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Abstract

Preliminary test estimation is a methodology that combines goodness-of-fit testing and

estimation. It is a natural procedure when it is suspected a priori that the parameter to be

estimated satisfies some prespecified constraints, is a classical topic in estimation theory. In

the present paper, we establish general results on the asymptotic behavior of preliminary

test estimators. More precisely, we show that, in uniformly locally asymptotically normal

(ULAN) models, a general asymptotic theory can be derived for preliminary test estima-

tors based on estimators admitting generic Bahadur-type representations. This allows for a

detailed comparison between classical estimators and preliminary test estimators in ULAN

models. Our results, that, in standard linear regression models, are shown to reduce to

some classical results, are also illustrated in more modern and involved setups, such as the

multisample one where m covariance matrices ΣΣΣ1, . . . ,ΣΣΣm are to be estimated when it is sus-

pected that these matrices might be equal, might be proportional, or might share a common

“scale”. Simulation results confirm our theoretical findings and an illustration on a real data

example is provided.

Key words and phrases: ULAN models, Le Cam’s asymptotic theory, Multisample covariance

matrix estimation, Preliminary test estimation.

1 Introduction

Preliminary test estimation is a widely studied topic in Statistics and Econometrics, that can be

traced back to the seminal paper by Bancroft (1944). Preliminary test estimators are typically

useful when one has to perform statistical inference under “uncertain prior information”. More

formally, assume that one is interested in estimating a parameter θθθ that belongs to some parameter

space ΘΘΘ ⊂ Rp, under the uncertain prior information that θθθ belongs to a given subset ΘΘΘ0 of ΘΘΘ

(throughout, we assume that ΘΘΘ is an open subset of Rp). Then, roughly speaking, the statistician
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may hesitate between (i) an unconstrained estimator θ̂θθU with values in ΘΘΘ or (ii) a constrained

estimator θ̂θθC with values in ΘΘΘ0 only. The idea underpinning preliminary test estimation is

relatively simple: if a suitable test φn for H0 : θθθ ∈ΘΘΘ0 against H1 : θθθ /∈ΘΘΘ0 does not reject the null

hypothesis, then θ̂θθC should be used; on the contrary, if φn provided evidence against H0, then

the unconstrained estimator θ̂θθU should be favoured. In other words, a preliminary test estimator

based on the test φn and on the estimators θ̂θθU and θ̂θθC is

θ̂θθPTE := I[φn = 0]θ̂θθC + I[φn = 1]θ̂θθU, (1.1)

where I[A] stands for the indicator function associated with A and where φn = 1 (resp., φn = 0)

indicates rejection (resp., non-rejection) of H0 by φn.

Since Bancroft (1944), preliminary test estimation has been an active research topic. Sen and

Saleh (1979), Sen and Saleh (2006), Wan, Zou and Ohtani (2006) and Kibria and Saleh (2014)

considered preliminary test estimation in regression models. Giles, Lieberman and Giles (1992)

tackled the problem of selecting the size of the test φn when conducting preliminary test esti-

mation in a misspecified regression model. Ohtani and Toyoda (1980) considered estimation of

regression coefficients after a preliminary test of homoscedasticity. Preliminary test estimation in

elliptical models has been considered in the contexts of linear regression and of principal compo-

nent analysis; see Arashi et al. (2014) and Paindaveine, Rasoafaraniaina and Verdebout (2017),

respectively. It has also been widely considered in time series analysis; see, e.g., Ahmed and

Basu (2000), Maeyama, Tamaki and Taniguchi (2011), and the references therein. For a general

overview of the topic, we refer to Giles and Giles (1993) and Saleh (2006).

Despite the many works on the topic, it seems that no general theory for the asymptotic behavior

of preliminary test estimators is available in the literature. The main objective of the present

paper is therefore to derive such a general theory and to do so in a broad class of models

(that will include in particular all models mentioned above). Assuming that the underlying

model is regular in the sense that it is uniformly locally asymptotically normal (ULAN), we will

derive the asymptotic behavior of a general preliminary test estimator; more precisely, we will

consider preliminary test estimators based on estimators θ̂θθU and θ̂θθC that admit Bahadur-type

representations. Our asymptotic results do cover many of the existing results in the literature but

also allow us to consider more modern and involved models, as we will illustrate in a multisample

covariance estimation framework

As expected, the asymptotic behavior of preliminary test estimators will depend on the true

value of the parameter θθθ. We first show that when this true value is fixed outside ΘΘΘ0, then,

provided that the test φn is consistent, a preliminary test estimator is asymptotically equivalent

in probability to the unconstrained estimator θ̂θθU. Second, we show that when the true value

of θθθ asymptotically belongs to contiguous regions of ΘΘΘ0 (in a sense that involves the asymptotic
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concept of contiguity, as we will make precise below), a preliminary test estimator exhibits an

asymptotic behavior that achieves a nice compromise between θ̂θθU and θ̂θθC.

The paper is organized as follows. In Section 2, we describe the assumptions that will be con-

sidered in the sequel. In Section 3, we state our asymptotic results and derive explicit forms for

the asymptotic mean square error of preliminary test estimators based on asymptotically efficient

estimators. In Section 4, we illustrate these general results in two particular setups. First, we

show that, in a simple linear regression context, our results allow us to recover the classical re-

sults from Saleh (2006). Then, we consider preliminary test estimation of m covariance matrices

in a multisample Gaussian setup. Preliminary test estimators associated with the constraints

of covariance homogeneity, shape homogeneity and scale homogeneity are studied. Monte Carlo

simulations confirm our theoretical results. In Section 5, we provide a real data illustration that,

in the aforementioned multisample covariance framework, shows that preliminary test estimators

are practically relevant when performing supervised classification. Finally, an appendix collects

the proofs.

2 ULAN models and Preliminary Test Estimators

As mentioned in the introduction, our objective is to derive the asymptotic behavior of prelim-

inary test estimators (PTEs) in a very general context. We will throughout assume that the

underlying parametric model {P(n)
θθθ : θθθ ∈ ΘΘΘ ⊂ Rp} under investigation is uniformly locally and

asymptotically normal (ULAN) in the following sense (throughout, convergences are as n→∞).

