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Motivated by the fact that circular or spherical data are often much con-
centrated around a location θθθ , we consider inference about θθθ under high
concentration asymptotic scenarios for which the probability of any fixed
spherical cap centered at θθθ converges to one as the sample size n diverges to
infinity. Rather than restricting to Fisher–von Mises–Langevin distributions,
we consider a much broader, semiparametric, class of rotationally symmet-
ric distributions indexed by the location parameter θθθ , a scalar concentration
parameter κ and a functional nuisance f . We determine the class of distribu-
tions for which high concentration is obtained as κ diverges to infinity. For
such distributions, we then consider inference (point estimation, confidence
zone estimation, hypothesis testing) on θθθ in asymptotic scenarios where κn

diverges to infinity at an arbitrary rate with the sample size n. Our asymp-
totic investigation reveals that, interestingly, optimal inference procedures on
θθθ show consistency rates that depend on f . Using asymptotics “à la Le Cam,”
we show that the spherical mean is, at any f , a parametrically superefficient
estimator of θθθ and that the Watson and Wald tests for H0 : θθθ = θθθ0 enjoy
similar, nonstandard, optimality properties. We illustrate our results through
simulations and treat a real data example. On a technical point of view, our
asymptotic derivations require challenging expansions of rotationally sym-
metric functionals for large arguments of f .

1. Introduction. Directional statistics is concerned with data on the unit sphere Sp−1 =
{x ∈R

p : ‖x‖2 = x′x = 1} of Rp or more generally on Riemannian manifolds such as a torus
or an infinite cylinder. Directional data are present in many fields and have attracted a lot
of attention in the last decade. Recent applications include analysis of magnetic remanence
through copulae on product manifolds in Jupp (2015), analysis of animal movement using
angular regression in Rivest et al. (2016) or analysis of flight trajectories through principal
component analysis for functional data on Sp−1 in Dai and Müller (2018), to cite only a few.
For an overview of the topic, we refer to Mardia and Jupp (2000) and Ley and Verdebout
(2017).

In this paper, we consider a class of distributions on Sp−1 admitting a density at x that
is proportional to f (κx′θθθ), where θθθ ∈ Sp−1, κ > 0 and f is a monotone increasing func-
tion from R to R

+ (throughout, densities on Sp−1 will be with respect to the surface area
measure). The resulting distribution on the sphere will be denoted as Rotp(θθθ, κ, f ) to stress
its rotational symmetry: if X ∼ Rotp(θθθ, κ, f ), then OX and X are equal in distribution for
any p × p orthogonal matrix O such that Oθθθ = θθθ . Clearly, θθθ is the modal location on the
sphere, hence plays the role of a location parameter. In contrast, κ is a scale or concentration
parameter. This terminology is justified by the fact that, for many functions f , the distribu-
tion Rotp(θθθ, κ, f ) becomes arbitrarily concentrated around θθθ as κ diverges to infinity; it is
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in particular so for the celebrated Fisher–von Mises–Langevin (FvML) distributions, that are
obtained with f = exp. FvML distributions play a central role in directional statistics, a role
that can be compared to the one played by Gaussian distributions in classical multivariate se-
tups. For instance, the responses of the circular/spherical regression models in Rivest (1986),
Downs and Mardia (2002), SenGupta, Kim and Arnold (2013) and Rosenthal et al. (2014)
are FvML with a location parameter that depends on the predictors.

In most applications, the location parameter θθθ is the parameter of interest, whereas the con-
centration parameter κ and the infinite-dimensional parameter f are unspecified nuisances.
The most classical estimator of θθθ is the spherical mean, whereas the most celebrated test for
H0 : θθθ = θθθ0, where θθθ0 ∈ Sp−1 is fixed, is the Watson test (see Sections 3 and 4, resp.). In the
standard asymptotic scenario under which n diverges to infinity with κ fixed, the asymptotic
properties of these procedures are well-known; see, for example, Mardia and Jupp (2000). In
particular, the spherical mean is root-n consistent, whereas the Watson test shows nontriv-
ial asymptotic powers under sequences of local alternatives of the form H(n)

1 : θθθ = θθθn with√
n‖θθθn − θθθ0‖ → c > 0.
In practice, the asymptotic results above are relevant in cases where the underlying con-

centration κ is neither too small nor too large. For small values of κ , the fixed-κ asymptotic
distribution of the spherical mean and the corresponding asymptotic null distribution of Wn

only poorly approximate the exact distribution of these statistics, unless the sample size n

at hand is extremely large. This motivates considering a double asymptotic scenario where
κ = κn goes to zero as n diverges to infinity. The observations Xn1, . . . ,Xnn are then as-
sumed to form a random sample from the distribution Rotp(θθθ, κn, f ), with κn = o(1), which
makes it here strictly necessary to consider triangular arrays of observations. Such a “low-
concentration double asymptotic scenario” was considered in Paindaveine and Verdebout
(2017), where it was proved that the faster κn goes to zero, the poorer the consistency rates of
the aforementioned inference procedures. More precisely, (i) if κn = o(1) with κn

√
n → ∞,

then κn

√
n(θ̂θθn − θθθ) is asymptotically normal, so that the consistency rate of the spherical

mean deteriorates from
√

n (in the standard fixed-κ case) to κn

√
n (in the present case); (ii) if

κn = O(1/
√

n), then the spherical mean is not consistent anymore. Similarly, in situation
(i), the Watson test shows nontrivial asymptotic powers under sequences of local alternatives
of the form H(n)

1 : θθθ = θθθn with κn

√
n‖θθθn − θθθ0‖ → c > 0, and, in situation (ii), there is no

sequence of alternatives under which this test would be consistent. These behaviors of the
spherical mean and of the Watson test are nonstandard yet expected: as the concentration
κn gets smaller, the distribution Rotp(θθθ, κn, f ) becomes increasingly closer to the uniform
distribution on Sp−1 for which the parameter of interest θθθ is not identifiable. In other words,
inference on θθθ is increasingly challenging as κ decreases to zero, which reflects in the dete-
rioration of the consistency rates above.

