

(c) νn = 1, Cn =

(
1 0

0 1

)
, ∆∆∆n =

(
0

Zn

)
, and ΓΓΓ =

(
0 0

0 1

)
,

depending on whether (a) ρnp
1/4
n rn →∞, (b) ρnp

1/4
n rn → 1, or (c) ρnp

1/4
n rn =

o(1), respectively, we have, with tn := (‖τττn‖2, s)′,

Λ
(n)inv
θθθn,κn,s,τττn/θθθn0,κn

= t′nCn∆∆∆n −
1

2
t′nC2

nΓΓΓ tn + oP(1) (2.18)

as n → ∞ under P
(n)
θθθn0,κn

, where ∆∆∆n, under the same sequence of hypotheses,
is asymptotically normal with mean zero and covariance matrix ΓΓΓ .

The block-diagonality of the three Fisher information matrices ΓΓΓ in this
result confirms that the new parametrization achieves orthogonalization in
regime (v). More importantly, Theorem 4 allows us to answer the open ques-
tions above. In this purpose, the key observation is that the problem of testing
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the null hypothesisH0 : u = 1 against the alternativeH1 : u < 1 under unspec-
ified κn in the original parametrization is strictly equivalent to the problem
of testing the null hypothesis H0 : u = 1 against the alternative H1 : u < 1
under unspecified κ̄n in the new parametrization. Therefore, the s ≡ 0 version
of Theorem 4 establishes the following: in regime (va), which refers to case (a)
in this result, the Watson test is Le Cam optimal for the unspecified-κn prob-
lem and will show non-trivial asymptotic powers under alternatives associated
with p

3/4
n /(

√
nκn) (the Le Cam third lemma readily implies that these asymp-

totic powers are equal to those in (2.13)). In regime (vc), no unspecified-κn
test can detect even the most severe alternatives associated with νn = 1. In
the boundary case of regime (vb), the situation is more complex, as the se-
quence of statistical experiments there is not LAN. Yet, the result shows that
the least severe alternatives that can be detected by an unspecified-κn test
are those associated with νn = 1 and that the Watson test is rate-consistent.
Theorem 4(b) also shows that the Watson test is Le Cam optimal for small
departures τττn of the null hypothesis (this follows from the fact that the usual
LAN property is obtained for small ‖τττn‖); we refer to Theorem 4.1(iii) in [29]
for a similar phenomenon in low dimensions. This thoroughly answers the
questions (1)–(5) raised above.

Wrapping up, we proved that the Watson test is optimal in regimes (i)–
(iii) only for the specified concentration problem and that it is optimal in all
regimes in the more important unspecified concentration one (in regimes (iv)–
(va), optimality requires a constraint on pn that is at most pn = o(n2), and
optimality is only local in τττn in regime (vb)). The asymptotic cost due to
the unspecification of the concentration is nil in regimes (i)–(iii) (and (vii)),
affects limiting powers but not consistency rates in regime (iv), and is in terms
of consistency rates in regimes (v)–(vi). Table 1 provides a summary of the
optimality results we obtained both for the specified-κn and unspecified-κn
problems.

3 Non-null investigation via martingale CLTs

The results above thoroughly describe the asymptotic non-null and optimality
properties of the Watson test in the FvML case and provide a strong motiva-
tion to use this test in this specific parametric framework. While the Watson
test remains valid (in the sense that it still meets the asymptotic nominal level
constraint) under much broader distributional assumptions, it is unclear how
well this test behaves under high-dimensional non-FvML alternatives (we re-
fer to [30], [31] and [32] for an extensive study of the low-dimensional case).
In this section, we therefore investigate, through a different approach relying
on martingale CLTs, the non-null behavior of the Watson test under general
rotationally symmetric distributions.

Recall that the distribution of a random vector X with values in Sp−1 is ro-
tationally symmetric about θθθ(∈ Sp−1) if OX and X share the same distribution
for any O ∈ SOθθθ(p), and that it is rotationally symmetric if it is rotationally
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# Regime κn specified κn unspecified

(i) κn/pn →∞ W̃n W̃n

(ii) κn/pn → ξ > 0 W̃n W̃n

(iii) κn/pn → 0 with
√
nκn/pn →∞ W̃n W̃n

(iv)
√
nκn/pn → ξ > 0 W̃n√

2
− Zn

2ξ
W̃n (?)

(va)
√
nκn/pn → 0 with

√
nκn/p

3/4
n →∞ Zn W̃n (?)

(vb)
√
nκn/p

3/4
n → ξ > 0 Zn W̃n (†)

(vc)
√
nκn/p

3/4
n → 0 with

√
nκn/

√
pn →∞ Zn ∅

(vi)
√
nκn/

√
pn → ξ > 0 Zn ∅

(vii)
√
nκn/

√
pn → 0 ∅ ∅

Table 1 The test statistics on which locally asymptotically optimal tests are based in the
various asymptotic regimes for both the specified-κn and unspecified-κn problems. The sym-
bol ∅ means that no test can detect even the most severe alternatives associated with νn = 1.
The symbol ? indicates that the result is obtained provided that pn = o(n2) (for the ? in
regime (va), the constraint is actually milder than pn = o(n2); see Theorem 4 for details).
The symbol † stresses that, in the non-standard limiting experiment obtained in regime (vb)
for unspecified κn, Le Cam optimality is achieved only locally in τττn.

symmetric about some θθθ in Sp−1. Clearly, if X has an FvMLp(θθθ, κ) distri-
bution, then it is rotationally symmetric about θθθ, so that the distributional
context considered in this section will encompass the one in Section 2. Parallel
to what was done there, we will refer to the decomposition X = Uθθθ + V S,
with U = X′θθθ, V =

√
1− U2 and S = (Ip − θθθθθθ′)X/‖(Ip − θθθθθθ′)X‖, as the

tangent-normal decomposition of X with respect to θθθ. If X is rotationally
symmetric about θθθ, then S is uniformly distributed over {x ∈ Sp−1 : x′θθθ = 0}
and is independent of U . The distribution of X is then fully determined by θθθ
and by the cumulative distribution function F of U , which justifies denoting
the corresponding distribution as Rotp(θθθ, F ). In the sequel, we tacitly restrict
to classes of rotationally symmetric distributions making θθθ identifiable, which
typically only excludes distributions satisfying Rotp(−θθθ, F ) = Rotp(θθθ, F ).

We consider then a triangular array of observations of the form Xni,
i = 1, . . . , n, n = 1, 2, . . ., where Xn1, . . . ,Xnn form a random sample from
the rotationally symmetric distribution Rotpn(θθθn, Fn). The corresponding hy-

pothesis, that will be denoted as P
(n)
θθθn,Fn

involves a sequence of integers (pn)
diverging to infinity, a sequence (θθθn) such that θθθn ∈ Spn−1 for any n, and a
sequence (Fn) of cumulative distribution functions over [−1, 1]. In this frame-
work, the spherical location problem consists in testingH(n)

0 : θθθn = θθθn0 against
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H(n)
1 : θθθn 6= θθθn0, where (θθθn0) is a fixed null parameter sequence. Parallel to the

notation that was used in the FvML case, we will write en` and ẽn`, ` = 1, 2, . . .
for the non-central and central moments of Fn, respectively. These are the
moments, under P

(n)
θθθn,Fn

, of the quantity Un1 = X′n1θθθn in the tangent-normal
decomposition of Xn1 with respect to θθθn. The corresponding non-central mo-
ments of Vn1 =

√
1− U2

n1 will still be denoted as fn`.
Using the notation Vni and Sni from the tangent-normal decomposition

of Xni with respect to the null location θθθn0, the Watson test statistic rewrites

W̃n =
Wn − (pn − 1)√

2(pn − 1)
=

√
2(pn − 1)∑n
i=1 V

2
ni

∑
1≤i<j≤n

VniVnjS
′
niSnj ,

where Wn denotes the Watson test statistic in (1.2) based on the null loca-
tion θθθn0. Under the null and under appropriate local alternatives, it is expected
that W̃n is asymptotically equivalent in probability to

W ∗n :=

√
2(pn − 1)

nfn2

∑
1≤i<j≤n

VniVnjS
′
niSnj ,

so that an important step in the investigation of the non-null properties of W̃n

is the study of the non-null behavior of W ∗n . A classical martingale central
limit theorem (see, e.g., Theorem 35.12 in [6]) provides the following result.

Theorem 5 Let (pn) be a sequence of integers that diverges to infinity and (θθθn0)
be a sequence such that θθθn0 belongs to Spn−1 for any n. Let (Fn) be a se-
quence of cumulative distribution functions on [−1, 1] such that (a) fn2 >
0 for any n, (b) fn4/f

2
n2 = o(n) and (c)

√
pnen2 = o(1). Then, we have

the following, where, in each case, (τττn) refers to an arbitrary sequence such
that θθθn = θθθn0+νnτττn belongs to Spn−1 for any n and such that (‖τττn‖) converges
to t(∈ [0,∞)) :

(i)–(iii) if (i)
√
nen1 → ∞, if (ii)

√
nen1 → ξ > 0, or if (iii)

√
nen1

→ 0 with
√
np

1/4
n en1 →∞, then

W ∗n
D−→ N

(
t2√

2
, 1

)
under P

(n)
θθθn0+νnτττn,Fn

, with νn =
√
fn2/(

√
np

1/4
n en1); in cases (i)–(ii), the

constraint (c) above is superfluous;

(iv) if
√
np

1/4
n en1 → ξ > 0, then

W ∗n
D−→ N

(
ξ2t2√

2

(
1− t2

4

)
, 1

)
under P

(n)
θθθn0+νnτττn,Fn

, with νn = 1;
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(v) if
√
np

1/4
n en1 = o(1), then

W ∗n
D−→ N (0, 1)

under P
(n)
θθθn0+νnτττn,Fn

, with νn = 1.

To obtain the corresponding non-null results for the Watson test statis-
tic W̃n, we need to prove that W̃n and W ∗n are indeed asymptotically equivalent
in probability. The following result does so in the, possibly non-null, general
rotationally symmetric context considered (in the FvML case, the null version
of this result was established when proving the results of Section 2; see the
proof of Lemma 2).

Theorem 6 Let (pn) be a sequence of integers that diverges to infinity and (θθθn0)
be a sequence such that θθθn0 belongs to Spn−1 for any n. Let (Fn) be a sequence
of cumulative distribution functions on [−1, 1] such that (a) fn2 > 0 for any n
and (b) fn4/f

2
n2 = o(n). Then, with (νn) and (τττn) as in Theorem 5, we have

that, in each regime (i)–(v) considered there,

W̃n = W ∗n + oP(1)

as n→∞ under P
(n)
θθθn0+νnτττn,Fn

.

Of course, Theorem 6 readily implies that Theorem 5 still holds if one
substitutes W̃n for W ∗n . Rather than restating the result explicitly, we present
the following corollary, which focuses on the FvML case.