Assumption (A). There exist a sequence (νννn) of full-rank non-random p×p matrices that is o(1),

a sequence of random p-vectors ∆∆∆
(n)
θθθ (the central sequence) and a symmetric positive semidefinite

p× p matrix ΓΓΓθθθ (the information matrix), such that, for any θθθ ∈ΘΘΘ, any sequence (θθθn) in ΘΘΘ with

ννν−1
n (θθθn − θθθ) = O(1), and any bounded sequence (τττn) in Rp such that θθθn + νννnτττn ∈ ΘΘΘ for any n,

we have

(i) Λ(n) := log
dP

(n)
θθθn+νννnτττn

dP
(n)
θθθn

= τττ ′n∆∆∆
(n)
θθθn
− 1

2
τττ ′nΓΓΓθθθτττn + oP(1) (2.2)

and

∆∆∆
(n)
θθθ

D→ N (0,ΓΓΓθθθ)

under P
(n)
θθθ .

An extensive list of models do satisfy Assumption (A). This list includes hidden Markov models

(Bickel and Ritov, 1996), quantum mechanics models (Kahn and Guta, 2009, Guta and Kiukas,
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2015), time series models (Drost, Klaassen and Werker, 1997, Hallin et al., 1999, Francq and

Zakoian, 2013), elliptical models (Hallin and Paindaveine, 2006, Hallin, Paindaveine and Verde-

bout, 2010), multisample elliptical models (Hallin and Paindaveine, 2008, Hallin, Paindaveine

and Verdebout, 2013, 2014), models for directional data (Ley et al., 2013, Garcia-Portugues,

Paindaveine and Verdebout, 2020), to mention only a few.

As explained in the introduction, the construction of a PTE involves an unconstrained esti-

mator θ̂θθU taking values in ΘΘΘ, a constrained estimator θ̂θθC taking values in ΘΘΘ0, and a test φn

for H0 : θθθ ∈ ΘΘΘ0 against H1 : θθθ /∈ ΘΘΘ0. Throughout, we will assume that ΘΘΘ0 is a linear subspace

of Rp of the form

ΘΘΘ0 = (θθθ0 +M(ΥΥΥ)) ∩ΘΘΘ,

where θθθ0 ∈ ΘΘΘ is fixed and M(ΥΥΥ) denotes the vector subspace of Rp that is spanned by the

columns of the p × r full-rank matrix ΥΥΥ (r < p). We will restrict to the case θθθ0 = 0, which is

without loss of generality (a reparametrization of the model always allows us to reduce to this

case). We will consider PTEs of the form

θ̂θθPTE = I[φn = 1]θ̂θθU + I[φn = 0]θ̂θθC,

based on estimators θ̂θθU, θ̂θθC and on a test φn that satisfy the following assumption (throughout,

χ2
`,β denotes the upper β-quantile of the χ2

` distribution).

Assumption (B). With νννn, ∆∆∆
(n)
θθθ and ΓΓΓθθθ as in Assumption (A), there exists, for any θθθ ∈ ΘΘΘ, a

random p-vector S
(n)
θθθ for which(

S
(n)
θθθ

∆∆∆
(n)
θθθ

)
D→ N

(
0,

(
ΣΣΣθθθ ΩΩΩθθθ
ΩΩΩθθθ ΓΓΓθθθ

))

under P
(n)
θθθ and for which the following holds:

(i) ννν−1
n (θ̂θθU − θθθ) = AθθθS

(n)
θθθ + oP(1) under P

(n)
θθθ for some p× p matrix Aθθθ;

(ii) if θθθ ∈ΘΘΘ0, then ννν−1
n (θ̂θθC − θθθ) = ΥΥΥBθθθS

(n)
θθθ + oP(1) under P

(n)
θθθ for some r × p matrix Bθθθ;

(iii) φn rejects H0 : θθθ ∈ ΘΘΘ0 at asymptotic level α when Q(n) := ‖D(n)‖2 > χ2
p−r,1−α, where, for

any θθθ ∈ ΘΘΘ0, the random p-vector D(n) satisfies D(n) = CθθθS
(n)
θθθ + oP(1) under P

(n)
θθθ , with a

p×p matrix Cθθθ for which (i) ΣΣΣθθθC
′
θθθCθθθΣΣΣθθθC

′
θθθCθθθΣΣΣθθθ = ΣΣΣθθθC

′
θθθCθθθΣΣΣθθθ and (ii) tr[C′θθθCθθθΣΣΣθθθ] = p−r.

Moreover, φ is consistent under any P
(n)
θθθ , θθθ /∈ΘΘΘ0.

As complex as it may look, Assumption (B) is actually extremely mild. Indeed, provided that the

underlying model is ULAN as in Assumption (A), it merely only imposes that an unconstrained

estimator θ̂θθU admitting a Bahadur-type representation is available. To show this, let us restrict to
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the usual contiguity rate νννn = n−1/2Ip where Ip is the p-dimensional identity matrix (extension

to a general νννn is direct) and let us assume that, under P
(n)
θθθ , θθθ ∈ΘΘΘ,

√
n(θ̂θθU − θθθ) =

1√
n

n∑
i=1

T
(n)
i + oP(1), (2.3)

where the random p-vectors T
(n)
i = T

(n)
i (θθθ), i = 1, . . . , n, are mutually independent and share

a common distribution that has mean zero and has finite second-order moments. Obviously,

Assumption (B)(i) then holds with Aθθθ := Ip and S
(n)
θθθ := n−1/2

∑n
i=1 T

(n)
i . Under very mild

assumptions (only needed to check the Levy–Lindeberg condition), a CLT for triangular arrays

will then ensure that (S
(n)′
θθθ ,∆∆∆

(n)′
θθθ )′ is asymptotically normal under P

(n)
θθθ , as required in Assump-

tion (B). Now, letting PΥΥΥ := ΥΥΥ(ΥΥΥ′ΥΥΥ)−1ΥΥΥ′ be the matrix of the orthogonal projection onto

the constraint ΘΘΘ0 = M(ΥΥΥ) ∩ ΘΘΘ, the constrained estimator θ̂θθC := PΥΥΥθ̂θθU readily satisfies, for

any θθθ ∈ ΘΘΘ0,
√
n(θ̂θθC − θθθ) = PΥΥΥ

√
n(θ̂θθU − θθθ) =

1√
n

n∑
i=1

PΥΥΥT
(n)
i + oP(1)

under P
(n)
θθθ , so that Assumption (B)(ii) is fulfilled, too (with Bθθθ := (ΥΥΥ′ΥΥΥ)−1ΥΥΥ′). Finally, Assump-

tion (B)(iii) will be satisfied by Wald tests for H0 : θθθ ∈ ΘΘΘ0 against H1 : θθθ /∈ΘΘΘ0 constructed in the

usual way from (2.3). Wrapping up, the only key point in Assumption (B) is its part (i), which

itself holds as soon as an unconstrained estimator θ̂θθU admitting a Bahadur-type representation is

available. In regular models, M-, R-, and S-estimation, as usual, will provide such unconstrained

estimators, so that Assumption (B) is not at all restrictive.