The situation for large concentrations κ is similar yet different. On the one hand, it is still
so that a standard, fixed-κ , asymptotic analysis could in principle fail describing in a suit-
able way the finite-sample behaviors of the spherical mean and of the Watson test statistic
under high concentration. On the other hand, inference about θθθ intuitively becomes increas-
ingly easy as the distribution gets more and more concentrated around θθθ , which should make
it possible to define “superefficient” estimators and tests on θθθ . Inference for “concentrated”
FvML distributions actually has already been quite much considered in the literature. One of
the first papers tackling inference problems for the location parameter of FvML distributions
under large values of κ is Watson (1984), where asymptotic results as κ → ∞ with n fixed
were derived. In the same asymptotic scenario, Rivest (1986) investigated the null limiting
behavior of a goodness-of-fit test for FvML distributions, whereas Rivest (1989), Downs and
Mardia (2002) and Downs (2003) considered spherical regression in a concentrated FvML
setup. Rosenthal et al. (2014) analyzed concentrated data using a regression model with a
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FvML noise. Fujikoshi and Watamori (1992) obtained the asymptotic null distributions of
various test statistics for H0 : θθθ = θθθ0 again as κ → ∞ with n fixed, and derived the asymp-
totic powers of the corresponding tests under appropriate sequences of local alternatives. Still
in the framework of FvML distributions, Watamori (1996) reviewed point estimation and
(one-sample and multisample) hypothesis testing in the standard asymptotic scenario where
n → ∞ with κ fixed and in the concentrated scenario where κ → ∞ with n fixed. Arnold
and Jupp (2013) and Arnold, Jupp and Schaeben (2018) considered estimation of “highly
concentrated rotations.” Finally, Chikuse (2003a) considered inference for concentrated ma-
trix FvML distributions, still in a setup where κ → ∞ with n fixed; see also Chikuse (2003b).
Monographs covering inference for concentrated FvML distributions include Watson (1983)
and Mardia and Jupp (2000).

This review of the literature shows that inference on θθθ under high concentration is a clas-
sical topic in directional statistics. Yet this review also reveals some important limitations in
previous studies: (i) all asymptotic results available are as κ → ∞ with n fixed, while, par-
allel to the low-concentration case above, a double asymptotic scenario where κ = κn would
go to infinity with n would be at least as natural (particularly so if κn would be allowed to
diverge to infinity at an arbitrary rate as a function of n); (ii) all results are limited to the para-
metric case of FvML distributions, so that the asymptotic properties of the spherical mean
and of the Watson test remain unknown in the broader semiparametric class of Rotp(θθθ, κ, f )

distributions; (iii) for hypothesis testing, most works focused on the null hypothesis: very few
results try and describe asymptotic powers under sequences of local alternatives and, more
importantly, not a single optimality result, to the best of our knowledge, was obtained in the
literature. In this paper, we therefore fill an important gap by deriving results that are getting
rid of the limitations (i)–(iii).

The outline of the paper is as follows. In Section 2, we fix the notation, introduce the as-
sumptions that will be used throughout and characterize the rotationally symmetric distribu-
tions that provide high concentration for arbitrarily large values of κ . In Section 3, we derive
the asymptotic distribution of the spherical mean in a double asymptotic scenario where κn

diverges to infinity at an arbitrary rate with n. Interestingly, in contrast with what happens for
low concentrations, the consistency rate here depends on the nuisance function f . We also
provide confidence zones for θθθ that quite naturally take the form of spherical caps centered
at the spherical mean. In Section 4, we study the asymptotic behavior of the Watson and
Wald tests. In Section 5, we turn to optimality issues and show that, under mild assumptions
on f , the sequence of statistical experiments considered is locally asymptotically normal.
We establish the Le Cam optimality of the spherical mean estimator and of the Watson and
Wald tests under high concentration. Finally, a real data application is conducted in Section 6
and a wrap up is provided in Section 7. Proofs are collected in the Supplementary Material
Paindaveine and Verdebout (2019).

2. High concentration. Throughout, we will denote as P(n)
θθθn,κn,f the hypothesis un-

der which the observations Xn1, . . . ,Xnn form a random sample from the distribution
Rotp(θθθn, κn, f ) described in the Introduction, that is, the hypothesis under which these ob-
servations are mutually independent and share the common density

(2.1) x 	→ cp,κn,f �(
p−1

2 )

2π(p−1)/2 f
(
κnx′θθθn

)
,

where �(·) is the Euler Gamma function and the constant cp,κ,f is given by

(2.2) cp,κ,f := 1/

∫ 1

−1

(
1 − s2)(p−3)/2

f (κs) ds.
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In the sequel, f :R →R
+ is assumed to be monotone nondecreasing on (−∞,0] and mono-

tone increasing on [0,∞). Under this assumption, the location parameter θθθn is properly iden-
tified as the modal location on the sphere. One way to also make κn and f identifiable would
be to further impose f (0) = f ′(0) = 1. We will not impose these conditions since we also
want to consider functions f that are not differentiable at zero. The resulting lack of identifi-
ability will not be an issue in the sequel since κn and f play the role of nuisance parameters
when conducting inference on θθθn.

We will often make use of the tangent-normal decomposition of Xni with respect to θθθn,
which reads Xni = uniθθθn + vniSni , with

uni = X′
niθθθn, vni :=

√
1 − u2

ni,

and

Sni := (Ip − θθθnθθθ
′
n)Xni

‖(Ip − θθθnθθθ
′
n)Xni‖ = 1

vni

(
Ip − θθθnθθθ

′
n

)
Xni .