Corollary 1 Let (pn) be a sequence of integers that diverges to infinity, (κn)
be a sequence in (0,∞), and (θθθn0) be a sequence such that θθθn0 belongs to Spn−1
for any n. Then, we have the following, where in each case (τττn) refers to an
arbitrary sequence such that θθθn = θθθn0 + νnτττn belongs to Spn−1 for any n and
such that (‖τττn‖) converges to t(∈ [0,∞)) :

(i) if
√
nκn/p

3/4
n →∞, then

W ∗n
D−→ N

(
t2√

2
, 1

)
under P

(n)
θθθn0+νnτττn,κn

, with νn = p
3/4
n /(

√
nκn
√
fn2 );

(ii) if
√
nκn/p

3/4
n → ξ > 0, then

W ∗n
D−→ N

(
ξ2t2√

2

(
1− t2

4

)
, 1

)
under P

(n)
θθθn0+νnτττn,κn

, with νn = 1;
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(iii) if
√
nκn/p

3/4
n = o(1), then

W ∗n
D−→ N (0, 1)

under P
(n)
θθθn0+νnτττn,κn

, with νn = 1.

It is interesting to comment on how this relates to the results of the previous
section: Corollary 1(i) covers the regimes (i)–(iv) and (va). In view of the
asymptotic behavior of fn2 in these regimes (see Lemma 4), Corollary 1(i)
confirms the consistency rates of the Watson test in Theorem 2–4, as well as
the corresponding asymptotic powers obtained in (2.13) through the Le Cam
third lemma. Corollary 1(ii) relates to regime (vb), where the Watson test can
only see the “fixed” alternatives associated with νn = 1, with limiting power

1− Φ
(
Φ−1(1− α)− ξ2t2√

2

(
1− t2

4

))
(3.19)

(note that this limiting power can be obtained both by using Corollary 1(ii)
or by applying the Le Cam third lemma in Theorem 4, even if the second
approach will provide the result only for alternatives associated with t <

√
2,

that is, for alternatives in the open hemisphere centered at the null location).
The limiting power in (3.19) increases monotonically from the nominal

level α (for t = 0, where the underlying location is the null one) to its maximal
value (achieved at t =

√
2, that is, when the true location is orthogonal to the

null one), then decreases monotonically to α (this limiting value being obtained
when the true location is antipodal to the null location). This non-monotonic
pattern of the asymptotic power in this regime is a direct consequence of the
nature of the Watson test that, as already mentioned, rejects the null when X̄n

and θθθn0 project far from each other onto the orthogonal complement to θθθn0
in Rpn . Finally, Corollary 1(iii) indicates that, for

√
nκn/p

3/4
n = o(1), there

are no alternatives under which the Watson test can show asymptotic powers
larger than the nominal level α, which is perfectly in line with results obtained
in the previous section for the corresponding regimes, namely for regimes (vc),
(vi) and (vii).

4 Simulations

This section reports the results of a Monte Carlo study we conducted to see
how well the finite-sample behavior of the various tests reflect the asymp-
totic findings in Theorems 2–4 and Corollary 1. To compare the results for
different values of p/n (note that most aforementioned asymptotic findings
allow pn to go to infinity at an arbitrary rate), we conducted three simu-
lations, for (n, p) = (800, 200), (n, p) = (400, 400), and (n, p) = (200, 800),
respectively. In each simulation, we generated, for every combination of r =
(i), . . . , (iv), (va), (vb), (vi), (vii) and ` = 0, 1, . . . , L = 5, a collection of M =
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1, 000 independent random samples of size n from the p-variate FvML distri-
bution with location

θθθn,r,` := (1, 0, . . . , 0)′ + νn,r

(
− 2νn,r`

2

L2
,

2`

L

(
1−

ν2n,r`
2

L2

)1/2
, 0, . . . , 0

)′
=: θθθn0 + νn,rτττn,r,` ∈ Spn−1

and concentration κn,r. The index r allows to consider the various regimes from
Theorem 2 (associated with the κn,r used). In each case, we considered the
corresponding local alternatives (associated with νn,r) from the same theorem.
More precisely, we used

• κn,(i) := p2n, νn,(i) = p
1/4
n /
√
nκn,

• κn,(ii) := pn, νn,(ii) =
√
c1p

3/4
n /(

√
nκn),

• κn,(iii) := pn/n
1/4, νn,(iii) = p

3/4
n /(

√
nκn),

• κn,(iv) := pn/
√
n, νn,(iv) = p

3/4
n /(

√
nκn),

• κn,(va) := p
7/8
n /
√
n, νn,(va) = p

1/4
n /(n1/4

√
κn),

• κn,(vb) := p
3/4
n /
√
n, νn,(vb) = p

1/4
n /(n1/4

√
κn),

• κn,(vi) :=
√
pn/
√
n, νn,(vi) = 1, and

• κn,(vii) := p
1/4
n /
√
n, νn,(vii) = 1.

The value ` = 0 corresponds to the null hypothesis H(n)
0 : θθθn = θθθn0, whereas

the values ` = 1, . . . , 5 provide increasingly severe alternatives. For each sam-
ple, we performed three tests, all at asymptotic level α = 5%, namely (a) the
Watson test rejecting the null when

Wn =
n(p− 1)X̄′n(Ip − θθθn0θθθ′n0)X̄n

1− 1
n

∑n
i=1(X′niθθθn0)2

> χ2
p−1,1−α,

(b) the Zn-test rejecting the null when

Zn =

√
n(X̄′nθθθn0 − en1)√

ẽn2
< Φ−1(α),

and (c) the hybrid test rejecting the null when

Hn :=

(
W̃n√

2
− Zn

2ξn

)/√1

2
+

1

4ξ2n
> Φ−1(1− α),

where ξn :=
√
nκn/pn is based on the (unknown) concentration κn depending

on the regime r at hand. In each regime from Theorem 2, this hybrid test is
clearly expected to behave as the corresponding optimal specified-κn test. We
stress that the tests (b)–(c) address the specified-κn problem only, whereas the
Watson test (a) addresses both the specified-κn and unspecified-κn problems.

Plots of the resulting rejection frequencies are provided in Figures 1 to 3,
for (n, p) = (800, 200), (n, p) = (400, 400) and (n, p) = (200, 800), respectively.
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In each case, the asymptotic powers, obtained from (2.12)–(2.14), are also
plotted. Clearly, irrespective of the three values of p/n considered, the rejection
frequencies of the tests are in an excellent agreement with the corresponding
asymptotic powers. Also, the results confirm the adaptive nature of the hybrid
test, that throughout is the most powerful test.

Watson
Hybrid
Zn

(n,p)=(800,200)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(ii)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(iii)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(iv)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(v)a

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(v)b

ℓ
0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(vi)

ℓ
0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(vii)

ℓ

Fig. 1 Rejection frequencies (solid lines), out of M = 1,000 independent replications, of

the Watson test (green), the hybrid test (orange) and the Zn-based test (red) for H(n)
0 :

θθθn = θθθn0 = (1, 0, . . . , 0)′ ∈ Rp, under the null (` = 0) and under increasingly severe p-
dimensional FvML alternatives (` = 1, . . . , 5); here, the sample size is n = 800 and the
dimension is p = 200. The regimes (i), . . . , (vii) fix the way the underlying concentration κn
is chosen as a function of n and p. In each regime, the corresponding contiguous alternatives
from Theorem 2 are used; see Section 4 for details. The corresponding asymptotic powers
are plotted in each case (dashed lines).
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Fig. 2 Same results as in Figure 1, but for sample size n = 400 and dimension p = 400.

To illustrate similarly the results of Theorem 4 and Corollary 1, we focused
on the regimes (va)–(vb) above, but considered the corresponding more severe
alternatives. More precisely, we here took

• κn,(va) := p
7/8
n /
√
n, νn,(va) = p

3/4
n /(

√
nκn), and

• κn,(vb) := p
3/4
n /
√
n, νn,(vb) = 1.

The rejection frequencies of the same three tests as above, still based on
M = 1,000 independent replications, are provided in Figure 4. For the Watson
test, the agreement between rejection frequencies and asymptotic powers is
perfect in regime (vb) (where the non-monotonic asymptotic power pattern
is confirmed), but is less so in regime (va); at the finite dimensions / sample
sizes considered, this may be explained by the fact that the regimes (va)–(vb)
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Fig. 3 Same results as in Figures 1–2, but for sample size n = 200 and dimension p = 800.

are close to each other, so that the empirical powers of the Watson test in
regime (va) tends to be pulled to the ones in regime (vi).

5 Summary and research perspectives

In the present paper, we tackled the problem of testing, in high dimensions, the
null hypothesis that the spike direction θθθ of a rotationally symmetric distribu-
tion is equal to a given direction θθθ0. Under FvML distributional assumptions,
we showed that, after resorting to the invariance principle, the sequence of
statistical experiments at hand is LAN. More precisely, we identified seven
regimes, according to the way the underlying concentration parameter κn de-
pends on n and pn, each leading to a specific limiting experiment, with its
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Fig. 4 Rejection frequencies (solid lines), out of M = 1,000 independent replications, of the

Watson test (green), the hybrid test (orange) and the Zn-based test (red) for H(n)
0 : θθθn =

θθθn0 = (1, 0, . . . , 0)′ ∈ Rp, under the null (` = 0) and under increasingly severe p-dimensional
FvML alternatives (` = 1, . . . , 5); the couples (n, p) used are those from Figures 1–3. Here,
we focus on the regimes (va)–(vb) and consider the more severe alternatives associated with
Theorem 4 and Corollary 1; see Section 4 for details. The corresponding asymptotic powers
are plotted in each case (dashed lines).
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own central sequence, Fisher information and contiguity rate (interestingly,
these heterogeneous contiguity rates precisely quantify how difficult the prob-
lem gets for low concentration situations). As a result, the Le Cam optimal
test (more precisely, the locally asymptotically most powerful invariant test)
depends on the regime considered. In regimes where

√
nκn/pn →∞, the clas-

sical Watson test is optimal, whereas in regimes where
√
nκn/pn = O(1), the

optimal test is an oracle test that explicitly involves the unknown value of the
underlying concentration κn. If

√
nκn/pn → ξ > 0, then the Watson test fails

to be optimal but is still rate-consistent, whereas if
√
nκn/pn = o(1), then it

is not even rate-consistent. In all cases, we obtained from the Le Cam third
Lemma the asymptotic powers of the corresponding optimal tests and of the
Watson test under contiguous alternatives. All results above allow the dimen-
sion pn to go to infinity arbitrarily slowly or arbitrarily fast as a function of n,
hence cover moderately high dimensions as well as ultra-high dimensions.

Optimality above refers to the specified-κn version of the testing problem
considered. Since the concentration κn can hardly be assumed to be known
in practice, however, optimality results for the corresponding unspecified-κn
problem are more relevant. For this problem, the Watson test of course remains
optimal in regimes where

√
nκn/pn →∞. But remarkably, for unspecified κn,

the Watson test is also optimal in regimes where
√
nκn/pn = O(1), sometimes

under the condition that pn = o(n2) (on an even weaker condition on pn); we
refer to Table 1 and to Theorems 3–4 for details.