Now, in the ULAN framework of Assumption (A), an asymptotically efficient (unconstrained)

estimator θ̂θθU—that is, an estimator satisfying

√
n(θ̂θθU − θθθ) = ΓΓΓ−1

θθθ ∆∆∆
(n)
θθθ + oP(1) (2.4)

under P
(n)
θθθ (see, e.g., Chapter 3 of Tanigushi and Kakizawa, 2000)—also satisfies Assump-

tion (B)(i), with Aθθθ = ΓΓΓ−1
θθθ and S

(n)
θθθ = ∆∆∆

(n)
θθθ (which provides ΣΣΣθθθ = ΩΩΩθθθ = ΓΓΓθθθ). An asymptotically

efficient constrained estimator θ̂θθC, that is such that

√
n(θ̂θθC − θθθ) = ΥΥΥ(ΥΥΥ′ΓΓΓθθθΥΥΥ)−1ΥΥΥ′∆∆∆

(n)
θθθ + oP(1) (2.5)

under any P
(n)
θθθ , θθθ ∈ ΘΘΘ0, satisfies Assumption (B)(ii), with Bθθθ = (ΥΥΥ′ΓΓΓθθθΥΥΥ)−1ΥΥΥ′ and S

(n)
θθθ = ∆∆∆

(n)
θθθ .

For testing H0 : θθθ ∈ ΘΘΘ0 against H1 : θθθ /∈ ΘΘΘ0, the locally asymptotically most stringent test

rejects H0 at asymptotic level α when

Q(n) =
∥∥Cθ̂θθC

∆∆∆
(n)

θ̂θθC

∥∥2
> χ2

p−r,1−α, (2.6)

with

Cθθθ := (Ip −ΓΓΓ
1/2
θθθ ΥΥΥ(ΥΥΥ′ΓΓΓθθθΥΥΥ)−1ΥΥΥ′ΓΓΓ

1/2
θθθ )ΓΓΓ

−1/2
θθθ = (Ip −ΓΓΓ

1/2
θθθ ΥΥΥBθθθΓΓΓ

1/2
θθθ )ΓΓΓ

−1/2
θθθ ; (2.7)
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see, e.g., Chapter 5 of Ley and Verdebout (2017). Under Assumption (A), it is easy to check that,

provided that θ̂θθC is locally and asymptotically discrete (a technical requirement with no practical

impact), Cθ̂θθC
∆∆∆

(n)

θ̂θθC
= Cθθθ∆∆∆

(n)
θθθ + oP(1) under any P

(n)
θθθ with θθθ ∈ ΘΘΘ0, so that Assumption (B)(iii)

then holds, still with S
(n)
θθθ = ∆∆∆

(n)
θθθ , ΣΣΣθθθ = ΓΓΓθθθ, and with the Cθθθ in (2.7) (one can indeed check

that C′θθθCθθθΓΓΓθθθC
′
θθθCθθθ = C′θθθCθθθ and that tr[C′θθθCθθθΓΓΓθθθ] = tr[Ip] − tr[(ΥΥΥ′ΓΓΓθθθΥΥΥ)−1(ΥΥΥ′ΓΓΓθθθΥΥΥ)] = p − r).

To summarize, Assumptions (A)–(B) cover many existing models and estimators. In the next

section, our objective is to derive asymptotic results for PTEs in the general framework covered

by these assumptions.

3 Asymptotic results

In this section, we derive, in a parametric model {P(n)
θθθ : θθθ ∈ΘΘΘ ⊂ Rp} satisfying Assumption (A),

the asymptotic behavior of a PTE of the form

θ̂θθPTE := I[φn = 1]θ̂θθU + I[φn = 0]θ̂θθC, (3.8)

based on estimators θ̂θθU, θ̂θθC and on a test φn that satisfy Assumption (B). Letting λ(v) := I[v ≤

χ2
p−r,1−α], the estimator in (3.8) rewrites

θ̂θθPTE := (1− λ(Q(n)))θ̂θθU + λ(Q(n))θ̂θθC. (3.9)

When deriving the asymptotic behavior of θ̂θθPTE under P
(n)
θθθ , we will discriminate between three

cases: (i) θθθ is fixed in the constraint ΘΘΘ0, (ii) θθθ = θθθn belongs to the νννn-vicinity of the constraint

(that is, θθθn = θθθ+νννnτττn, with θθθ ∈ΘΘΘ0 and (τττn) = O(1)), and (iii) θθθ is fixed outside the constraint ΘΘΘ0;

see Figure 1.

Our first result shows that, in case (iii), θ̂θθPTE is asymptotically equivalent in probability to the

unconstrained estimator θ̂θθU (see the appendix for a proof).

Theorem 1. Let Assumptions (A)–(B) hold. Fix θθθ /∈ ΘΘΘ0 and assume that θ̂θθC = OP(1) un-

der P
(n)
θθθ . Then, ννν−1

n (θ̂θθPTE − θθθ) = ννν−1
n (θ̂θθU − θθθ) + oP(1) under P

(n)
θθθ .

We now move to cases (i)–(ii), where we will actually consider parameter sequences of the form

θθθn = θθθ + νννnτττn ∈ ΘΘΘ, with θθθ ∈ ΘΘΘ0 and (τττn) → τττ (note that case (i) is obtained for τττn ≡ 0). We

have the following result (see the appendix for a proof).

Theorem 2. Let Assumptions (A)–(B) hold and consider sequences of the form θθθn = θθθ+νννnτττn ∈

ΘΘΘ, with θθθ ∈ ΘΘΘ0 and (τττn) → τττ . Let (Z′1,Z
′
2,D

′)′ be a Gaussian random vector with mean vector
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θ1

θ2

ΘΘΘ0

(i): θθθ ∈ ΘΘΘ0

(iii): θθθ /∈ ΘΘΘ0

(ii): θθθ + νννnτττn

Figure 1: Illustration of the various situations where asymptotics are derived, for a bivariate

parameter θθθ =
(
θ1
θ2

)
and a constraint of the form ΘΘΘ0 =M(ΥΥΥ), with ΥΥΥ =

(
1
1

)
.