The cosine uni is associated with the latitude of Xni with respect to the “north pole” θθθn,
whereas Sni determines the corresponding hyper-longitude. Under P(n)

θθθn,κn,f , un1 and Sn1 are

mutually independent, Sn1 is uniformly distributed on S⊥
θθθn

:= {x ∈ Sp−1 : x′θθθn = 0}, and un1

admits the density

(2.3) s 	→ cp,κn,f

(
1 − s2)(p−3)/2

f (κns)I
[
s ∈ [−1,1]],

where I[A] stands for the indicator function of the set A. The moments of un1 under P(n)
θθθn,κn,f

will play an important role below and will be denoted as en� := E[u�
n1], � = 1,2, . . . We will

also write ẽn2 = en2 − e2
n1 for the corresponding variance. The function f governs (jointly

with κn) the distribution of the angle arccos(un1) between Xn1 and θθθn, hence is sometimes
referred to as an angular function.

The present paper is concerned with sequences of rotationally symmetric distributions
that are asymptotically highly concentrated, meaning that the probability mass of any fixed
spherical cap centered at θθθn converges to one as n diverges to infinity. More precisely, we
will say that the sequence of hypotheses P(n)

θθθn,κn,f is asymptotically highly concentrated if and
only if, for any sequence (κn) diverging to infinity and any ε ∈ (0,2), we have

(2.4) P(n)
θθθn,κn,f

[
X′

n1θθθn > 1 − ε
] = cp,κn,f

∫ 1

1−ε

(
1 − s2)(p−3)/2

f (κns) ds → 1,

that is, if and only if un1 converges in probability to one as soon as (κn) diverges to infinity.
Since this is clearly a property that depends on f only, we will say that f provides high
concentration if and only if (2.4) holds. Not all functions f provide high concentration. The
polynomial functions z 	→ f (z) = zb

I[z ≥ 0], b > 0, are examples since, for any ε ∈ (0,1),
they yield

cp,κn,f

∫ 1

1−ε

(
1 − s2)(p−3)/2

f (κns) ds =
∫ 1

1−ε(1 − s2)(p−3)/2sb ds∫ 1
0 (1 − s2)(p−3)/2sb ds

=: C < 1,

where C does not depend on n. It is easy to check that z 	→ f (z) = π
2 + arctan(z) does not

provide high concentration either, but that the angular FvML function z 	→ f (z) = exp(z)

does. It is therefore desirable to characterize the functions f providing high concentration,
which is the aim of the following result.
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THEOREM 2.1. Let f :R →R
+ be monotone nondecreasing on (−∞,0] and monotone

increasing on [0,∞). Assume that f is differentiable in a neighborhood of ∞ (in the sense
that there exists M such that f is differentiable over (M,∞)) and put ϕf := f ′/f , where f ′
is the derivative of f . Then we have the following:

(i) If κϕf (κ) ↗ ∞ as κ → ∞, then f provides high concentration.
(ii) If κϕf (κ) → c (> 0) as κ → ∞, then f does not provide high concentration.

(iii) If κϕf (κ) ↘ 0 as κ → ∞, then f does not provide high concentration.

In this result, g(κ) ↗ ∞ (resp., g(κ) ↘ 0) as κ → ∞ means that (a) g(κ) diverges to
infinity (resp., converges to zero) as κ diverges to infinity and that (b) there exists M such
that κ 	→ g(κ) is monotone nondecreasing (resp., monotone nonincreasing) over (M,∞).
Essentially, Theorem 2.1 states that high concentration is obtained if f (z) diverges to infinity
at least exponentially fast as z diverges to infinity. In particular, this result confirms that
the polynomial and arctan functions f above do not provide high concentration, but that
the FvML one does. Writing throughout zb := sgn(z)|z|b, it also shows that all functions
z 	→ fb(z) := exp(zb), with b > 0, do provide high concentration. These functions f , which
include the FvML one, will be our main running examples below.

In the rest of the paper, F will stand for the collection of functions f :R →R
+ that (i) are

monotone nondecreasing on (−∞,0] and monotone increasing on [0,∞), (ii) are differen-
tiable in a neighborhood of ∞, (iii) are such that κϕf (κ) ↗ ∞ as κ → ∞ and (iv) satisfy,
for any ξ, ζ > −1,

(2.5)
∫ 1

−1
gξ,ζ (s)

∣∣elogf (κs)−logf (κ) − e(s−1)κϕf (κ)
∣∣ds = o

(
1

(κϕf (κ))ξ+1

)

as κ → ∞, with gξ,ζ (s) := (1 − s)ξ (1 + s)ζ . As the following result shows, our prototypical
examples of angular functions f providing high concentration meet these properties.

PROPOSITION 2.1. For any b > 0, the function z 	→ fb(z) = exp(zb) belongs to F .

As already mentioned, the moments of un1 = X′
n1θθθn under P(n)

θθθn,κn,f will play a key role
in the sequel. It will actually be important to understand the asymptotic behavior of these
moments under high concentration. This is the role of the following result.

THEOREM 2.2. Fix an integer p ≥ 2 and f ∈ F . Let (κn) be a positive real sequence
that diverges to infinity. Then

(i) 1 − en2 = p − 1

κnϕf (κn)
+ o

(
1

κnϕf (κn)

)
,

(ii) ẽn2 = p − 1

2(κnϕf (κn))2 + o

(
1

(κnϕf (κn))2

)

and

(iii) E
[
v4
n1

] = p2 − 1

(κnϕf (κn))2 + o

(
1

(κnϕf (κn))2

)

as n → ∞.

As a corollary, we have

(2.6)
(1 − en2)

2

ẽn2
= 2(p − 1) + o(1) and

E[v4
n1]

ẽn2
= 2(p + 1) + o(1)
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as n → ∞. Also, Vitali’s theorem (see, e.g., Theorem 5.5 in Shorack (2000)) readily implies
that, under the conditions of Theorem 2.2, en1 = 1 + o(1) as n → ∞. One could obtain an
expansion of 1 − en1 that is similar to the one in Theorem 2.2(i), but we will not do so since
this is not needed for our purposes.

3. Point estimation. As mentioned in the Introduction, the most classical estimator of
location under rotational symmetry is the spherical mean, which is given by

θ̂θθn := X̄n

‖X̄n‖
,

with X̄n := 1
n

∑n
i=1 Xni . Under P(n)

θθθ,κn,f , E[Xn1] = λκn,f θθθ for some positive scalar factor λκn,f ,
so that the spherical mean is a moment-type estimator of θθθ . It is easy to check that it is also
the maximum likelihood estimator of θθθ in the class of FvML distributions. This makes it
desirable to investigate the asymptotic behavior of this estimator under high concentration.
We have the following result.