Our work opens several perspectives for future research. (a) First, while
we derived non-null results for the Watson test also outside the FvML dis-
tributional setup, all our optimality results are limited to the FvML case. A
natural question is therefore whether or not the strong optimality properties
of the Watson test extend away from the FvML case. The low-dimensional
investigation conducted in [31] leads us to conjecture that optimality would
also hold away from the FvML case, at least in low concentration patterns. Es-
tablishing this would require expanding invariant log-likelihood ratios taking
a much more complicated form than in the FvML case. This calls for entirely
different techniques, hence is beyond the scope of the present paper. (b) Sec-
ond, we would like to mention that our results are also relevant in a Euclidean
(i.e., non-directional) context. They indeed characterize the asymptotic effi-
ciency of sign tests for the direction θθθ of a skewed single-spiked distribution
in Rp, that is, a distribution whose projection along θθθ is skewed and whose
projection onto the orthogonal complement to θθθ is spherically symmetric. This
skewed version of the corresponding classical, elliptical, problem is natural in
a signal detection framework, where the signal at hand is quite naturally max-
imal in direction θθθ and minimal in the opposite direction −θθθ. While our results
exhaustively address the question of efficiency of sign tests for this problem
(that is, of tests that involve the observations only through their direction
form the center of the distribution), it would be of interest to also consider
the efficiency of more general testing procedures.
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A Technical proofs for Section 2

The proof of Theorem 1 requires the following preliminary results.

Lemma 1 Let (pn) be a sequence of integers diverging to infinity and (κn) be an arbitrary
sequence in (0,∞). Let Ln :=

∑n
i=1 V

2
ni/(nfn2), where we used the notation Vni = (1 −

(X′niθθθn0)2)1/2 and fn2 = E[V 2
n1]. Then, E

[
(Ln − 1)2

]
= o(p−1

n ) as n→∞ under P
(n)
θθθn0,κn

.

Proof of Lemma 1. Since

E

[(∑n
i=1 V

2
ni

nfn2
− 1

)2
]

=
1

f2n2
E

[(
1

n

n∑
i=1

V 2
ni − E[V 2

n1]

)2]

=
1

f2n2
Var

[
1

n

n∑
i=1

V 2
ni

]
=

Var[V 2
n1]

nf2n2
=
fn4 − f2n2
nf2n2

(recall that fn4 := E[V 4
n1]), it is sufficient to prove that

fn4 − f2n2
f2n2

= O(p−1
n ). (A.20)

Now, the expression for fn4/f2n2 in page 82 of [25] yields

∣∣∣∣fn4 − f2n2f2n2

∣∣∣∣ =

∣∣∣∣ (pn + 1)I pn
2

+1(κn)I pn
2
−1(κn)

(pn − 1)(I pn
2

(κn))2
− 1

∣∣∣∣
=

∣∣∣∣ (pn + 1)(I pn
2

+1(κn)I pn
2
−1(κn)− (I pn

2
(κn))2)

(pn − 1)(I pn
2

(κn))2
+

2

pn − 1

∣∣∣∣
≤

3|I pn
2

+1(κn)I pn
2
−1(κn)− (I pn

2
(κn))2|

(I pn
2

(κn))2
+

2

pn − 1
·

Since |I pn
2

+1(κn)I pn
2
−1(κn)−(I pn

2
(κn))2| ≤ (I pn

2
(κn))2/( pn

2
+1) (see (3.1)–(3.2) in [21]),

the result follows. �

Lemma 2 Let (pn) be a sequence of integers that diverges to infinity and (κn) be an arbi-
trary sequence in (0,∞). Let (θθθn0) be a sequence such that θθθn0 belongs to Spn−1 for any n.

Consider the random variables W̃n and Zn introduced in Theorem 1. Then, (W̃n, Zn)′ is

asymptotically standard bivariate normal under P
(n)
θθθn0,κn

.

Proof of Lemma 2. Throughout the proof, expectations and variances are under P
(n)
θθθn0,κn

and stochastic convergences are as n→∞ under the same sequence of hypotheses, whereas
Uni, Vni and Sni refer to the tangent-normal decomposition of Xni with respect to θθθn0.
Letting then

W ∗n =

√
2(pn − 1)

nfn2

∑
1≤i<j≤n

VniVnjS
′
niSnj ,
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assume that (W ∗n , Zn)′ is asymptotically standard bivariate normal. Then,

W̃n −W ∗n =

[√
2(pn − 1)∑n
i=1 V

2
ni

−
√

2(pn − 1)

nfn2

] ∑
1≤i<j≤n

VniVnjS
′
niSnj (A.21)

=

[
1−

∑n
i=1 V

2
ni

nfn2

]
×

nfn2∑n
i=1 V

2
ni

×
(√

2(pn − 1)

nfn2

∑
1≤i<j≤n

VniVnjS
′
niSnj

)

=
1− Ln
Ln

W ∗n ,

where Ln was introduced in Lemma 1. This lemma implies that Ln − 1, hence also (1 −
Ln)/Ln, is oP(1). If (W ∗n , Zn)′ is indeed asymptotically standard bivariate normal, then

we conclude that W̃n − W ∗n is oP(1), so that (W̃n, Zn)′ itself is asymptotically standard
bivariate normal.

It is therefore sufficient to show that (W ∗n , Zn)′ is asymptotically standard bivariate
normal. We will do this by fixing γ and η such that γ2 + η2 = 1 and by using a classical
martingale Central Limit Theorem to show that Dn := γW ∗n + ηZn is asymptotically stan-
dard normal. To do so, let Fn` be the σ-algebra generated by Xn1, . . . ,Xn` and denote by
En`[.] the conditional expectation with respect to Fn`. Define Dn` := En`[Dn]−En,`−1[Dn]
for ` = 1, . . . , n and Dn` = 0 for ` > n. It is then easy to check that Dn` = γW ∗n` + ηZn`,
with

W ∗n` :=

√
2(pn − 1)

nfn2

`−1∑
i=1

VniVn`S
′
niSn` and Zn` :=

Un` − en1√
nẽn2

for ` = 1, . . . , n and W ∗n` = 0 = Zn` for ` > n (W ∗n1 is also to be understood as zero). To
conclude from the martingale Central Limit Theorem in Theorem 35.12 from [6] that Dn =∑∞
`=1Dn` is indeed asymptotically standard normal, we need to show that (a)

∑n
`=1 σ

2
n` →

1 in probability, with σ2
n` := En,`−1[D2

n`], and that (b)
∑n
`=1 E[D2

n` I[|Dn`| > ε]] → 0 for
any ε > 0. Clearly, for ` = 1, . . . , n,

σ2
n` = γ2En,`−1[(W ∗n`)

2] + η2En,`−1[Z2
n`] + 2γηEn,`−1[W ∗n`Zn`]

= γ2En,`−1[(W ∗n`)
2] +

η2

n
, (A.22)

so that (a) follows from Lemma A.1 in [25]. We may thus focus on (b). Since

En,`−1[(W ∗n`)
2] = 2(n2fn2)−1

`−1∑
i,j=1

VniVnjS
′
niSnj ,

we obtain Var[Dn`] = E[σ2
n`] = γ2E[(W ∗n`)

2] + (η2/n) = 2γ2(` − 1)/n2 + (η2/n) ≤ 2/n,
which yields that there exists a constant C such that, for any ε > 0,

n∑
`=1

E[D2
n` I[|Dn`| > ε]] ≤

n∑
`=1

√
E[D4

n`]
√

P[|Dn`| > ε]

≤
1

ε

n∑
`=1

√
E[D4

n`]
√

Var[Dn`] ≤
√

2
√
nε

n∑
`=1

√
E[D4

n`]

≤
C
√
nε

n∑
`=1

√
E[(W ∗n`)

4] +
C
√
nε

n∑
`=1

√
E[Z4

n`].
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From (A.9) in [25], we then obtain

n∑
`=1

E[D2
n` I[|Dn`| > ε]] ≤

C
√
nε

n∑
`=1

√
12

n4

(
`
f2n4
f4n2

+ `2
fn4

f2n2

)
+
C
√
n

ε

√
ẽn4

n2ẽ2n2

≤
√

12C

ε

√( fn4

nf2n2

)2
+

fn4

nf2n2
+
C

ε

√
ẽn4

nẽ2n2
·

The result therefore follows from the fact that both fn4/f2n2 and ẽn4/ẽ2n2 are upper-bounded
by a universal constant; see Theorem S.2.1 in [13]. �

Lemma 3 Let (νn) be a sequence in (0,∞) that diverges to ∞, (an), (bn) be sequences
in (0,∞) such that lim inf an > 0, bn/νn → ξ ∈ [0,∞) and b6n = o(a4nν

5
n). Let Tn be a

sequence of random variables that is OP(1). Then, writing,

Hν(x) :=

∫ 1
−1(1− t2)ν−

1
2 exp(xt) dt∫ 1

−1(1− t2)ν−
1
2 dt

=
Γ (ν + 1)Iν(x)

(x/2)ν
,

we have that

a2n logHνn

( bnTn
an

)
=
b2nT

2
n

4νn
−

b4nT
4
n

32ν3na
2
n

+
ξ2T 2

n

4
+ oP(1)

as n→∞.

Proof of Lemma 3. The proof is based on the bounds

Sν+ 1
2
,ν+ 3

2
(x) ≤ logHν(x) ≤ Sν,ν+2(x)

for any x > 0, with Sα,β(x) :=
√
x2 + β2 − β − α log((α +

√
x2 + β2)/(α + β)); see (5) in

[20]. Consider

Gν(x) := logHν(x)−
x2

4ν
+

x4

32ν3
+

x2

4ν2
,

along with its resulting lower and upper bounds

Glow
ν (x) := Sν+ 1

2
,ν+ 3

2
(x)−

x2

4ν
+

x4

32ν3
+

x2

4ν2

and

Gup
ν (x) := Sν,ν+2(x)−

x2

4ν
+

x4

32ν3
+

x2

4ν2
·

We prove the lemma by establishing that

a2nG
low/up
νn

( bnTn
an

)
= oP(1). (A.23)

To do so, we expand the log term in G
low/up
ν (x) as log x = (x− 1)− 1

2
(x− 1)2 + 1

3c3
(x− 1)3

with c ∈ (1, x) (note that the argument of these log terms is larger than or equal to one),

and we write G
low/up
ν (x) = G

low/up,1
ν (x) +G

low/up,2
ν (x), with

Glow,1
ν (x) :=

√
x2 + (ν + 3

2
)2 − (ν + 3

2
)

−(ν + 1
2

)

[(
(ν + 1

2
) +

√
x2 + (ν + 3

2
)2

2(ν + 1)
− 1

)

−
1

2

(
(ν + 1

2
) +

√
x2 + (ν + 3

2
)2

2(ν + 1)
− 1

)2]
−
x2

4ν
+

x4

32ν3
+

x2

4ν2
,
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Gup,1
ν (x) :=

√
x2 + (ν + 2)2 − (ν + 2)

−ν
[(

ν +
√
x2 + (ν + 2)2

2(ν + 1)
− 1

)

−
1

2

(
ν +

√
x2 + (ν + 2)2

2(ν + 1)
− 1

)2]
−
x2

4ν
+

x4

32ν3
+

x2

4ν2
,

Glow,2
ν (x) := −

ν + 1
2

3(clow)3

(
(ν + 1

2
) +

√
x2 + (ν + 3

2
)2

2(ν + 1)
− 1

)3

,

and

Gup,2
ν (x) := −

ν

3(cup)3

(
ν +

√
x2 + (ν + 2)2

2(ν + 1)
− 1

)3

.