(τττ ′(AθθθΩΩΩθθθ − Ip)
′, τττ ′(ΥΥΥBθθθΩΩΩθθθ − Ip)

′, τττ ′(CθθθΩΩΩθθθ)
′)′ and covariance matrix

AθθθΣΣΣθθθA
′
θθθ AθθθΣΣΣθθθB

′
θθθΥΥΥ
′ AθθθΣΣΣθθθC

′
θθθ

ΥΥΥBθθθΣΣΣθθθA
′
θθθ ΥΥΥBθθθΣΣΣθθθB

′
θθθΥΥΥ
′ ΥΥΥBθθθΣΣΣθθθC

′
θθθ

CθθθΣΣΣθθθA
′
θθθ CθθθΣΣΣθθθB

′
θθθΥΥΥ
′ CθθθΣΣΣθθθC

′
θθθ

 .

Then, ννν−1
n (θ̂θθPTE − θθθn) converges weakly to

Z := (1− λ(‖D‖2))Z1 + λ(‖D‖2)Z2. (3.10)

under P
(n)
θθθn

as n→∞.

Theorem 2 provides the asymptotic behavior of θ̂θθPTE in the vicinity of ΘΘΘ0. Note that, using the

identities λ2(v) = λ(v), (1 − λ(v))2 = 1 − λ(v), and λ(v)(1 − λ(v)) = 0, it is easy to see that,

conditional on D, the weak limit Z of ννν−1
n (θ̂θθPTE − θθθn) in (3.10) is Gaussian with mean vector

µµµVic
PTE = (1− λ(‖D‖2))

{
(AθθθΩΩΩθθθ − Ip)τττ + AθθθΣΣΣθθθC

′
θθθ(CθθθΣΣΣθθθC

′
θθθ)
−(D−CθθθΩΩΩθθθτττ)

}
+λ(‖D‖2)

{
(ΥΥΥBθθθΩΩΩθθθ − Ip)τττ + ΥΥΥBθθθΣΣΣθθθC

′
θθθ(CθθθΣΣΣθθθC

′
θθθ)
−(D−CθθθΩΩΩθθθτττ)

}
(3.11)

and covariance matrix

ΓΓΓVic
PTE = (1− λ(‖D‖2))Aθθθ(ΣΣΣθθθ − Lθθθ)A

′
θθθ + λ(‖D‖2)ΥΥΥBθθθ(ΣΣΣθθθ − Lθθθ)B

′
θθθΥΥΥ
′, (3.12)

7



where we denoted as A− the Moore-Penrose inverse of A and where we let

Lθθθ := ΣΣΣθθθC
′
θθθ(CθθθΣΣΣθθθC

′
θθθ)
−CθθθΣΣΣθθθ. Since D in Theorem 2 is Gaussian with mean vector µµµD := CθθθΩΩΩθθθτττ

and covariance matrix ΣΣΣD = CθθθΣΣΣθθθC
′
θθθ, the probability density function (pdf) of the weak limit

Z of ννν−1
n (θ̂θθPTE − θθθn) under P

(n)
θθθn

is given by

z 7→
∫
Rp

φµµµVic
PTE,ΓΓΓ

Vic
PTE

(z)φµµµD,ΣΣΣD
(x)dx, (3.13)

where φµµµ,ΣΣΣ stands for the pdf of the p-variate normal distribution with mean vector µµµ and

covariance matrix ΣΣΣ. Since the pdf (3.13) does not allow for a simple comparison between θ̂θθPTE,

θ̂θθU and θ̂θθC, we will base such a comparison on the asymptotic mean square errors (MSEs) of

these estimators.

A general expression for the asymptotic MSEs can be obtained by computing E[µµµVic
PTE], Var[µµµVic

PTE]

and E[ΓΓΓVic
PTE]. We now derive these limiting MSEs when PTEs are based on the preliminary tests

in (2.6) and on asymptotically efficient estimators satisfying (2.4)–(2.5) (limiting MSEs of PTEs

based on other estimators can be obtained in the same way). For such estimators and preliminary

tests, the random p-vector D in Theorem 2 is Gaussian with mean vector P⊥ΥΥΥΓΓΓ
1/2
θθθ τττ and covariance

matrix P⊥ΥΥΥ, where P⊥ΥΥΥ,eff := Ip − PΥΥΥ,eff is based on PΥΥΥ,eff := ΓΓΓ
1/2
θθθ ΥΥΥ(ΥΥΥ′ΓΓΓθθθΥΥΥ)−1ΥΥΥ′ΓΓΓ

1/2
θθθ , and it

follows from (3.11)–(3.12) that, conditional on D, the random vector Z in (3.10) is Gaussian

with mean vector

µµµVic
PTE,eff = ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,eff

{
(1− λ(‖D‖2))D−ΓΓΓ

1/2
θθθ τττ

}
(3.14)

and covariance matrix

ΓΓΓVic
PTE,eff = ΓΓΓ

−1/2
θθθ PΥΥΥ,effΓΓΓ

−1/2
θθθ . (3.15)

We then have the following result (see the appendix for a proof).

Proposition 1. If µµµVic
PTE,eff in (3.14) is based on a random p-vector D that is Gaussian with

mean vector P⊥ΥΥΥΓΓΓ
1/2
θθθ τττ and covariance matrix P⊥ΥΥΥ, then

E[µµµVic
PTE,eff ] = −γ2ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ τττ

and

Var[µµµVic
PTE,eff ] = (1− γ2)ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ

+((1− γ4)− (1− γ2)2)ΓΓΓ
−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ ττττττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ ,

where we let γj := P[Vj ≤ χ2
p−r,1−α], with Vj ∼ χ2

p−r+j(τττ
′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ τττ) (throughout, χ2