THEOREM 3.1. Fix an integer p ≥ 2, θθθ ∈ Sp−1 and f ∈ F . Let (κn) be a positive real
sequence that diverges to infinity. Then, under P(n)

θθθ,κn,f ,

(3.1)
√

nκnϕf (κn)(θ̂θθn − θθθ)
D→ N

(
0, Ip − θθθθθθ ′)

as n → ∞, so that, still under P(n)
θθθ,κn,f ,

(3.2) nκnϕf (κn)
(
1 − (

θθθ ′θ̂θθn

)2) D→ χ2
p−1

as n → ∞ (throughout,
D→ denotes convergence in distribution).

Since the sequence (κnϕf (κn)) diverges to infinity under high concentration, Theorem 3.1
shows that the consistency rate of the spherical mean is faster than the usual parametric root-n
rate. Interestingly, this consistency rate depends on the angular function f . For instance, for
f (z) = exp(zb) with b > 0, the rate is n(b+1)/2, hence can be arbitrary close to the standard
root-n rate for small b, but can also provide arbitrary fast polynomial convergence. Clearly,
even faster rates can be achieved by considering more extreme high concentration patterns.

The asymptotic result (3.2) in principle allows constructing confidence zones for θθθ . More
precisely, it follows from this result that a confidence zone for θθθ at asymptotic confidence
level 1 − α is given by

{
θθθ ∈ Sp−1 : ∣∣θθθ ′θ̂θθn

∣∣ ≥
√√√√1 − χ2

p−1,1−α

nκnϕf (κn)

}
,

where χ2
p−1,1−α denotes the upper α-quantile of the χ2

p−1 distribution. This confidence zone,
however, is problematic in two respects. First, it is not connected, as it takes the form
of two antipodal spherical caps centered at ±θ̂θθn, which is not natural. Second, while the
f -dependent consistency rate in Theorem 3.1 is interesting, it also leads to confidence zones
that cannot be used in practice since f is usually an unspecified nuisance. The first problem
can be dealt with by deriving a weak limiting result for θθθ ′θ̂θθn obtained from a second-order
delta method (while Theorem 3.1 results from a classical, first-order, delta method). We have
the following result.
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THEOREM 3.2. Fix an integer p ≥ 2, θθθ ∈ Sp−1 and f ∈ F . Let (κn) be a positive real

sequence that diverges to infinity. Then, under P(n)
θθθ,κn,f , 2nκnϕf (κn)(1 − θθθ ′θ̂θθn)

D→ χ2
p−1 as

n → ∞.

This second-order result provides confidence zones at asymptotic confidence level 1 − α

that are given by

(3.3)
{
θθθ ∈ Sp−1 : θθθ ′θ̂θθn ≥ 1 − χ2

p−1,1−α

2nκnϕf (κn)

}
,

hence take, quite naturally, the form of (connected) spherical caps centered at θ̂θθn. Of
course, these confidence zones still cannot be used in practice since f is unspecified. For-
tunately, Theorem 2.2(i) allows replacing the unknown quantity κnϕf (κn) by the quan-
tity (p − 1)/(1 − en2) = (p − 1)/(1 − E[(X′

n1θθθ)2]), which can be naturally estimated by
(p − 1)/(1 − ên2), where we let ên2 := 1

n

∑n
i=1(X

′
niθ̂θθn)

2. The following result, that guaran-
tees that this replacement has no asymptotic impact, opens the door to the construction of
feasible confidence zones.

THEOREM 3.3. Fix an integer p ≥ 2, θθθ ∈ Sp−1 and f ∈ F . Let (κn) be a positive real
sequence that diverges to infinity. Then, under P(n)

θθθ,κn,f ,
√

n(p − 1)(θ̂θθn − θθθ)√
1 − ên2

D→ N
(
0, Ip − θθθθθθ ′)

as n → ∞, and, still under P(n)
θθθ,κn,f ,

n(p − 1)(1 − (θθθ ′θ̂θθn)
2)

1 − ên2

D→ χ2
p−1 and

2n(p − 1)(1 − θθθ ′θ̂θθn)

1 − ên2

D→ χ2
p−1

as n → ∞, where, in all cases, ên2 = 1
n

∑n
i=1(X

′
niθ̂θθn)

2.

As a direct corollary, a feasible version of the spherical cap confidence zone in (3.3) is

(3.4)
{
θθθ ∈ Sp−1 : θθθ ′θ̂θθn ≥ 1 − 1 − ên2

2n(p − 1)
χ2

p−1,1−α

}
.

We conducted the following Monte Carlo exercises to check the validity of Theorems 3.2–
3.3. For each combination of a ∈ {0.5,1} and b ∈ {0.5,1,1.4}, we generated M = 10,000
random samples of size n = 100 from the rotationally symmetric distribution with location
θθθ = (1,0,0)′ ∈ S2, concentration κn = na and angular function z 	→ fb(z) = exp(zb) (numer-
ical overflows prevented us from considering larger values of b). For each a and b, Figure 1
plots kernel density estimates of the resulting M values of T Oracle

n := 2nκnϕf (κn)(1 − θθθ ′θ̂θθn)

and T Feasible
n := 2n(p−1)(1−θθθ ′θ̂θθn)/(1− ên2) (for a = 1, raw histograms are also provided).