Routine yet tedious computations allow to show that

Glow,1
ν (x) =

x2

4ν2(ν + 1)
+

(4ν2 + 5ν + 2)x4

32ν3(ν + 1)2(ν + 2)

+

(
1−

4(1 + 2
ν

)(1 + 3
2ν

)(
(1 + 3

2ν
) +

√
(x
ν

)2 + (1 + 3
2ν

)2
)2
)

x4

32(ν + 1)2(ν + 2)
(A.24)

and

Gup,1
ν (x) =

x2

4ν2(ν + 1)
+

(4ν2 + 5ν + 2)x4

32ν3(ν + 1)2(ν + 2)

+

(
1−

4(
1 +

√
( x
ν+2

)2 + 1
)2
)

x4

32(ν + 1)2(ν + 2)
· (A.25)

Since both clow and cup are larger than one, we easily obtain

|Glow,2
ν (x)| ≤

(
(1 + 3

2ν
) +

√
(x
ν

)2 + (1 + 3
2ν

)2
)−3 (ν + 1

2
)x6

24ν3(ν + 1)3
(A.26)

and

|Gup,2
ν (x)| ≤

(
(1 + 2

ν
) +

√
(x
ν

)2 + (1 + 2
ν

)2
)−3 x6

24ν2(ν + 1)3
· (A.27)

Using the mean value theorem to control the last term in the righthand sides of (A.24)–
(A.25), it directly follows from (A.24)–(A.27) that, under the assumptions of the lemma,

a2nG
low/up,1
νn

( bnTn
an

)
= oP(1) and a2nG

low/up,2
νn

( bnTn
an

)
= oP(1),

which proves (A.23), hence establishes the result. �

Proof of Theorem 1. Throughout the proof, distributions and expectations are un-

der P
(n)
θθθn0,κn

and stochastic convergences are as n → ∞ under the same sequence of hy-

potheses. By using the fact that Oθθθn0 = θθθn0 = O′θθθn0 for any O ∈ SOpn (θθθn0) and by
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decomposing τττn into (τττ ′nθθθn0)θθθn0 +Πθθθn0
τττn, with Πθθθn0

:= Ipn − θθθn0θθθ′n0, (2.7) yields

dP
(n)Tn
1− 1

2
ν2n‖τττn‖2,κn

dmn
=
cnpn,κn
ωnpn−1

∫
SOpn (θθθn0)

exp
(
nκnX̄

′
nO
′(θθθn0 + νnτττn)

)
dO

=
cnpn,κn
ωnpn−1

exp
(
nκnX̄

′
nθθθn0

) ∫
SOpn (θθθn0)

exp
(
nκnνnX̄

′
nO
′τττn
)
dO

=
cnpn,κn
ωnpn−1

exp
(
nκnX̄

′
nθθθn0

) ∫
SOpn (θθθn0)

exp
(
nκnνnX̄

′
n[(τττ ′nθθθn0)θθθn0 + O′Πθθθn0

τττn]
)
dO

=
cnpn,κn
ωnpn−1

exp
(
nκn(1 + νn(τττ ′nθθθn0))X̄′nθθθn0

) ∫
SOpn (θθθn0)

exp
(
nκnνnX̄

′
nO
′Πθθθn0

τττn
)
dO.

Now, since O′Πθθθn0
= O′Π2

θθθn0
= Πθθθn0

O′Πθθθn0
,∫

SOpn (θθθn0)
exp

(
nκnνnX̄

′
nO
′Πθθθn0

τττn
)
dO

=

∫
SOpn (θθθn0)

exp
(
nκnνnX̄

′
nΠθθθn0

O′Πθθθn0
τττn
)
dO

=

∫
SOpn (θθθn0)

exp

(
nκnνn‖Πθθθn0

τττn‖‖Πθθθn0
X̄n‖

(
Πθθθn0

X̄n

‖Πθθθn0
X̄n‖

)′(
O′

Πθθθn0
τττn

‖Πθθθn0
τττn‖

))
dO

= E
[

exp
(
nκnνn‖Πθθθn0

τττn‖‖Πθθθn0
X̄n‖v′nS

)
|Xn1, . . . ,Xnn

]
,

where S is uniformly distributed over Spn−1
θθθn0

:= {x ∈ Spn−1 : x′θθθn0 = 0} and where vn ∈

Spn−1
θθθn0

is arbitrary. Since v′nS has density t 7→ cpn−1(1−t2)
pn−4

2 I[t ∈ [−1, 1]], with cpn−1 =

1/
∫ 1
−1(1− t2)

pn−4
2 dt, this yields∫

SOpn (θθθn0)
exp

(
nκnνnX̄

′
nO
′Πθθθn0

τττn
)
dO

= cpn−1

∫ 1

−1
exp
(
nκnνn‖Πθθθn0

τττn‖‖Πθθθn0
X̄n‖t

)
(1− t2)

pn−4
2 dt

= H pn−3
2

(nκnνn‖Πθθθn0
τττn‖‖Πθθθn0

X̄n‖).

Summing up,

dP
(n)Tn
1− 1

2
ν2n‖τττn‖2,κn

dmn
=
cnpn,κn
ωnpn−1

exp
(
nκnX̄

′
nθθθn0

)
× exp

(
nκnνn(τττ ′nθθθn0)X̄′nθθθn0

)
H pn−3

2
(nκnνn‖Πθθθn0

τττn‖‖Πθθθn0
X̄n‖). (A.28)

Now, with the quantity Ln introduced in Lemma 1, we have

Tn := 1 +

√
2 W̃n√
pn − 1

=
Wn

pn − 1
=

n2∑n
i=1 V

2
ni

X̄′n(Ipn − θθθn0θθθ′n0)X̄n

=
n

fn2Ln
‖Πθθθn0

X̄n‖2 =
nκn

(pn − 1)en1Ln
‖Πθθθn0

X̄n‖2,
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where we used the identity fn2 = (pn − 1)en1/κn; see (2.9). Therefore, (A.28) yields

Λ
(n)inv
θθθn/θθθn0;κn

= log

dP
(n)Tn
1− 1

2
ν2n‖τττn‖2,κn

dP
(n)Tn
1,κn

= nκnνn(τττ ′nθθθn0)X̄′nθθθn0 + logH pn−3
2

(nκnνn‖Πθθθn0
τττn‖‖Πθθθn0

X̄n‖)

= nκnνn(τττ ′nθθθn0)X̄′nθθθn0 + logH pn−3
2

(n1/2(pn − 1)1/2κ
1/2
n νne

1/2
n1 ‖Πθθθn0

τττn‖L1/2
n T

1/2
n ).

Since W̃n =
√

(pn − 1)/2× (Tn−1) is asymptotically standard normal (Lemma 2), we have
that Tn = 1 + oP(1). Moreover, it directly follows from Lemma 1 that Ln = 1 + oP(1).
Consequently, Lemma 3 shows that, if νn satisfies (2.10), then

Λ
(n)inv
θθθn/θθθn0;κn

= nκnνn(τττ ′nθθθn0)X̄′nθθθn0 +
pn − 1

2(pn − 3)
nκnν

2
nen1‖Πθθθn0

τττn‖2LnTn

−
(pn − 1)2

4(pn − 3)3
n2κ2nν

4
ne

2
n1‖Πθθθn0

τττn‖4L2
nT

2
n + oP(1).

Using (2.10), Lemma 1 and the fact that Tn = 1 + oP(1) yields

Λ
(n)inv
θθθn/θθθn0;κn

= nκnνn(τττ ′nθθθn0)X̄′nθθθn0 +
1

2
nκnν

2
nen1‖Πθθθn0

τττn‖2Tn (A.29)

−
n2κ2nν

4
ne

2
n1

4pn
‖Πθθθn0

τττn‖4 + oP(1).

Using the definitions of Zn and Tn, we obtain

Λ
(n)inv
θθθn/θθθn0;κn

= nκnνn(τττ ′nθθθn0)
(
en1 +

√
ẽn2

n1/2
Zn
)

+
1

2
nκnν

2
nen1‖Πθθθn0

τττn‖2
(

1 +

√
2 W̃n√
pn − 1

)
−
n2κ2nν

4
ne

2
n1

4pn
‖Πθθθn0

τττn‖4 + oP(1)

=
√
nκnνn

√
ẽn2(τττ ′nθθθn0)Zn +

nκnν2nen1√
2(pn − 1)1/2

‖Πθθθn0
τττn‖2W̃n

+nκnνn(τττ ′nθθθn0)en1 +
1

2
nκnν

2
nen1‖Πθθθn0

τττn‖2 −
n2κ2nν

4
ne

2
n1

4pn
‖Πθθθn0

τττn‖4 + oP(1).

Using the identities

τττ ′nθθθn0 = −
1

2
νn‖τττn‖2 (A.30)

and

‖Πθθθn0
τττn‖2 = ‖τττn‖2 − (τττ ′nθθθn0)2 = ‖τττn‖2

(
1−

1

4
ν2n‖τττn‖2

)
(A.31)

provides

Λ
(n)inv
θθθn/θθθn0;κn

= −
1

2

√
nκnν

2
n

√
ẽn2‖τττn‖2Zn

+
nκnν2nen1√
2(pn − 1)1/2

‖τττn‖2
(

1−
1

4
ν2n‖τττn‖2

)
W̃n −

1

2
nκnν

2
nen1‖τττn‖2

+
1

2
nκnν

2
nen1‖τττn‖2

(
1−

1

4
ν2n‖τττn‖2

)
−
n2κ2nν

4
ne

2
n1

4pn
‖τττn‖4

(
1−

1

4
ν2n‖τττn‖2

)2
+ oP(1).

The result then follows from (2.10) and from the tightness of W̃n (Lemma 2). �
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Lemma 4 Let (pn) be a sequence of integers that diverges to infinity and (κn) be an
arbitrary sequence in (0,∞). Let en1 (resp., ẽn2) be the expectation (resp., the variance)
of the distribution with probability density function (2.8). Then, we have the following: (i)
if κn/pn →∞, then

en1 = 1 + o(1), ẽn2 = O
( pn
κ2n

)
and fn2 =

pn

κn
+ o
( pn
κn

)
;

(ii) if κn/pn → ξ > 0, then, letting cξ := 1
2

+
√

1
4

+ ξ2,

en1 →
ξ

cξ
+ o(1), ẽn2 = O

( 1

pn

)
and fn2 =

1

cξ
+ o(1);

(iii) if κn/pn → 0, then

en1 =
κn

pn
+O

(κ3n
p3n

)
, ẽn2 =

1

pn
+ o
( 1

pn

)
and fn2 = 1 + o(1).

Proof of Lemma 4. Denoting again as Iν(·) the order-ν modified Bessel function of
the first kind, we recall (see (2.9)) that

en1 =
I pn

2
(κn)

I pn
2
−1(κn)

, ẽn2 = 1−
pn − 1

κn
en1 − e2n1 and fn2 =

pn − 1

κn
en1.