`(η) will

stand for the non-central chi-square distribution with ` degrees of freedom and with non-centrality

parameter η).
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We define the asymptotic MSE of θ̂θθPTE under P
(n)
θθθn

as

AMSEθθθ,τττ (θ̂θθPTE) := E[ZZ′] = Var[Z] + E[Z](E[Z])′,

where Z is the weak limit of ννν−1
n (θ̂θθPTE − θθθn) under P

(n)
θθθn

; see Theorem 2. Now, since E[Z] =

E[E[Z|D]] = E[µµµVic
PTE,eff ] and Var[Z] = E[Var[Z|D]]+Var[E[Z|D]] = ΓΓΓVic

PTE,eff +Var[µµµVic
PTE,eff ] (note

that Var[Z|D] = ΓΓΓVic
PTE,eff is non-random), Proposition 1 yields

AMSEθθθ,τττ (θ̂θθPTE) = ΓΓΓVic
PTE,eff + Var[µµµVic

PTE,eff ] + (E[µµµVic
PTE,eff ])(E[µµµVic

PTE,eff ])′

= ΓΓΓ−1
θθθ − γ2ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ

+(2γ2 − γ4)ΓΓΓ
−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ ττττττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ . (3.16)

To enable proper comparison with the unconstrained and constrained antecedents of θ̂θθPTE (namely,

the estimators θ̂θθU and θ̂θθC satisfying (2.4) and (2.5), respectively), the following result provides

explicit expressions for the asymptotic MSEs of these estimators (see the appendix for a proof).

Proposition 2. Let Assumptions (A)–(B) hold. Then, under P
(n)
θθθn

,

AMSEθθθ,τττ (θ̂θθU) = ΓΓΓ−1
θθθ

and

AMSEθθθ,τττ (θ̂θθC) = ΓΓΓ
−1/2
θθθ PΥΥΥ,effΓΓΓ

−1/2
θθθ + ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ ττττττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ ,

where θ̂θθU and θ̂θθC are estimators satisfying (2.4) and (2.5), respectively.

It is worthwhile to consider some boundary cases. For α = 1, we have γ2 = γ4 = 0, so

that AMSEθθθ,τττ (θ̂θθPTE) = AMSEθθθ,τττ (θ̂θθU), which is compatible with the fact that θ̂θθPTE = θ̂θθU al-

most surely when the preliminary test φn is performed at asymptotic level α = 1. At the other

extreme, for α = 0, we rather have γ2 = γ4 = 1, which provides

AMSEθθθ,τττ (θ̂θθPTE) = ΓΓΓ−1
θθθ −ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ + ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ ττττττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ

= ΓΓΓ
−1/2
θθθ PΥΥΥ,effΓΓΓ

−1/2
θθθ + ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ ττττττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ

= AMSEθθθ,τττ (θ̂θθC),

in agreement with the fact that θ̂θθPTE = θ̂θθC almost surely when φn is performed at asymptotic

level α = 0.

To conclude this section, we provide a comparison between AMSEθθθ,τττ (θ̂θθPTE), AMSEθθθ,τττ (θ̂θθU),

and AMSEθθθ,τττ (θ̂θθC). These asymptotic MSEs being matrix-valued, it is needed to base this com-

parison on a scalar summary, such as, e.g., their trace. In the present case, where the uncon-

strained estimator satisfies AMSEθθθ,τττ (θ̂θθU) = ΓΓΓ−1
θθθ (see Proposition 2), it is natural to measure the

asymptotic performance of an estimator θ̂θθ through the scalar quantity

AMSEs
θθθ,τττ (θ̂θθ) := tr[ΓΓΓ

1/2
θθθ AMSEθθθ,τττ (θ̂θθ)ΓΓΓ

1/2
θθθ ], (3.17)
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which, for θ̂θθU, will provide the “normalized” perfomance AMSEs
θθθ,τττ (θ̂θθU) = p, that does not depend

on the value of θθθ at which the contiguous alternatives θθθn = θθθ+νννnτττn are localized. Proposition 2

also entails that

AMSEs
θθθ,τττ (θ̂θθC) = tr[PΥΥΥ,eff ] + tr[P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ ττττττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,eff ] = r + ‖δδδ‖2,

with δδδ := P⊥ΥΥΥ,effΓΓΓ
1/2
θθθ τττ . Note that, at τττ = 0, this shows that AMSEs

θθθ,τττ (θ̂θθC) = r < p =

AMSEs
θθθ,τττ (θ̂θθU), which confirms the intuition that θ̂θθC dominates θ̂θθU when the true parameter value

belongs to ΘΘΘ0. Now, it easily follows from (3.16) that

AMSEs
θθθ,τττ (θ̂θθPTE) = p− γ2(p− r) + (2γ2 − γ4)‖δδδ‖2,

where γj = P[Vj ≤ χ2
p−r,1−α], with Vj ∼ χ2

p−r+j(‖δδδ‖2). Figure 2 plots, for p = 10, r = 1 and

α = .05, the quantities AMSEs
θθθ,τττ (θ̂θθU), AMSEs

θθθ,τττ (θ̂θθC) and AMSEs
θθθ,τττ (θ̂θθPTE) as functions of ‖δδδ‖2.

The figure reveals that, under P
(n)
θθθ with θθθ ∈ ΘΘΘ0 (which corresponds to δδδ = 0), the constrained

estimator θ̂θθC has the best performance, as expected. The PTE performs better than θ̂θθU in the

vicinity of the constraint (‖δδδ‖ small to moderate) and it is asymptotically equivalent to θ̂θθU far

from the constraint (‖δδδ‖ large).

4 Two specific illustrations

In this section, we illustrate the general results obtained above in two particular cases. First,

we consider preliminary test estimation in the simple linear regression model and show that we

recover for this model and for the considered estimation problem the classical results of Saleh

(2006) (Section 4.1). Then, we consider the joint estimation of m covariance matrices ΣΣΣ1, . . . ,ΣΣΣm

in a context where it is suspected that these covariance matrices might be equal, might be

proportional, or might share a common “scale” (Section 4.2).