Clearly, Figure 1 supports the theoretical results above, with possibly one exception only,
namely the case of T Feasible

n with b = 0.5. We therefore focused on this case and repeated
the same Monte Carlo exercise with n = 10,000. The results, that are shown in Figure 2,
are now in perfect agreement with the theory for a = 1, whereas the fit still is not excellent
for a = 0.5. A closer inspection provides the explanation: despite the large sample size n

considered in Figure 2, the distribution associated with a = b = 0.5 is far for being highly
concentrated; see the right panel of this figure. The fit observed for a = 0.5 in the left panel
of Figure 2 therefore does not contradict our theoretical results, which would materialize for
higher concentrations.
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FIG. 1. Histograms of 2nκnϕf (κn)(1 − θθθ ′θ̂θθn) (left) and 2n(p − 1)(1 − θθθ ′θ̂θθn)/(1 − ên2) (right) computed from

10,000 random samples from P(n)
θθθ,κn,fb

, with p = 3, n = 100, θθθ = (1,0,0)′, κn = n, and fb(z) = exp(zb), for

b = 0.5 (top), b = 1 (middle) and b = 1.4 (bottom). The blue curve is the kernel density estimate resulting from
the R command density with default parameter values. The orange curve is the corresponding kernel density
estimate for random samples generated with κn = √

n. The theoretical limiting density, namely the density of the
χ2

2 distribution, is plotted in black.

4. Hypothesis testing. We now turn to hypothesis testing and, more specifically, to the
generic problem of testing the null hypothesis H0 : θθθ = θθθ0 against the alternative H1 : θθθ �= θθθ0,
where θθθ0 is a fixed unit p-vector. In this section, we consider the Watson test (Watson (1983),
p. 140) and the Wald test (Hayakawa (1990), Hayakawa and Puri (1985)), that respectively
reject the null hypothesis at asymptotic level α whenever

(4.1) Wn := n(p − 1)X̄′
n(Ip − θθθ0θθθ

′
0)X̄n

1 − 1
n

∑n
i=1(X

′
niθθθ0)2
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FIG. 2. (Left:) Histogram of 2n(p−1)(1−θθθ ′θ̂θθn)/(1− ên2) computed from 2500 random samples from P(n)
θθθ,κn,fb

,

with p = 3, n = 10,000, θθθ = (1,0,0)′, κn = n, and fb(z) = exp(zb), for b = 0.5. The blue curve is the kernel
density estimate resulting from the R command density with default parameter values. The orange curve is
the corresponding kernel density estimate for random samples generated with κn = √

n. The theoretical limiting
density is still plotted in black. (Right:) Histogram of uni = X′

niθθθ , i = 1, . . . , n, where the Xni ’s form a random

sample from P(n)
θθθ,κn,fb

, with p = 3, n = 10,000, θθθ = (1,0,0)′, κn = √
n, and fb(z) = exp(zb), for b = 0.5.

and

(4.2) Sn = n(p − 1)(X̄′
nθθθ0)

2θ̂θθ
′
n(Ip − θθθ0θθθ

′
0)θ̂θθn

1 − 1
n

∑n
i=1(X

′
niθθθ0)2

exceed the critical value χ2
p−1,1−α . In standard asymptotic scenarios where the sample size

n diverges to infinity with κ fixed, the Watson and Wald test statistics are asymptotically
equivalent in probability under the null hypothesis, hence also under sequences of contigu-
ous alternatives, so that these tests may be considered asymptotically equivalent. As shown
in Paindaveine and Verdebout (2017), however, this asymptotic equivalence does not sur-
vive asymptotic scenarios for which κn = O(1/

√
n) as n diverges to infinity. This suggests

investigating the asymptotic behavior of these tests under the high concentration scenarios
considered in the previous sections.

To do so, let

Rn := 1 − 1
n

∑n
i=1(X

′
niθθθ0)

2

√
2(p − 1)ẽ

1/2
n2

and decompose the Watson and Wald test statistics into

Wn =: W̃n

Rn

and Sn =: (X̄′
nθθθ0)

2S̃n

Rn

·
We then have the following lemma.

LEMMA 4.1. Fix an integer p ≥ 2, θθθ0 ∈ Sp−1 and f ∈ F . Let (κn) be a positive real
sequence that diverges to infinity. Let (τττn) be a bounded sequence in R

p such that θθθn =
θθθ0 + νnτττn ∈ Sp−1 for all n, with νn := 1/

√
nκnϕf (κn). Then, under P(n)

θθθn,κn,f , we have Rn =
1 + oP(1) and X̄′

nθθθ0 = 1 + oP(1) as n → ∞, so that Wn = W̃n + oP(1) and Sn = S̃n + oP(1)

as n → ∞.

This lemma ensures that, both under the sequence of null hypotheses P(n)
θθθ0,κn,f (taking τττn ≡

0) and under sequences of local alternatives of the form P(n)
θθθn,κn,f , one may focus on W̃n and S̃n

when studying the asymptotic behaviors of the Watson and Wald test statistics in (4.1)–(4.2).
These asymptotic behaviors are provided in the following result.
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THEOREM 4.1. Fix an integer p ≥ 2, θθθ0 ∈ Sp−1 and f ∈ F . Let (κn) be a positive real
sequence that diverges to infinity. Let (τττn) be a sequence in R

p converging to τττ and such that

θθθn = θθθ0 + νnτττn ∈ Sp−1 for all n, with νn := 1/
√

nκnϕf (κn). Then, (i) under P(n)
θθθ0,κn,f ,

Wn = Sn + oP(1)
D→ χ2

p−1

as n → ∞; (ii) under P(n)
θθθn,κn,f ,

Wn = Sn + oP(1)
D→ χ2

p−1
(‖τττ‖2)

as n → ∞, where χ2
p−1(c) denotes the noncentral chi-square distribution with p − 1 degrees

of freedom and noncentrality parameter c.

This result shows that, under high concentration, the Watson and Wald test statistics re-
main asymptotically equivalent in probability both under the null hypothesis and under the
considered sequences of local alternatives. Both tests show asymptotic size α under the null
hypothesis, irrespective of the angular function f and of the rate at which the concentration
κn diverges to infinity. Theorem 4.1 also reveals that νn describes the consistency rate of
these tests, in the sense that the Watson and Wald tests show nontrivial asymptotic powers
(i.e., asymptotic powers in (α,1)) under sequences of local alternatives of the form P(n)

θθθn,κn,f ,

with ν−1
n ‖θθθn − θθθ0‖ → c > 0. Like in point estimation, this rate depends on f and is faster

than the standard parametric root-n rate that is obtained for fixed κ ; that is, compared to the
alternatives that can be detected in the standard fixed-κ situation, less severe—hence, more
challenging—alternatives can be detected under high concentration.