In each case (i)–(iii), the claim for fn2 directly follows from the result on en1, so that it is
sufficient to prove the results for en1 and ẽn2. To do so, we will use the bounds

Rlow
ν (z) :=

z

ν + 1 +
√

(ν + 1)2 + z2
≤
Iν+1(z)

Iν(z)
≤

z

ν +
√

(ν + 2)2 + z2
=: Rup

ν (z) (A.32)

and

R̃low
ν (z) :=

z

ν + 1
2

+
√

(ν + 3
2

)2 + z2
≤
Iν+1(z)

Iν(z)
; (A.33)

see (11) and (16) in [1], respectively. (i) The lower bound in (A.32) provides

en1 ≥
κn

pn
2

+
√( pn

2

)2
+ κ2n

=
1

pn
2κn

+
√( pn

2κn

)2
+ 1

,

which, since en1 ≤ 1, establishes the result for en1. Making use of the bound in (A.33), we
can write

ẽn2 ≤ 1−
pn − 1

κn
R̃low
pn
2
−1

(κn)−
(
R̃low
pn
2
−1

(κn)
)2
.

Lengthy yet quite straightforward computations allow to rewrite this as

ẽn2 ≤
pn

κ2n

(
pn−1
2κn

+
√( pn+1

2κn

)2
+ 1

)2 ·
It readily follows that κ2nẽn2/pn is O(1), as was to be showed. Let us turn to the proof
of (iii). The bounds in (A.32) readily yield

1

1
2

+
√(

1
2

)2
+
(κn
pn

)2 ≤ en1

κn/pn
≤

1

1
2
− 1
pn

+
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2 , (A.34)

which provides

−
(κn
pn

)2(
1
2

+
√(

1
2

)2
+
(κn
pn

)2)2 ≤ en1

κn/pn
− 1 ≤

−
(κn
pn

)2
1
2
− 1
pn

+
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2 ·
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This proves the result for en1. Turning to ẽn2, the bounds in (A.32) lead to

1−
pn − 1

κn
Rup
pn
2
−1

(κn)−
(
Rup
pn
2
−1

(κn)
)2 ≤ ẽn2 ≤ 1−

pn − 1

κn
Rlow
pn
2
−1

(κn)−
(
Rlow
pn
2
−1

(κn)
)2
.

As above, heavy but rather straightforward computations allow to rewrite this as

3
2

+ 1
pn
−
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2
pn
(

1
2
− 1
pn

+
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2 )2 ≤ ẽn2 ≤ 1

pn
(

1
2

+
√(

1
2

)2
+
(κn
pn

)2 ) , (A.35)

which establishes that pnẽn2 = 1+o(1). Finally, the result in (ii) readily follows from (A.34)
and from the upper bound in (A.35). �

Proof of Theorem 2. Stochastic convergences throughout the proof are as n → ∞
under P

(n)
θθθn0,κn

. Assume that (i) κn/pn → ∞, (ii) κn/pn → ξ > 0, or (iii) κn/pn → 0

with
√
nκn/pn → ∞, and let (νn) be the corresponding sequence in the statement of

the theorem. Using Lemma 4 and the identity κnfn2 = (pn − 1)en1, it is then easy to
check that νn satisfies (2.10), is such that νn = o(1), and is asymptotically equivalent to

ν̃n = p
3/4
n /(

√
nκn
√
fn2) in the sense that ν̃n/νn → 1. Theorem 1 thus applies and yields

Λ
(n)inv
θθθn/θθθn0;κn

= −
p
3/2
n
√
ẽn2

2
√
nκnfn2

‖τττn‖2Zn +
pnen1√
2κnfn2

‖τττn‖2W̃n

−
p3nen1

8nκ3nf
2
n2

‖τττn‖4 −
p2ne

2
n1

4κ2nf
2
n2

‖τττn‖4 + oP(1).

Using again the identity κnfn2 = (pn − 1)en1, we then obtain

Λ
(n)inv
θθθn/θθθn0;κn

= −
p
3/2
n
√
ẽn2

2
√
n(pn − 1)en1

‖τττn‖2Zn +
1
√

2
‖τττn‖2W̃n (A.36)

−
p3n

8nκn(pn − 1)2en1
‖τττn‖4 −

1

4
‖τττn‖4 + oP(1).

The result in cases (i)–(iii) then follows from the fact that Lemma 4 implies that, in each
case, the first and third term of the righthand side of (A.36) are oP(1).

We turn to case (iv), for which
√
nκn/pn = ξ (so that, like for all subsequent cases, κn =

o(pn)). Then, the same argument as above allows to check that νn = p
3/4
n /(

√
nκn
√
fn2)

still satisfies (2.10) and is such that νn = o(1), so that, jointly with Lemma 4, Theorem 1
provides

Λ
(n)inv
θθθn/θθθn0;κn

= −
p
3/2
n ẽ

1/2
n2

2
√
nκnfn2

‖τττn‖2Zn +
pnen1√
2κnfn2

‖τττn‖2W̃n

−
p3nen1

8nκ3nf
2
n2

‖τττn‖4 −
p2ne

2
n1

4κ2nf
2
n2

‖τττn‖4 + oP(1)

= −
1

2ξ
‖τττn‖2Zn +

1
√

2
‖τττn‖2W̃n −

1

8ξ2
‖τττn‖4 −

1

4
‖τττn‖4 + oP(1),

as was to be shown. Consider now case (v), under which
√
nκn/pn → 0 with

√
nκn/

√
pn →

∞, which still ensures that νn = p
1/4
n /(n1/4√κn) is o(1) and satisfies (2.10). Theorem 1

applies and, by using Lemma 4 again, yields

Λ
(n)inv
θθθn/θθθn0;κn

= −
1

2

√
pnẽn2 ‖τττn‖2Zn +

√
nen1√

2
‖τττn‖2W̃n −

pnen1

8κn
‖τττn‖4 −

ne2n1
4
‖τττn‖4 + oP(1)

= −
1

2
‖τττn‖2Zn −

1

8
‖τττn‖4 + oP(1),
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which establishes the result in case (v). If
√
nκn/

√
pn = ξ (case (vi)), then Lemma 4 implies

that νn = 1 satisfies (2.10). Theorem 1 then provides

Λ
(n)inv
θθθn/θθθn0;κn

= −
√
nκn

2
√
pn

√
pnẽn2 ‖τττn‖2Zn +

nκnen1
√

2p
1/2
n

‖τττn‖2
(

1−
1

4
‖τττn‖2

)
W̃n

−
1

8
nκnen1‖τττn‖4 −

n2κ2ne
2
n1

4pn
‖τττn‖4

(
1−

1

4
‖τττn‖2

)2
+ oP(1) (A.37)

= −
ξ

2
‖τττn‖2Zn −

ξ2

8
‖τττn‖4 + oP(1),

where we used Lemma 4. Finally, if
√
nκn/

√
pn = o(1) (case (vii)), then (2.10) again holds

for νn = 1. Therefore, Theorem 1 shows that Λ
(n)inv
θθθn/θθθn0;κn

satisfies the first equality of (A.37),

hence is oP(1). �

Proof of Theorem 3. First note that, since pn = o(n2), Lemma 4(iii) entails that

Zn =

√
n(X̄′nθθθn0 − en1)
√
ẽ2n

=

√
n(X̄′nθθθn0 − ξ/

√
n+O(n−3/2))√

1
pn

+ o( 1
pn

)

=

√
pn(
√
nX̄′nθθθn0 − ξ +O(1/n))√

1 + o(1)
=
√
npnX̄

′
nθθθn0 −

√
pnξ + oP(1) (A.38)

as n→∞ under P
(n)
θθθn0,κn

. Write then

Λ
(n)inv
θθθn,κn,s/θθθn0,κn

= Λ
(n)inv
θθθn,κn,s/θθθn0,κn,s

+ Λ
(n)inv
θθθn0,κn,s/θθθn0,κn

= Λ
(n)inv
θθθn,κn,s/θθθn0,κn,s

+ log
dP

(n)
θθθn0,κn,s

dP
(n)
θθθn0,κn

=: Ln1 + Ln2.

Using (A.38), we obtain

Ln2 = n
(

log(cpn,κn,s )− log(cpn,κn )
)

+ n(κn,s − κn)X̄′nθθθn0

= n
[

log
( cpn,0

cpn,κn

)
− log

( cpn,0

cpn,κn,s

)]
+ s
√
npn X̄′nθθθn0

= n
[

logH pn
2
−1(κn)− logH pn

2
−1(κn,s)

]
+ s
√
pnξ + sZn + oP(1)

=: L̃n2 + sZn + oP(1)

as n → ∞ under P
(n)
θθθn0,κn

. Since pn = o(n2), we can apply Lemma 3 with an =
√
n and

Tn ≡ 1. This yields

L̃n2 =
( nκ2n

4( pn
2
− 1)

−
nκ4n

32( pn
2
− 1)3

)
−
( nκ2n,s

4( pn
2
− 1)

−
nκ4n,s

32( pn
2
− 1)3

)
+ s
√
pnξ + o(1)

= −
n(κ2n,s − κ2n)

2pn − 4
+
n(κ4n,s − κ4n)

4(pn − 2)3
+ s
√
pnξ + o(1)

= −
p2n((ξ + s/

√
pn)2 − ξ2)

2pn − 4
+
p4n((ξ + s/

√
pn)4 − ξ4)

4n(pn − 2)3
+ s
√
pnξ + o(1)

= −
s2

2
+ o(1)
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as n→∞. Therefore,

Ln2 = sZn −
s2

2
+ oP(1) (A.39)

as n→∞ under P
(n)
θθθn0,κn

, which implies that the sequences of probability measures P
(n)
θθθn0,κn,s

and P
(n)
θθθn0,κn

are mutually contiguous (this results from the Le Cam first lemma).

Now, denote as en1,s and ẽ2n,s, respectively, the values of en1 and ẽ2n under P
(n)
θθθn0,κn,s

.

Then, proceeding as in (A.38) and using the fact that contiguity implies that (A.38) also

holds under P
(n)
θθθn0,κn,s

, one obtains

Zn,s :=

√
n(X̄′nθθθn0 − en1,s)√

ẽ2n,s
=
√
npnX̄

′
nθθθn0 −

√
pnξ − s+ oP(1) = Zn − s+ oP(1)

as n→∞ under P
(n)
θθθn0,κn,s

. Consequently, Theorem 2(iv) implies that

L1n=‖τττn‖2
(
W̃n√

2
−
Zn,s

2ξ

)
−

1

2
‖τττn‖4

(
1

2
+

1

4ξ2

)
+ oP(1)

=‖τττn‖2
(
W̃n√

2
−
Zn

2ξ

)
+
‖τττn‖2s

2ξ
−

1

2
‖τττn‖4

(
1

2
+

1

4ξ2

)
+ oP(1) (A.40)

as n → ∞ under P
(n)
θθθn0,κn,s

, hence, from contiguity, also under P
(n)
θθθn0,κn

. Combining (A.44)

and (A.40) establishes the local asymptotic quadraticity result in (2.18). Finally, the asymp-
totic normality result of ∆∆∆n trivially follows from Lemma 2. �

The proof of Theorem 4 requires both following lemmas.