4.1 Simple linear regression

Consider the simple linear regression model

Y = ρ1n + βx + εεε, (4.18)

where Y = (Y1, . . . , Yn)′ is a response vector, x = (x1, . . . , xn)′ is a vector of non-random covari-

ates, and where the error vector εεε = (ε1, . . . , εn)′ is multinormal with mean zero and covariance

matrix σ2In, for some σ2 > 0. This is the classical simple linear model with intercept ρ, slope β,

10
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Figure 2: Plots of AMSEs
θθθ,τττ (θ̂θθU), AMSEs

θθθ,τττ (θ̂θθC) and AMSEs
θθθ,τττ (θ̂θθPTE) as functions of ‖δδδ‖2, for

p = 10, r = 1 and α = .05.

and Gaussian homoscedastic errors with variance σ2. Throughout, we consider the parame-

ter θθθ := (ρ, β)′, as we will assume that σ2 is known (this is actually no restriction, since the

block-diagonality of the Fisher information matrix in this model entails that replacing σ2 with

a root-n consistent estimator will have no asymptotic cost, so that all results we obtain below

extend to the case where σ2 would remain an unspecified nuisance). Under mild assumptions on

the limiting behavior of the xi’s (ensuring that the quantities x̄0 and s0 below do exist and are

finite), one can easily show that this model is ULAN, with a central sequence ∆∆∆
(n)
θθθ that, under

P
(n)
θθθ , is asymptotically normal with mean zero and covariance matrix

ΓΓΓθθθ =
1

σ2

(
1 x̄0

x̄0 s0 + x̄2
0

)
,

where x̄0 := limn→∞ n−1
∑n
i=1 xi and s0 := limn→∞ s

(n)
x , with s

(n)
x := n−1x′x− n−2(1′nx)2. We

consider here preliminary test estimation of θθθ when it is suspected that β = β0 for some given β0.

11



In this context, the classical, unconstrained, estimator of θθθ is the maximum likelihood estimator

θ̂θθU :=

(
ρ̂

β̂

)
:=

(
n−1(1′nY − β̂1′nx)

(x′Y − n−1x′1n1′nY)/ns
(n)
x

)
,

whereas the natural constrained estimator is θ̂θθC :=
(
ρ̃
β0

)
, with ρ̃ := n−1(1′nY − β01

′
nx). Since

the locally asymptotically optimal test for H0 : β = β0 against H1 : β 6= β0 rejects the null

hypothesis at asymptotic level α when

Q(n) :=
n(β̂ − β0)2s

(n)
x

σ2
> χ2

1,1−α,

the resulting PTE is given by

θ̂θθPTE =

(
ρ̂PTE

β̂PTE

)
:= I[Q(n) > χ2

1,1−α]θ̂θθU + I[Q(n) ≤ χ2
1,1−α]θ̂θθC.

Letting θθθ0 =
(
ρ
β0

)
be an arbitrary value of the parameter of interest corresponding to the con-

straint, the null hypothesis can be written as H0 : θθθ ∈ θθθ0 +M(ΥΥΥ), with ΥΥΥ :=
(

1
0

)
. Since

ΓΓΓ−1
θθθ = σ2

(
1 +

x̄2
0

s0
− x̄0

s0

− x̄0

s0
1
s0

)
and ΓΓΓ

−1/2
θθθ P⊥ΥΥΥΓΓΓ

1/2
θθθ =

(
0 −x̄0

0 1

)
,

it follows from (3.16) that, under P
(n)

θθθ0+n−1/2τττ
, with τττ =

(
0
δ

)
, the quantity AMSEθθθ,τττ (θ̂θθPTE) is here

given by (
σ2(1 +

x̄2
0

s0
− γ2x̄

2
0

s0
) + (2γ2 − γ4)x̄2

0δ
2 σ2(γ2−1)x̄0

s0
− (2γ2 − γ4)x̄0δ

2

σ2(γ2−1)x̄0

s0
− (2γ2 − γ4)x̄0δ

2 σ2(1−γ2)
s0

+ (2γ2 − γ4)δ2

)
,

where the γj ’s are computed with p = 2 and r = 1. This is in perfect agreement with the result

in Theorem 4, p.p. 94–96 in Saleh (2006).

4.2 Multisample estimation of covariance matrices

Consider m(≥ 2) mutually independent samples of random k-vectors Xi1, . . . ,Xini , i = 1, . . . ,m,

with respective sample sizes n1, . . . , nm, such that, for any i, the Xij ’s form a random sample

from the multinormal distribution with mean vector 0 and (invertible) covariance matrix ΣΣΣi (all

results below extend to the case where observations in the ith sample would have a common,

unspecified, mean µµµi, i = 1, . . . , n, due to the block-diagonality of the Fisher information matrix

for location and scatter in elliptical models; see, e.g., Hallin and Paindaveine, 2006). In the

sequel, we decompose the covariance matrices into ΣΣΣi = σ2
iVi, where σi := (detΣΣΣi)

1/(2k) is their

“scale” and Vi := ΣΣΣi/(detΣΣΣi)
1/k is their “shape”. Under the only assumption that λi := λ

(n)
i :=

ni/n := ni/(
∑m
`=1 n`) converges in (0, 1) for any i (to make the notation lighter, we will not stress
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the dependence in n in many quantities below), it follows from Hallin and Paindaveine (2009)

that the sequence of Gaussian models indexed by

θθθ :=
(
σ2

1 , . . . , σ
2
m, (ve

◦
chV1)′, . . . , (ve

◦
chVm)′

)′
, (4.19)

where ve
◦
chV(∈ Rdk , with dk := k(k+1)/2−1) stands for the vector obtained by depriving vechV

of its first entry V11, is ULAN in the sense of Assumption (A). To describe the corresponding

central sequence and Fisher information matrix, we need the following notation.

Denoting as er the rth vector of the canonical basis of Rk, let Kk :=
∑k
r,s=1(ere

′
s)⊗(ese

′
r) be the

k2×k2 commutation matrix, put Jk := (vec Ik)(vec Ik)′, and define Mk(V) as the (dk×k2) matrix

such that (Mk(V))′(ve
◦
chv) = vecv for any symmetric k × k matrix v such that tr[V−1v] = 0.

We further put
Hk(V) :=

1

4
Mk(V) (Ik2 + Kk) (V ⊗V)

−1
(Mk(V))′.

Then, letting Si := n−1
i

∑ni

j=1 XijX
′
ij be the empirical covariance matrix in sample i (with respect

to the fixed location µµµi = 0), the central sequence is

∆∆∆θθθ =
(
∆I,1
θθθ , . . . ,∆I,m

θθθ , (∆∆∆II,1
θθθ )′, . . . , (∆∆∆II,m

θθθ )′
)′
,

where, for i = 1, . . . ,m, we wrote

∆I,i
θθθ :=

√
ni

2σ2
i

tr
[
σ−2
i V−1

i (Si − σ2
iVi)

]
and ∆∆∆II,i

θθθ :=

√
ni

2σ2
i

Mk(Vi)(V ⊗V)
−1

(vecSi),

whereas the (full-rank) information matrix takes the block-diagonal form ΓΓΓθθθ := diag(ΓΓΓI

θθθ,ΓΓΓ
II

θθθ ),

with

ΓΓΓI :=
k

2
diag

(
σ−4

1 , . . . , σ−4
m

)
and ΓΓΓII := diag

(
Hk(V1), . . . ,Hk(Vm)

)
.