We performed the following Monte Carlo exercise to illustrate the results in Theorem 4.1.
For each combination of a ∈ {0.5,1}, b ∈ {0.5,1,1.4} and � ∈ {0,1,2,3,4}, we generated
M = 10,000 random samples of size n = 100 from the rotationally symmetric distribution
on S2 with concentration κn = na , angular function z 	→ fb(z) = exp(zb), and location

(4.3) θθθn� =
⎛
⎝cosαn� − sinαn� 0

sinαn� cosαn� 0
0 0 1

⎞
⎠θθθ0,

where we let θθθ0 = (1,0,0)′ and αn� := 2 arcsin(�νn/2), with νn = 1/
√

nκnϕfb
(κn). The al-

ternative locations θθθn� rewrite θθθ0 + νnτττn� for some p-vector τττn� with norm �. Clearly, � = 0
refers to the null hypothesis H0 : θθθ = θθθ0 and � = 1,2,3,4 correspond to increasingly severe
alternatives. In each sample, we performed the Watson and Wald tests at asymptotic level
α = 5%. Figure 3 plots, as a function of �, the resulting rejection frequencies, or more pre-
cisely, the difference between these rejection frequencies and the corresponding theoretical
limiting powers

(4.4) P
[
Y� > χ2

p−1,1−α

]
with Y� ∼ χ2

p−1
(
�2);

see Theorem 4.1(ii). The figure also reports the results for sample size n = 700, but for the
case with highest concentration (i.e., the case (a, b) = (1,1.4)) for which data generation led
to numerical overflow. Rejection frequencies agree well with the limiting powers (note the
scale of the vertical axes), particularly for κn = n which provides a higher concentration than
κn = √

n. The agreement improves as the sample size increases. In all cases but the one with
lowest concentration (i.e., the case (a, b) = (0.5,0.5)), the asymptotic equivalence between
the Watson and Wald tests materializes already for n = 100.
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FIG. 3. Plots of the differences between (i) the rejection frequencies of the Watson and Wald tests and (ii) their
theoretical limiting powers in (4.4). Rejection frequencies are obtained from a collection of M = 10,000 random
samples of size n = 100 (left) or n = 700 (right) from the rotationally symmetric distribution on S2 with location
θθθn� in (4.3), concentration κn = √

n or n, and angular function z 	→ fb = exp(zb), with b = 0.5 (top), 1 (middle)
or 1.4 (bottom); see Section 4 for details.

5. Local asymptotic normality. The Watson test was shown to enjoy strong optimality
properties, both in the standard asymptotic scenario where the concentration κn is fixed and
in the nonstandard one where the concentration goes to zero; see Paindaveine and Verde-
bout (2017). In the latter scenario, the Wald test, on the contrary, fails to be optimal. In this
section, we investigate the optimality properties of the Watson and Wald tests and of the
spherical mean estimator under high concentration. Optimality will be in the Le Cam sense,
which requires studying the Local Asymptotic Normality (LAN) of the sequence of fixed-f
parametric submodels at hand.

To do so, we will need to reinforce our assumptions on f . Let p (≥ 2) be an integer, (κn)

be a positive sequence diverging to infinity and (tn) be a bounded positive sequence. In the
sequel, we will denote as FLAN(p, κn, tn) the collection of angular functions f ∈ F such that,



SPHERICAL INFERENCE UNDER HIGH CONCENTRATION 2993

as κ → ∞,

1

f (κ)

∫ 1

−1

(
ϕf (κs) − ϕf (κ)

)2(
1 − s2)(p−3)/2

f (κs) ds = o

(
1

κ(p+1)/2(ϕf (κ))(p−3)/2

)

and such that, letting h±
n (s,w) := −1

2 t2
nκnν

2
ns ± cntnκnνn(1 − s2)1/2w1/2, with νn :=

1/
√

nκnϕf (κn) and cn := (1 − 1
4ν2

nt2
n)1/2,

(5.1)

1

f (κn)

∫ 1

−1

∫ 1

0

∣∣logf
(
κns + h±

n (s,w)
) − logf (κns) − h±

n (s,w)ϕf (κns)
∣∣f (κns)

× (
1 − s2)(p−3)/2

dGp(w)ds = o

(
1

n(κnϕf (κn))(p−1)/2

)

as n → ∞, where, for p ≥ 3, Gp is the cumulative distribution function of the Beta(1
2 ,

p−2
2 )

distribution, whereas, for p = 2, Gp is the cumulative distribution function of the Dirac
distribution in 1. As shown in the next result, most angular functions fb do satisfy these extra
assumptions, sometimes under an extremely mild restriction on the rate at which the sequence
(κn) diverges to infinity with n.

PROPOSITION 5.1. Let p (≥ 2) be an integer, (κn) be a positive sequence diverging
to infinity and (tn) be a bounded positive sequence. Then, for any b ≥ 1, the function z 	→
fb(z) = exp(zb) belongs to FLAN(p, κn, tn). Provided that there exists ε ∈ (0,2) such that
κb
n/(logn) ≥ (1 − b)/(2 − ε) for n large enough, the same holds for fb, with b ∈ (1

2 ,1).

In other words, fb, with b ≥ 1, belongs to FLAN(p, κn, tn) irrespective of the sequences
(κn) and (tn), whereas all angular functions fb, with b ∈ (1

2 ,1), belong to FLAN(p, κn, tn) in
particular when (κn) diverges to infinity at least as fast as (logn)2, hence, for example, when
κn = na , with a > 0. We then have the following LAN result.