Lemma 5 Let (pn) be a sequence of integers that diverges to infinity. Let (κn) and (κn∗)
be sequences in (0,∞) that are o(pn) and write en1 and ẽn2 (resp., en1∗ and ẽn2∗) for the
corresponding moments based on κn (resp., on κn∗). Let (θθθn0), (νn) and (τττn) be sequences
such that θθθn0 and θθθn = θθθn0 +νnτττn belong to Spn−1 for any n, with (τττn) bounded and (νn)
such that

ν2n = O
( √

pn

nκn∗en1∗

)
. (A.41)

Then, with the same Zn and W̃n as in Theorem 1, we have that

Λ
(n)inv
θθθn/θθθn0;κn∗

= −
1

2

√
nκn∗ν

2
n

√
ẽn2 ‖τττn‖2Zn +

nκn∗ν2nen1∗√
2p

1/2
n

‖τττn‖2
(

1−
1

4
ν2n‖τττn‖2

)
W̃n

−
1

8
nκn∗ν

4
nen1∗‖τττn‖4 −

n2κ2n∗ν
4
ne

2
n1∗

4pn
‖τττn‖4

(
1−

1

4
ν2n‖τττn‖2

)2
+

1

2
nκn∗ν

2
n(en1∗ − en1)‖τττn‖2 + oP(1),

as n→∞ under P
(n)
θθθn0,κn

.

Proof of Lemma 5. Since κn and κn∗ are both o(n), Lemma 4 ensures that fn2/fn2∗ =
1+o(1), where fn2∗ denotes the quantity fn2 based on κn∗. Using this, it can be showed along

the exact same lines as in the proof of (A.29) in Theorem 1 that, as n→∞ under P
(n)
θθθn0,κn

,

Λ
(n)inv
θθθn/θθθn0;κn∗

= nκn∗νn(τττ ′nθθθn0)X̄′nθθθn0 +
1

2
nκn∗ν

2
nen1∗‖Πθθθn0

τττn‖2Tn

−
n2κ2n∗ν

4
ne

2
n1∗

4pn
‖Πθθθn0

τττn‖4 + oP(1),
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where Tn := 1+
√

2 W̃n/
√
pn − 1. If one replaces Tn by this expression and X̄′nθθθn0 by en1 +√

ẽn2Zn/
√
n, then the result follows by using (A.30), (A.31), (A.41), and the tightness

of W̃n. �

The second lemma reinforces the variance result in Lemma 4(iii).

Lemma 6 Let (pn) be a sequence of integers that diverges to infinity and (κn) be a sequence
in (0,∞) that is o(pn). Denote as ẽn2 the variance of the distribution with probability density
function (2.8). Then,

√
pnẽn2 − 1 = O(κ2n/p

2
n) as n→∞.

Proof of Lemma 6. In this proof, C denotes a generic constant that may differ from
line to line. Since (A.35) yields√

3
2

+ 1
pn
−
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2
1
2
− 1
pn

+
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2 − 1 ≤
√
pnẽn2 − 1 ≤

1√
1
2

+
√(

1
2

)2
+
(κn
pn

)2 − 1 ≤ 0,

we have

|
√
pnẽn2 − 1| ≤ 1−

√
3
2

+ 1
pn
−
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2
1
2
− 1
pn

+
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2
≤ C

{(
1
2
− 1
pn

+
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2)−√ 3
2

+ 1
pn
−
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2 }

≤ C
{(

1
2
− 1
pn

+
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2)2 − ( 3
2

+ 1
pn
−
√(

1
2

+ 1
pn

)2
+
(κn
pn

)2)}
.

Standard computations allow us to rewrite this upper-bound as

|
√
pnẽn2 − 1| ≤ C

{
2(pn−1)
pn

√( pn+2
2pn

)2
+
(κn
pn

)2 − (pn−1)(pn+2)−κ2
n

p2n

}

≤ C
{

4(pn−1)2

p2n

(( pn+2
2pn

)2
+
(κn
pn

)2)− ((pn−1)(pn+2)−κ2
n)

2

p4n

}
= C

(
6− 6

pn
− κ2

n
p2n

)
κ2
n
p2n
·

which, for n large, is upper-bounded by Cκ2n/p
2
n, as was to be proved. �

Proof of Theorem 4. Since κn = o(pn), Lemma 4(iii) entails that

Zn =

√
n(X̄′nθθθn0 − en1)
√
ẽ2n

=

√
n(X̄′nθθθn0 − ξrn/

√
n+O(r3nn

−3/2))√
1
pn

+ o( 1
pn

)

=

√
pn(
√
nX̄′nθθθn0 − ξrn +O(r3nn

−1))√
1 + o(1)

=
√
npnX̄

′
nθθθn0 − ξ

√
pnrn +OP

(√pnr3n
n

)
(A.42)

as n→∞ under P
(n)
θθθn0,κn

. Write then

Λ
(n)inv
θθθn,κn,s,τττn/θθθn0,κn

= Λ
(n)inv
θθθn,κn,s,τττn/θθθn0,κn,s,τττn

+ Λ
(n)inv
θθθn0,κn,s,τττn/θθθn0,κn

= Λ
(n)inv
θθθn,κn,s,τττn/θθθn0,κn,s,τττn

+ log
dP

(n)
θθθn0,κn,s,τττn

dP
(n)
θθθn0,κn

=: Ln1 + Ln2.
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Letting ρn := (1− 1
2
ν2n‖τττn‖2)−1 and using (A.42), we obtain

Ln2 = n
(

log(cpn,κn,s,τττn )− log(cpn,κn )
)

+ n(κn,s,τττn − κn)X̄′nθθθn0

= n
[

log
( cpn,0

cpn,κn

)
− log

( cpn,0

cpn,κn,s,τττn

)]
+ ρn(s

√
npn + 1

2
ξ
√
npnrnν

2
n‖τττn‖2) X̄′nθθθn0

= n
[

logH pn
2
−1(κn)− logH pn

2
−1(κn,s,τττn )

]
+ρn(s

√
npn + 1

2
ξ
√
npnrnν

2
n‖τττn‖2)

(
Zn
√
npn

+
ξrn√
n

+OP

( r3n
n3/2

))
as n→∞ under P

(n)
θθθn0,κn

. Since
√
pnr3n and pnr4nν

2
n are o(n), this yields

Ln2 = n
[

logH pn
2
−1(κn)− logH pn

2
−1(κn,s,τττn )

]
+ρn

(
s+ 1

2
ξ
√
pnrnν

2
n‖τττn‖2

)
Zn + ξsρnrn

√
pn + 1

2
ξ2ρnpnr

2
nν

2
n‖τττn‖2 + oP(1)

=: L̃n2 + ρn(s+ 1
2
ξ
√
pnrnν

2
n‖τττn‖2)Zn + oP(1)

as n→∞ under P
(n)
θθθn0,κn

. Since pn = o(n2r−4
n ), we can apply Lemma 3 with an =

√
n and

Tn ≡ 1, which provides

L̃n2 =
( nκ2n

4( pn
2
− 1)

−
nκ4n

32( pn
2
− 1)3

)
−
( nκ2n,s,τττn
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2
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= −
n(κ2n,s,τττn − κ

2
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4
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√
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2
ξ2ρnpnr

2
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2
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2
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√
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2pn − 4
+ Sn + ξsρnrn

√
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2
ξ2ρnpnr

2
nν

2
n‖τττn‖2 + o(1),

where, since 1− ρn = − 1
2
ρnν2n‖τττn‖2,

Sn =
p4nr

4
n{ρ4n(ξ + s/(

√
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4
n
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`
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(
√
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)
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n
(ρn − 1)(ρn + 1)(ρ2n + 1)

)
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(√pnr3n
n

)
= O

(pnr4nν2n
n

)
+O

(√pnr3n
n

)
= o(1).

Thus, using the identities 1− ρn = − 1
2
ρnν2n‖τττn‖2 and ρ2n− 1 = ρ2nν

2
n‖τττn‖2− 1

4
ρ2nν

4
n‖τττn‖4,

we have

L̃n2 = −
(ρ2n − 1)ξ2p2nr

2
n

2pn − 4
−
s2ρ2npn

2pn − 4
−

2ξsρ2np
3/2
n rn

2pn − 4
+ ξsρnrn

√
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2
ξ2ρnpnr

2
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2
n‖τττn‖2 + o(1)
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1
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ξ2ρ2npnr

2
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2
n‖τττn‖2 +

1

8
ξ2ρ2npnr

2
nν

4
n‖τττn‖4 −

1

2
s2ρ2n (A.43)

−ξsρ2n
√
pnrn + ξsρnrn

√
pn + 1

2
ξ2ρnpnr

2
nν

2
n‖τττn‖2 + o(1)

=
1

2
ξ2ρn(1− ρn)pnr

2
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2
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1
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ξ2ρ2npnr

2
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4
n‖τττn‖4 −

1

2
s2ρ2n + ξsρn(1− ρn)

√
pnrn + o(1)

= −
1

2
s2ρ2n −

1

2
ξsρ2n

√
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1

8
ξ2ρ2npnr

2
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4
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as n→∞. Therefore, we proved that, as n→∞ under P
(n)
θθθn0,κn

,

Ln2 = ρn(s+ 1
2
ξ
√
pnrnν

2
n‖τττn‖2)Zn (A.44)

−
1

2
s2ρ2n −

1

2
ξsρ2n

√
pnrnν

2
n‖τττn‖2 −

1

8
ξ2ρ2npnr

2
nν

4
n‖τττn‖4 + oP(1).

We turn to L1n. Write cn,s,τττn := nν2nκn,s,τττnen1,s,τττn/
√
pn, where en1,s,τττn and ẽ2n,s,τττn

denote the values of en1 and ẽ2n under P
(n)
θθθn0,κn,s,τττn

. Since
√
pnr2nν

2
n = O(1), (A.48) below

ensures that cn,s,τττn is O(1). Therefore, Lemma 5 yields

L1n = LZ1n + L̃Z1n + L̄Z1n + LW1n + oP(1), (A.45)

where we let

LZ1n := −
1

2

√
nκn,s,τττnν

2
n

√
ẽn2 ‖τττn‖2Zn, L̃Z1n := −

1
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pnν

2
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1
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.

Lemma 6 provides
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√
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2
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where we used the fact that
√
pnr3nν

2
n is o(n).

Now, Lemma 4(iii) yields
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, (A.47)

so that
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which in turn implies that
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√
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Using (A.47) and applying Lemma 4(iii) again, we obtain
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2
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2
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where we used the facts that pnr4nν
2
n and

√
pnr3nν

2
n are o(n).

Jointly with (A.44), (A.46), (A.49), and (A.50), this shows that

Λ
(n)inv
θθθn,κn,s,τττn/θθθn0,κn

− LW1n = sρn(1− 1
2
ν2n‖τττn‖2)Zn −

1

2
s2ρ2n(1− ν2n‖τττn‖2 + 1

4
ν4n‖τττn‖4) + oP(1)

= sZn −
1

2
s2 + oP(1).