The corresponding contiguity rate νννn in Assumption (A) is given by νννn = n−1/2rn, with

rn := diag
(
λ
−1/2
1 , . . . , λ−1/2

m , λ
−1/2
1 Idk , . . . , λ

−1/2
m Idk

)
.

We consider here estimation of ΣΣΣ1, . . . ,ΣΣΣm or, equivalently, estimation of θθθ in (4.19). An advan-

tage of the θθθ-parametrization is that it allows the construction of various PTEs: one may suspect,

e.g., scale homogeneity Hscale
0 : σ2

1 = . . . = σ2
m, shape homogeneity Hshape

0 : V1 = . . . = Vm, or

full covariance homogeneity Hcov
0 : σ2

1V1 = . . . = σ2
mVm, that is, Hcov

0 : ΣΣΣ1 = . . . = ΣΣΣm. An

asymptotically efficient unconstrained estimator in this Gaussian model is given by

θ̂θθU :=

(
(detS1)1/k, . . . , (detSm)1/k,

(ve
◦
chS1)′

(detS1)1/k
, . . . ,

(ve
◦
chSm)′

(detSm)1/k

)′
, (4.20)

whereas, writing S := n−1
∑m
i=1

∑ni

j=1 XijX
′
ij for the pooled covariance matrix estimator (with

respect to the fixed locations µµµ1 = . . . = µµµm = 0), asymptotically efficient constrained estimators,
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for the three constraints Hscale
0 , Hshape

0 and Hcov
0 above, are given by

θ̂θθ
scale

C :=

(
(detS)1/k1′m,

(ve
◦
chS1)′

(detS1)1/k
, . . . ,

(ve
◦
chSm)′

(detSm)1/k

)′
, (4.21)

θ̂θθ
shape

C :=

(
(detS1)1/k, . . . , (detSm)1/k,1′m ⊗

(ve
◦
chS)′

(detS)1/k

)′
(4.22)

and

θ̂θθ
cov

C :=

(
(detS)1/k1′m,1

′
m ⊗

(ve
◦
chS)′

(detS)1/k

)′
, (4.23)

respectively. The three hypotheses Hscale
0 , Hshape

0 and Hcov
0 impose linear restrictions on θθθ, hence

can be written as

Hscale
0 : θθθ ∈M(ΥΥΥscale), Hshape

0 : θθθ ∈M(ΥΥΥshape) and Hcov
0 : θθθ ∈M(ΥΥΥcov)

(more specifically, ΥΥΥscale := diag(1m, Imdk), ΥΥΥshape := diag(Im,1m⊗Idk) and ΥΥΥcov := diag(1m,1m⊗

Idk)). Now, if the p × r matrix ΥΥΥ stands for either of ΥΥΥscale, ΥΥΥshape or ΥΥΥcov (of course,

each constraint matrix has its own r), the locally asymptotically most stringent test φ
(n)
ΥΥΥ for

H0 : θθθ ∈M(ΥΥΥ) rejects the null hypothesis at asymptotic level α when

Q
(n)
θθθ,ΥΥΥ := ∆∆∆′θθθ

[
ΓΓΓ−1
θθθ − (r(n))−1ΥΥΥ(ΥΥΥ′(r(n))−1ΓΓΓθθθ(r

(n))−1ΥΥΥ)−1ΥΥΥ′(r(n))−1
]
∆∆∆θθθ

> χ2
m(dk+1)−r,1−α. (4.24)

This allows us to consider the PTEs

θ̂θθ
scale

PTE := I[φ(n)
ΥΥΥscale

= 1]θ̂θθU + I[φ(n)
ΥΥΥscale

= 0]θ̂θθ
scale

C ,

θ̂θθ
shape

PTE := I[φ(n)
ΥΥΥshape

= 1]θ̂θθU + I[φ(n)
ΥΥΥshape

= 0]θ̂θθ
shape

C

and

θ̂θθ
cov

PTE := I[φ(n)
ΥΥΥcov

= 1]θ̂θθU + I[φ(n)
ΥΥΥcov

= 0]θ̂θθ
cov

C .

To compare these PTEs with their unconstrained and constrained antecedents, we performed

the following Monte Carlo exercise, that focuses on the case m = 2 and k = 2. For each ` =

0, . . . , 9 and for each value of n1 = n2(= n/2) ∈ {200, 2 000, 20 000}, we generated indepen-

dently M = 10 000 collections of mutually independent observations X1, . . . ,Xn1
,Y1,`, . . . ,Yn2,`,

where the Xi’s are N (0,ΣΣΣ1) and the Yi,`’s are N (0,ΣΣΣ2,`), with ΣΣΣ1 = Ik and with ΣΣΣ2,` = σ2
2,`V2,`

based on

σ2
2,` = e`/(2

√
n) and V2,` =

(
1 2`

3
√
n

2`
3
√
n

1

)/√√√√det

(
1 2`

3
√
n

2`
3
√
n

1

)
·
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For ` = 0, both populations share the same covariance matrix, hence also the same scales and

shapes, whereas ` = 1, . . . , 9 provide increasingly distinct scales and shapes. In other words, the

constraints above are met for ` = 0 and they are more and more severely violated for ` = 1, . . . , 9.

For any estimator θ̂θθ of the corresponding true parameter value θθθ, we measure the performance

of θ̂θθ through

MSEsθθθ(θ̂θθ) := tr[ΓΓΓ
1/2
θθθ MSEθθθ(θ̂θθ)ΓΓΓ

1/2
θθθ ], (4.25)

with

MSEθθθ(θ̂θθ) :=
1

M

M∑
m=1

{ννν−1
n (θ̂θθ

(m)
− θθθ)}{ννν−1

n (θ̂θθ
(m)
− θθθ)}′,

where θ̂θθ
(m)

is the value the estimator takes in the mth of the M replications. Figure 3 then

plots the values of MSEs
θθθ(θ̂θθ) for θ̂θθ

scale

PTE, θ̂θθ
shape

PTE and θ̂θθ
cov

PTE (with all preliminary tests performed

at asymptotic level α = 5%) and for their constrained and unconstrained antecedents θ̂θθ
scale

C ,

θ̂θθ
shape

C , θ̂θθ
cov

C and θ̂θθU. To match what was done in Figure 2, in Figure 3, these quantities are not

plotted as functions of `, but rather as functions of the induced quantity ‖δδδ‖2. Irrespective of

the sample size and of the constraint, the PTEs achieve a nice trade-off between the constrained

and unconstrained estimators. For large sample sizes, the finite-sample MSEs are clearly in an

excellent agreement with their asymptotic versions in (3.17), that are also plotted in Figure 3.