THEOREM 5.1. Fix an integer p ≥ 2 and θθθ ∈ Sp−1. Let (κn) be a positive real sequence
that diverges to infinity. Let (τττn) be a bounded sequence in R

p such that θθθn = θθθ + νnτττn ∈
Sp−1 for all n, with νn := 1/

√
nκnϕf (κn). Assume that f belongs to FLAN(p, κn,‖τττn‖).

Then, as n → ∞ under P(n)
θθθ,κn,f ,

�θθθ+νnτττn/θθθ,κn,f := log
dP(n)

θθθ+νnτττn,κn,f

dP(n)
θθθ,κn,f

= τττ ′
n���

(n)
θθθ,f − 1

2
τττ ′

n���θθθτττn + oP(1),

where the central sequence ���
(n)
θθθ,f := ν−1

n (Ip − θθθθθθ ′)X̄n, still under P(n)
θθθ,κn,f , is asymptotically

normal with mean zero and covariance matrix ���θθθ := Ip − θθθθθθ ′.

This result shows that the rate νn identified in the previous sections is actually the conti-
guity rate associated with the sequence of statistical experiments at hand. Remarkably, this
provides one of the few semiparametric examples (if any) where the contiguity rate depends
on the fixed value of the functional nuisance f . Since the contiguity rate coincides with the
rate of convergence of the spherical mean (see Theorem 3.1), we conclude that the spherical
mean is rate-consistent. Better: since the proof of Theorem 3.1 establishes that√

nκnϕf (κn)(θ̂θθn − θθθ) =���
(n)
θθθ,f + oP(1)

as n → ∞ under P(n)
θθθ,κn,f , it actually follows from Theorems 3.1 and 5.1 that the spherical

mean is an asymptotically optimal estimator in the sense of the convolution theorem; see, for
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example, Theorem 8.8 in van der Vaart (1998). Turning to hypothesis testing, it also follows
from the LAN result above that the Watson and Wald tests from the previous section are
rate-consistent, since Theorem 4.1(ii) indicates that these tests show nontrivial asymptotic
powers under the sequence of contiguous alternatives involved in Theorem 5.1. Actually,
in the present LAN framework, an application of the Le Cam third lemma confirms these
asymptotic local powers.

To show this, fix a positive real sequence (κn) that diverges to infinity and local alternatives
as in Theorem 5.1. Then, under the sequence of null hypotheses P(n)

θθθ0,κn,f ,

TW
n :=

√
n(p − 1)1/4(X̄n − en1θθθ0)

21/4ẽ
1/4
n2

is asymptotically normal with mean zero and covariance matrix ���θθθ0 ; this follows from (S.4.4)
in the proof of Theorem 3.1. Now, by using Theorem 2.2(ii), we obtain that, under the same
sequence of hypotheses,

Cov
[
TW

n ,�θθθ0+νnτττn/θθθ0,κn,f

]

= Cov
[
TW

n ,���
(n)
θθθ0,f

]
τττn + o(1)

=
n
√

κnϕf (κn)(p − 1)1/4

21/4ẽ
1/4
n2

E
[
(X̄n − en1θθθ0)(X̄n − en1θθθ0)

′]���θθθ0τττn + o(1)

= E
[
TW

n

(
TW

n

)′]
���θθθ0τττn + o(1) = τττn + o(1).

Thus, Le Cam’s third lemma entails that, under the sequence of contiguous alternatives
P(n)

θθθn,κn,f , with θθθn = θθθ0 + νnτττn, νn = 1/
√

nκnϕf (κn) and (τττn) → τττ , TW
n is asymptotically

normal with mean τττ and covariance matrix ���θθθ0 , so that, under this sequence of hypothe-

ses, W̃n = (TW
n )′���−

θθθ0
TW

n

D→ χ2
p−1(‖τττ‖2), where A− stands for the Moore–Penrose inverse

of A. From contiguity, we thus obtain that Wn = W̃n + oP(1)
D→ χ2

p−1(‖τττ‖2) under the al-
ternatives considered, which, as announced, is in agreement with Theorem 4.1(ii). As for the

Wald test, the fact that Sn
D→ χ2

p−1(‖τττ‖2) under the same sequence of alternatives directly
follows from the result for the Watson test and from the fact that the null asymptotic equiva-
lence Wn = Sn + oP(1) in Theorem 4.1(i) extends, from contiguity, to the present contiguous
alternatives.

Beyond this, one of the main interests of the LAN result in Theorem 5.1 is to pave the
way to the construction of Le Cam optimal tests for the problem of testing, under high con-
centration, H0 : θθθ = θθθ0 versus H1 : θθθ �= θθθ0 with angular function f . It directly follows from
this result that, for this problem, the test rejecting the null hypothesis at asymptotic level α

whenever

Qn := (
���

(n)
θθθ0,f

)′
���−

θθθ0
���

(n)
θθθ0,f

> χ2
p−1,1−α

is Le Cam optimal (more precisely, locally asymptotically maximin) at asymptotic level α.
Since Theorem 2.2(ii) ensures that, under the null hypothesis,

���
(n)
θθθ0,f

=
√

nκnϕf (κn)
(
Ip − θθθ0θθθ

′
0
)
(X̄n − en1θθθ0)

=
√

n(p − 1)1/4

21/4ẽ
1/4
n2

(
Ip − θθθ0θθθ

′
0
)
(X̄n − en1θθθ0) + oP(1),



SPHERICAL INFERENCE UNDER HIGH CONCENTRATION 2995

Lemma 4.1 readily entails that Qn = W̃n + oP(1) = Wn + oP(1) under the null hypothesis,
hence, from contiguity, also under the sequences of local alternatives above. It follows that,
under the assumptions of Theorem 5.1, the Watson test is optimal in the Le Cam sense.
Since the Watson test does not depend on f , this optimality holds at any f meeting the
assumptions of Theorem 5.1. From the asymptotic equivalence result in Theorem 4.1(i) and
from contiguity, this extends to the Wald test.