The result thus follows from the definition of LW1n and the fact that (A.48) implies that
cn,s,τττn = 1 + o(1) in case (a), cn,s,τττn = ξ2 + o(1) in case (b), and cn,s,τττn = o(1) in case (c)
(in each case, the asymptotic normality result of ∆∆∆n follows from Lemma 2). �

B Technical proofs for Section 3

The proof of Theorem 5 requires the following lemma.

Lemma 7 Let Mn := θθθnθθθ
′
n − θθθn0θθθ′n0, where (θθθn) and (θθθn0) belong to Spn−1. Then, for

any real numbers a, b, c, d, we have that tr
[
M`
n(aθθθnθθθ

′
n+b(Ipn−θθθnθθθ′n))M`

n(cθθθnθθθ
′
n+d(Ipn−

θθθnθθθ
′
n))
]

is equal to (ad + bc)(1 − (θθθ′n0θθθn)2) + (a − b)(c − d)(1 − (θθθ′n0θθθn)2)2 for ` = 1 and
to (ac+ bd)(1− (θθθ′n0θθθn)2)2 for ` = 2.

Proof of Lemma 7. Direct computations yield

M2
n = θθθnθθθ

′
n + θθθn0θθθ

′
n0 − (θθθ′nθθθn0)θθθn0θθθ

′
n − (θθθ′nθθθn0)θθθnθθθ

′
n0 and M4

n = (1− (θθθ′n0θθθn)2)M2
n.

This provides tr[M2
n] = 2(1 − (θθθ′n0θθθn)2) and tr[M4

n] = 2(1 − (θθθ′n0θθθn)2)2, and allows to
show that θθθ′nM

2
nθθθn = 1 − (θθθ′nθθθn0)2 and θθθ′nM

4
nθθθn = (1 − (θθθ′n0θθθn)2)2. Since θθθ′nMnθθθn =
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1− (θθθ′n0θθθn)2, this yields

tr
[
Mn(aθθθnθθθ

′
n + b(Ipn − θθθnθθθ′n))Mn(cθθθnθθθ

′
n + d(Ipn − θθθnθθθ′n))

]
= tr

[
Mn(bIpn + (a− b)θθθnθθθ′n)Mn(dIpn + (c− d)θθθnθθθ

′
n)
]

= bd tr[M2
n] + b(c− d)θθθ′nM

2
nθθθn + (a− b)dθθθ′nM2

nθθθn + (a− b)(c− d)(θθθ′nMnθθθn)2

= 2bdθθθ′nMnθθθn + {b(c− d) + (a− b)d}θθθ′nMnθθθn + (a− b)(c− d)(θθθ′nMnθθθn)2

= (ad+ bc)(1− (θθθ′n0θθθn)2) + (a− b)(c− d)(1− (θθθ′n0θθθn)2)2

and

tr
[
M2
n(aθθθnθθθ

′
n + b(Ipn − θθθnθθθ′n))Mn(cθθθnθθθ

′
n + d(Ipn − θθθnθθθ′n))

]
= tr

[
M2
n(bIpn + (a− b)θθθnθθθ′n)M2

n(dIpn + (c− d)θθθnθθθ
′
n)
]

= bd tr[M4
n] + b(c− d)θθθ′nM

4
nθθθn + (a− b)dθθθ′nM4

nθθθn + (a− b)(c− d)(θθθ′nM
2
nθθθn)2

= 2bd(θθθ′nMnθθθn)2 + {b(c− d) + (a− b)d}(θθθ′nMnθθθn)2 + (a− b)(c− d)(θθθ′nMnθθθn)2

= {ad+ bc+ (a− b)(c− d)}(1− (θθθ′n0θθθn)2)2

= (ac+ bd)(1− (θθθ′n0θθθn)2)2,

as was to be showed. �

Proof of Theorem 5. All expectations and variances below are taken under P
(n)
θθθn,Fn

,

with θθθn = θθθn0 + νnτττn, and stochastic convergences are under the corresponding sequence
of hypotheses. We have

E[Xni] = en1θθθn and E[XniX
′
ni] = en2θθθnθθθ

′
n +

fn2

pn − 1
(Ipn − θθθnθθθ′n);

see the proof of Lemma B.3 in [12]. Writing Wni := (Ipn − θθθnθθθ′n)Xni, this implies that

E[Wni] = 0 and E[WniW
′
ni] =

fn2

pn − 1
(Ipn − θθθnθθθ′n). (B.51)

Writing Mn = θθθnθθθ
′
n − θθθn0θθθ′n0 as in Lemma 7 and Yni := (Ipn − θθθn0θθθ′n0)Xni, we have

Wni = Yni −MnXni. This allows to decompose W ∗n as

W ∗n :=

√
2(pn − 1)

nfn2

∑
1≤i<j≤n

Y′niYnj

=

√
2(pn − 1)

nfn2

∑
1≤i<j≤n

(W′
niWnj + X′niMnWnj + W′

niMnXnj + X′niM
2
nXnj)

=:W ∗n0 +W ∗na +W ∗nb +W ∗nc.
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From (B.51), E[W ∗na] = E[W ∗nb] = 0. Now,

Var[W ∗na] =
2(pn − 1)

n2f2n2

∑
1≤i<j≤n

∑
1≤r<s<n

E[X′niMnWnjX
′
nrMnWns]

=
2(pn − 1)

n2f2n2

∑
1≤i<j≤n

∑
1≤r<s<n

tr[E[MnXnrX
′
niMnWnjW

′
ns]]

=
2(pn − 1)

n2f2n2

∑
1≤i<j≤n

∑
1≤r<s<n

cn,ijrs.

Clearly, cn,ijrs = 0 if s 6= j. Lemma 7 entails that for s = j and r 6= i, we have

cn,ijrs = tr[MnE[XnrX
′
ni]MnE[WnjW

′
nj ]]

= tr
[
Mn(e2n1θθθnθθθ

′
n)Mn

( fn2

pn − 1
(Ipn − θθθnθθθ′n)

)]

=
e2n1fn2

pn − 1
(1− (θθθ′n0θθθn)2)−

e2n1fn2

pn − 1
(1− (θθθ′n0θθθn)2)2

and that, for s = j and r = i, we have

cn,ijrs = tr[MnE[XniX
′
ni]MnE[WnjW

′
nj ]]

= tr
[
Mn

(
en2θθθnθθθ

′
n +

fn2

pn − 1
(Ipn − θθθnθθθ′n)

)
Mn

( fn2

pn − 1
(Ipn − θθθnθθθ′n)

)]

=
en2fn2

pn − 1
(1− (θθθ′n0θθθn)2)−

(pnen2 − 1)fn2

(pn − 1)2
(1− (θθθ′n0θθθn)2)2.

We conclude that

Var[W ∗na] =
2(pn − 1)

n2f2n2

[
n(n− 1)(n− 2)

3

(
e2n1fn2

pn − 1
(1− (θθθ′n0θθθn)2)−

e2n1fn2

pn − 1
(1− (θθθ′n0θθθn)2)2

)

+
n(n− 1)

2

(
en2fn2

pn − 1
(1− (θθθ′n0θθθn)2)−

(pnen2 − 1)fn2

(pn − 1)2
(1− (θθθ′n0θθθn)2)2

)]

=
n− 1

3n

[
2(n− 2)e2n1 + 3en2

fn2
(1− (θθθ′n0θθθn)2)−

(
2(n− 2)e2n1

fn2
+

3(pnen2 − 1)

(pn − 1)fn2

)
(1− (θθθ′n0θθθn)2)2

]
.

Since θθθ′nθθθn0 = (θθθn0 +νnτττn)′θθθn0 = 1 + νn(τττ ′nθθθn0) = 1− 1
2
ν2n‖τττn‖2, we have 1− (θθθ′n0θθθn)2 =

O(ν2n), which, by using the fact that νn = O(1), yields

Var[W ∗na] =
npne2n1 + pnen2 + 1

pnfn2
O(ν2n).

The same computations provide Var[W ∗nb] = Var[W ∗na]. Turning to W ∗nc, we directly obtain

E[W ∗nc] =

√
2(pn − 1)

nfn2
×
n(n− 1)

2
e2n1θθθ

′
nM

2
nθθθn

=
(n− 1)(pn − 1)1/2e2n1√

2fn2
(1− (θθθ′nθθθn0)2)

=
np

1/2
n e2n1√
2fn2

ν2n‖τττn‖2(1− 1
4
ν2n‖τττn‖2)(1 + o(1));
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see the proof of Lemma 7. As for the variance,

Var[W ∗nc] =
2(pn − 1)

n2f2n2

∑
1≤i<j≤n

∑
1≤r<s≤n

Cov[X′niM
2
nXnj ,X

′
nrM

2
nXns]

=
2(pn − 1)

n2f2n2

∑
1≤i<j≤n

∑
1≤r<s≤n

(
E[X′niM

2
nXnjX

′
nrM

2
nXns]− (e2n1θθθ

′
nM

2
nθθθn)2

)

=
2(pn − 1)

n2f2n2

∑
1≤i<j≤n

∑
1≤r<s≤n

(
tr[E[X′niM

2
nXnjX

′
nsM

2
nXnr]]− e4n1(1− (θθθ′nθθθn0)2)2

)

=
2(pn − 1)

n2f2n2

∑
1≤i<j≤n

∑
1≤r<s≤n

(
dn,ijrs − e4n1(1− (θθθ′nθθθn0)2)2

)
.

We consider three cases. (1) If i, j, r, s contain two pairs of equal indices (equivalently, if r = i
and s = j), then

dn,ijrs = tr[M2
nE[XniX

′
ni]M

2
nE[XnjX

′
nj ]]

= tr

[
M2
n

(
en2θθθnθθθ

′
n +

fn2

pn − 1
(Ipn − θθθnθθθ′n)

)
M2
n

(
en2θθθnθθθ

′
n +

fn2

pn − 1
(Ipn − θθθnθθθ′n)

)]

=
(
e2n2 +

f2n2
(pn − 1)2

)
(1− (θθθ′nθθθn0)2)2.

(2) If i, j, r, s contain exactly one pair of equal indices, then

dn,ijrs = tr[M2
nE[XniX

′
ni]M

2
nE[XnjX

′
ns]]

= tr

[
M2
n

(
en2θθθnθθθ

′
n +

fn2

pn − 1
(Ipn − θθθnθθθ′n)

)
M2
n

(
e2n1θθθnθθθ

′
n

)]
= e2n1en2(1− (θθθ′nθθθn0)2)2.

(3) If the indices i, j, r, s are pairwise different, then

dn,ijrs = tr[M2
nE[XnrX

′
ni]M

2
nE[XnjX

′
ns]]

= tr
[
M2
n

(
e2n1θθθnθθθ

′
n

)
M2
n

(
e2n1θθθnθθθ

′
n

)]
= e4n1(1− (θθθ′nθθθn0)2)2.

Therefore,

Var[W ∗nc] =
2(pn − 1)

n2f2n2

[
n(n− 1)

2

(
e2n2 +

f2n2
(pn − 1)2

)
+ n(n− 1)(n− 2)e2n1en2

+
n(n− 1)(n− 2)(n− 3)

4
e4n1 −

n2(n− 1)2

4
e4n1

]
(1− (θθθ′nθθθn0)2)2

=
(n− 1)(pn − 1)ẽn2(ẽn2 + 2(n− 1)e2n1)

nf2n2
(1− (θθθ′nθθθn0)2)2 + o(1).