In the high concentration framework considered, it may be intuitively appealing to lin-
earize the problem and apply a standard Euclidean test to the data projected onto the tan-
gent space to Sp−1 at the null location θθθ0—or equivalently, to the data Yni := P′

θθθ0
Xni ,

i = 1, . . . , n, where Pθθθ0 is an arbitrary p × (p − 1) matrix whose columns form an or-
thornormal basis of the orthogonal complement of θθθ0 in R

p . The null hypothesis H0 : θθθ = θθθ0
translates into testing that the mean of the common (under rotational symmetry about θθθ0,
spherically symmetric) distribution of the Yni’s is the zero vector. The Watson test can actu-
ally be seen as the (spherical) Hotelling test rejecting the null hypothesis at asymptotic level
α whenever nȲ′

nS−1
n Ȳn > χ2

p−1,1−α , with Ȳn := n−1 ∑n
i=1 Yni and with a standardization

matrix Sn that, in line with the underlying spherical symmetry, is a multiple of the identity
matrix. Quite nicely, Theorem 5.1 formally proves that this linearization provides a test that
is Le Cam optimal at any f . We insist, however, that it was unclear that such a linearization
would provide a test that achieves optimality in the original sequence of curved statistical
experiments. Not only because the impact of linearization is difficult to control, but also be-
cause it is unknown whether or not the spherical Hotelling test is optimal in any sense under
the, highly concentrated and skewed, alternatives obtained in the tangent space (to the best
of our knowledge, the only optimality results for the spherical Hotelling test relate to shifted
spherical Gaussian distributions; see, e.g., Hallin and Paindaveine (2002)).

6. Real data illustration. The real dataset we analyze here consists in measurements
of magnetic remanence directions in n = 62 rock specimens. The objective of Remanent
magnetism or equivalently Paleomagnetism is to study the strength and the direction of the
Earth’s magnetic field over time. The orientation and intensity of the Earth’s magnetic field
can be obtained through the record of remanent magnetism preserved in rocks. The directions
of remanent magnetization allow scientists to determine the position of the Earth’s magnetic
pole with respect to the study location at the time when the magnetization was acquired.

We consider here a well-known dataset on S2 that has already been used for inference on
spherical location in Fisher, Lewis and Embleton (1987). The dataset, which is provided as
Dataset A in Appendix B8 of this monograph, is showed in the left panel of Figure 4. Clearly,
the data is highly concentrated. In line with this, the FvML maximum likelihood estimator of

FIG. 4. (Left:) plot of the n = 62 directions of magnetic remanence associated with the real dataset considered
in Section 6. (Right:) plot of the same dataset with, in red, the corresponding 95% confidence cap in (3.4).
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FIG. 5. Boxplots of the p-values of three tests of rotational symmetry over S2 obtained from the 62 leave-one-out
samples associated with the magnetic remanence data set; see Section 6 for details. The tests considered
are (the unspecified-θθθ versions of) the location test, scatter test and hybrid test of rotational symmetry from
García-Portugués, Paindaveine and Verdebout (2019).

the concentration parameter κ takes value κ̂ = 76.12, which is of the same order of magnitude
as the sample size n = 62. Figure 4 also suggests that rotational symmetry is a plausible
assumption. To assess this, we performed the three tests of rotational symmetry on S2 that
were recently proposed in García-Portugués, Paindaveine and Verdebout (2019): a location
test and a scatter test, that respectively show power against location-type alternatives and
scatter-type alternatives to rotational symmetry (we refer to García-Portugués, Paindaveine
and Verdebout (2019) for details), as well as a hybrid test that shows power against both
types of alternatives. These three tests, that are meant to test the null hypothesis of rotational
symmetry about an unspecified location θθθ , provided the p-values 0.844, 0.305 and 0.607,
respectively, hence did not lead to rejection at any usual nominal level. To somewhat assess
the robustness of this result, we performed the following analysis: on the 62 samples of size
61 obtained by leaving one of the original observations out, we performed the same three tests
of rotational symmetry and provided in Figure 5 the boxplots of the 62 p-values obtained for
each of the three tests. Again, at any usual nominal level, none of these subsamples led any
of the three tests to reject the null hypothesis of rotational symmetry.

The various statistical methods studied in this paper are therefore perfectly suitable for
the present dataset. To illustrate one of these methods, we computed the 95% confidence
cap for the spherical location defined in (3.4). The resulting confidence cap is showed
in the right panel of Figure 4. This confidence zone is centered at the spherical mean
θ̂θθ = (0.210,0.104,0.972)′ and, as expected in the present high concentration setup, has a
very small size.

7. Wrap up. We discussed inference on the location parameter of rotationally symmet-
ric distributions under high concentration. We did so by considering double asymptotic sce-
narios where the underlying concentration parameter κn diverges to infinity at an arbitrary
rate with the sample size n. This significantly improves over the state of the art for directional
inference under high concentration, since previous works not only focused on a parametric
class of distributions (namely, the FvML one) but also restricted to asymptotics as κ diverges
to infinity with n fixed. Our asymptotic results indicate that standard fixed-κ methods are
robust to high concentration, in the sense that they will remain valid in the aforementioned
double asymptotic scenarios: the spherical mean remains consistent and asymptotically nor-
mal, whereas the Watson and Wald tests still asymptotically meet the nominal level constraint.
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Under high concentration, however, these statistical procedures enjoy faster consistency rates
than in the standard fixed-κ asymptotic scenario. Remarkably, these consistency rates de-
pend on the type of rotationally symmetric distributions considered, that is, they depend on
the underlying angular function f ; this dependence is such that the higher the concentration,
the faster the consistency rates. In contrast with all previous works on high concentration,
we also considered optimality issues. We showed that, under mild assumptions on f , the
aforementioned inference procedures enjoy strong, Le Cam-type, optimality properties. For
some (not all) angular functions, optimality requires that κn diverges to infinity sufficiently
fast as a function of n; the corresponding restriction, as we have seen, is extremely mild for
our running example associated with fb(z) = exp(zb), as optimality, for b ∈ (1

2 ,1) holds in
particular when κn diverges to infinity at least as fast as (logn)2, whereas no restriction of
this sort is required for b ≥ 1, hence in particular for the usual FvML case.
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