This finally yields

Var[W ∗nc] =
pnẽ2n2 + npne2n1ẽn2

f2n2
O(ν4n).
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Summarizing, W ∗n = W ∗n0 +W ∗na +W ∗nb +W ∗nc, where W ∗n0 is asymptotically standard
normal (see Theorem 3.1 from [25]),

E[W ∗na] = E[W ∗nb] = 0, E[W ∗nc] =
np

1/2
n e2n1√
2fn2

ν2n‖τττn‖2(1− 1
4
ν2n‖τττn‖2)(1 + o(1)),

Var[W ∗na] = Var[W ∗nb] =
npne2n1 + pnen2 + 1

pnfn2
O(ν2n)

and

Var[W ∗nc] =
pnẽ2n2 + npne2n1ẽn2

f2n2
O(ν4n).

We can now consider the several cases of the theorem. In cases (i)–(iii), the sequence (νn)

involved, namely νn =
√
fn2/(

√
np

1/4
n en1), is o(1), so that E[W ∗nc] = t2/

√
2 + o(1). In all

three cases, one checks that Var[W ∗n`] = o(1) for ` = a, b, c (note that in cases (ii)–(iii),
the fact that en2 ≤ en1 implies that both en2 and ẽn2 are o(1)), which establishes that

W ∗n
D−→ N

(
t2√
2
, 1
)

under P
(n)
θθθn0+νnτττn,Fn

. In case (iv), we have, with νn = 1, E[W ∗nc] =

ξ2t2√
2

(
1− t

2

4

)
+o(1). Since

√
pnen2 = o(1) by assumption, one can check that Var[W ∗n`] = o(1)

for ` = a, b, c, which yields W ∗n
D−→ N

( ξ2t2√
2

(
1− t2

4

)
, 1
)

under P
(n)
θθθn0+νnτττn,Fn

, as was to be

showed. Finally, in case (v), still with νn = 1, we have E[W ∗nc] = o(1). One can again check

that Var[W ∗n`] = o(1) for ` = a, b, c, which yields that W ∗n is asymptotically standard normal.
This establishes the result. �

We turn to the proof of Theorem 6, that will make use of the following lemma.

Lemma 8 Under P
(n)
θθθn,Fn

,

E[(X′n1θθθn0)2] = en2(θθθ′n0θθθn)2 +
fn2

pn − 1
(1− (θθθ′n0θθθn)2)

and

E[(X′n1θθθn0)4] = en4(θθθ′nθθθn0)4+
6(en2 − en4)

pn − 1
(θθθ′nθθθn0)2(1−(θθθ′n0θθθn)2)+

3fn4

p2n − 1
(1−(θθθ′n0θθθn)2)2.

Proof of Lemma 8. All computations in this proof are performed under P
(n)
θθθn,Fn

, which

leads us to consider the tangent-decomposition Xn1 = Un1θθθn+Vn1Sn1 of Xn1 with respect
to θθθn. Since Xn1 is rotationally symmetric with respect to θθθn, Sn1 is equal in distribution
to ΓΓΓθθθnUn, where Un is uniformly distributed over the unit sphere Spn−2 in Rpn−1 and
where ΓΓΓθθθn is an arbitrary pn × (pn − 1) matrix whose columns form an orthonormal basis
of the orthogonal complement of θθθn in Rpn (so that ΓΓΓ ′θθθnΓΓΓθθθn = Ipn−1 and ΓΓΓθθθnΓΓΓ

′
θθθn

=

Ipn − θθθnθθθ′n). In particular,

E[Sn1] = 0 and E[Sn1S
′
n1] =

1

pn − 1
(Ipn − θθθnθθθ′n).

This readily yields

E[(X′n1θθθn0)2] = E[(Un1θθθ
′
nθθθn0 + Vn1S

′
n1θθθn0)2]

= E[U2
n1](θθθ′nθθθn0)2 + 2E[Un1Vn1]E[S′n1θθθn0](θθθ′nθθθn0) + E[V 2

n1]θθθ′n0E[Sn1S
′
n1]θθθn0

= en2(θθθ′n0θθθn)2 +
fn2

pn − 1
(1− (θθθ′n0θθθn)2).
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Using the identity U2
n1V

2
n1 = U2

n1 − U4
n1, we obtain similarly

E[(X′n1θθθn0)4] = E[(Un1θθθ
′
nθθθn0 + Vn1S

′
n1θθθn0)4]

= en4(θθθ′nθθθn0)4 + 6E[U2
n1V

2
n1(S′n1θθθn0)2](θθθ′nθθθn0)2 + fn4E[(S′n1θθθn0)4]

= en4(θθθ′nθθθn0)4 + 6(en2 − en4) (θθθ′n0E[Sn1S
′
n1]θθθn0)(θθθ′nθθθn0)2 + fn4E[(S′n1θθθn0)4]

= en4(θθθ′nθθθn0)4 +
6(en2 − en4)

pn − 1
(θθθ′nθθθn0)2(1− (θθθ′n0θθθn)2) + fn4E[(S′n1θθθn0)4]. (B.52)

Standard formulas for the Kronecker product yield

E[(S′n1θθθn0)4] = E[(θθθ′n0Sn1S
′
n1θθθn0)2] = (θθθn0 ⊗ θθθn0)′E[vec(Sn1S

′
n1)vec′(Sn1S

′
n1)](θθθn0 ⊗ θθθn0)

= (θθθn0 ⊗ θθθn0)′(ΓΓΓθθθn ⊗ΓΓΓθθθn )E[vec(UnU
′
n)vec′(UnU

′
n)](ΓΓΓ ′θθθn ⊗ΓΓΓ

′
θθθn

)(θθθn0 ⊗ θθθn0)

=
1

p2n − 1
(θθθn0 ⊗ θθθn0)′(ΓΓΓθθθn ⊗ΓΓΓθθθn )

(
I(pn−1)2 + Kpn−1 + Jpn−1

)
(ΓΓΓ ′θθθn ⊗ΓΓΓ

′
θθθn

)(θθθn0 ⊗ θθθn0),

where K` is the `× ` commutation matrix and where we let J` = (vec I`)(vec I`)
′; see [35],

page 244. Using the fact that K`(A⊗B) = (A⊗B)K`′ for `× `′ matrices A and B, along
with the identity K1 = 1, we obtain

E[(S′n1θθθn0)4] =
2

p2n − 1
(θθθn0 ⊗ θθθn0)′(ΓΓΓθθθn ⊗ΓΓΓθθθn )(ΓΓΓ ′θθθn ⊗ΓΓΓ

′
θθθn

)(θθθn0 ⊗ θθθn0)

+
1

p2n − 1
(θθθn0 ⊗ θθθn0)′vec(ΓΓΓθθθnΓΓΓ

′
θθθn

)vec′(ΓΓΓθθθnΓΓΓ
′
θθθn

)(θθθn0 ⊗ θθθn0)

=
3

p2n − 1
(1− (θθθ′n0θθθn)2)2.

Plugging this in (B.52) provides the result. �

Proof of Theorem 6. Fix a sequence of hypotheses P
(n)
θθθn0+νnτττn,Fn

associated with

a given regime (i) to (v) in Theorem 5. Throughout the proof, stochastic convergences,
expectations and variances refer to this sequence of hypotheses. In view of the decomposition

W̃n −W ∗n = L−1
n (1− Ln)W ∗n from (A.21), it is sufficient to show that Ln converges to one

in quadratic mean (note indeed that Theorem 5 indeed implies that W ∗n is OP(1)). In order
to do so, write

E
[
(Ln − 1)2

]
=

1

f2n2
E

[(
fn2 −

[
1

n

n∑
i=1

V 2
ni

])2]
=

1

f2n2
E

[([
1

n

n∑
i=1

(X′niθθθn0)2
]
− en2

)2]

=
1

f2n2
E

[([
1

n

n∑
i=1

(X′niθθθn0)2
]
− E[(X′n1θθθn0)2] + E[(X′n1θθθn0)2]− en2

)2]

≤
2

f2n2
Var

[
1

n

n∑
i=1

(X′niθθθn0)2

]
+

2

f2n2

(
E[(X′n1θθθn0)2]− en2

)2
≤

2

nf2n2

(
E
[
(X′n1θθθn0)4

]
−
(
E
[
(X′n1θθθn0)2

])2)
+

2

f2n2

(
E[(X′n1θθθn0)2]− en2

)2
=: 2Tna + 2Tnb,
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say. Since fn2 = 1− en2, Lemma 8 provides

E[(X′n1θθθn0)2]− en2 =

(
fn2

pn − 1
− en2

)
(1− (θθθ′n0θθθn)2) =

1− pnen2
pn − 1

(1− (θθθ′n0θθθn)2),

which yields

Tnb =
(1− pnen2)2

(pn − 1)2f2n2
(1− (θθθ′n0θθθn)2)2 =

1 + p2ne
2
n2

p2nf
2
n2

O(ν4n).

In each of the regimes considered in Theorem 5, we thus obtain that Tnb = o(1), irrespective
of the fact that

√
pnen2 = o(1) or not. Turning to Tna, Lemma 8 yields

nf2n2Tna = en4(θθθ′nθθθn0)4 +
6(en2 − en4)

pn − 1
(θθθ′nθθθn0)2(1− (θθθ′n0θθθn)2) +

3fn4

p2n − 1
(1− (θθθ′n0θθθn)2)2

−
(
e2n2(θθθ′n0θθθn)4 +

2en2fn2

pn − 1
(θθθ′n0θθθn)2(1− (θθθ′n0θθθn)2) +

f2n2
(pn − 1)2

(1− (θθθ′n0θθθn)2)2
)

= (en4 − e2n2)(θθθ′nθθθn0)4 +

(
6(en2 − en4)

pn − 1
−

2en2fn2

pn − 1

)
(θθθ′n0θθθn)2(1− (θθθ′n0θθθn)2)

+

(
3fn4

p2n − 1
−

f2n2
(pn − 1)2

)
(1− (θθθ′n0θθθn)2)2.

Using the facts that en4− e2n2 = Var[U2
n1] = Var[V 2

n1] ≤ E[V 4
n1] = fn4 and that en2− en4 =

E[U2
n1(1− U2

n1)] ≤ E[1− U2
n1] = fn2, we then obtain

Tna≤
fn4

nf2n2
(θθθ′n0θθθn)2 +

6− 2en2

n(pn − 1)fn2
(θθθ′n0θθθn)2(1− (θθθ′n0θθθn)2)

+

(
3fn4

n(p2n − 1)f2n2
−

1

n(pn − 1)2

)
(1− (θθθ′n0θθθn)2)2

=o(1) +
1

npnfn2
O(ν2n) + o(ν4n) = o(1) +

1

npnfn2
O(ν2n).

Trivially, we then have Tna = o(1) in each of the regime considered in Theorem 5, still
irrespective of the fact that

√
pnen2 = o(1) or not. This establishes the result. �
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