5 Real data example

To demonstrate the practical relevance of the PTEs we introduced for multisample covariance

estimation in Section 4.2, we now provide a real data example. The dataset involves n1 = 49 pairs

of monozygotic male twins and n2 = 36 pairs of monozygotic female twins (group 1 and group 2,

respectively, say). For each pair of twins, six variables are available, namely the stature, hip width,

and chest circumference for each twin. The resulting dataset, that thus collects n1 +n2 = n = 85

vectors x11, . . . ,x1n1 ,x21, . . . ,x2n2 in R6, has been analyzed in Flury (2013) and is available in

the R package Flury (see the data frames m.twins and f.twins, for male and female twins,

respectively).

We consider estimation of the underlying covariance matrices ΣΣΣ1 and ΣΣΣ2 of the two groups. Of

couse, the natural unconstrained estimator is the one associated with the group-specific sample

covariance matrices Σ̂ΣΣ`,U := n−1
`

∑n`

j=1(x`j − µ̂µµ`)(x`j − µ̂µµ`)′, ` = 1, 2, where µ̂µµ` := n−1
`

∑n`

j=1 x`j ,

` = 1, 2, estimate the corresponding mean vectors. In the same spirit as in Section 4.2, we consider

the PTEs associated with each of the following three constraints: homogeneity of scales (Ha0),

homogeneity of shape matrices (Hb0), and homogeneity of covariance matrices (Hc0). These PTEs

are based on the unconstrained estimator above and on constrained estimators obtained from
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Figure 3: For three different constraints, namely scale homogeneity (left), shape homogeneity

(middle), and covariance homogeneity (right), plots, as functions of ‖δδδ‖2 (which measures dis-

tance to the constraint), of the finite-sample MSEs in (4.25) (dotted lines) and of their theoretical

asymptotic versions in (3.17) (solid lines) for the corresponding PTE estimator θ̂θθPTE (with pre-

liminary tests performed at asymptotic level α = 5%) and for their constrained and unconstrained

antecedents, θ̂θθC and θ̂θθU; see Section 4.2.

the following pooled quantities: letting Σ̂ΣΣpool := (n1Σ̂ΣΣ1,U + n2Σ̂ΣΣ2,U)/n be the pooled covariance

matrix used as the estimator of the common covariance matrix under Hc0, the common value

of the scale parameter under Ha0 is estimated by (det Σ̂ΣΣpool)
1/p (recall that p = 6), whereas the

common shape matrix under Hb0 is estimated by (det Σ̂ΣΣpool)
−1/pΣ̂ΣΣpool.

Practical relevance of these three PTEs will be shown through the following supervised classifi-

cation exercise. All considered classifiers perform quadratic discriminant analysis (QDA) based

on the sample means µ̂µµ1/µ̂µµ2 above, hence only differ through the estimates Σ̂ΣΣ1/Σ̂ΣΣ2 of the group-
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specific covariance matrices: this leads to four QDA classifiers, namely the one using uncon-

strained estimators (which is the usual QDA classifier) and those using each of the three PTEs

above. To compare the performances of these classifiers, we randomly sampled 30 observations

in group 1 and 25 observations in group 2, and we trained the various classifiers on the resulting

training set of size 55 (the PTE-based classifiers were applied with asymptotic level α = 1% and

asymptotic level α = 0.1% for the preliminary tests). The misclassification rate of each classi-

fier was then evaluated on the basis of the test set made of the remaining n1 + n2 − 55 = 30

observations. To ensure that the results are not specific to a particular partition of the dataset

into a training set and a test set, this was repeated M = 1 000 times. Figure 4 provides, for

each classifier, a boxplot of the resulting M misclassification rates (the average misclassification

rate of each classifier is also given). Clearly, the results indicate that the PTE-based classifiers

dominate the classical QDA procedure. For α = 0.1%, the PTE associated with the constraint

of covariance homogeneity (Hc0) provides a classifier that reduces by more than 12% the average

misclassification rate of the classical QDA classifier.

--- α=1% α=0.1% α=1% α=0.1% α=1% α=0.1%

0.
0

0.
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4
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b) PTE (H0
c)

38.6% 37.5% 37.5% 37.8% 36% 36.1% 33.8%

Figure 4: Boxplots of the misclassification rates obtained by applying different QDA classifiers in

M = 1 000 random partitions of the twin dataset into training and test sets. The QDA classifiers

use different estimators of the group-specific covariance matrices, namely the usual unconstrained

estimators (which provides the classical QDA classifier), and the PTEs associated with the con-

straints of scale homogeneity (Ha0), shape homogeneity (Hb0) and covariance homogeneity (Hc0).

For PTEs, two versions were considered, that differ in the nominal level α at which preliminary

tests were performed. Percentages above the boxplots indicate average misclassification rates;

see Section 5 for details.
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Thomas Verdebout’s research is supported by the ARC Program of the Université libre de Brux-
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Appendix: Proofs

In this appendix, we collect the proofs of the various results.

Proof of Theorem 1. First note that

ννν−1
n (θ̂θθPTE − θθθ) = λ(Q(n))ννν−1

n (θ̂θθC − θθθ) + (1− λ(Q(n)))ννν−1
n (θ̂θθU − θθθ)

= ννν−1
n (θ̂θθU − θθθ) + λ(Q(n))ννν−1

n (θ̂θθC − θ̂θθU). (A.26)

For any ε > 0, Assumption (A)(iii) ensures that

P
(n)
θθθ [λ(Q(n))‖ννν−1

n ‖ > ε] ≤ P
(n)
θθθ [λ(Q(n)) = 1]→ 0,

so that λ(Q(n))ννν−1
n = oP(1) under P

(n)
θθθ . Since by assumption, θ̂θθC− θ̂θθU = θ̂θθC−θθθ+ oP(1) = OP(1)

under P
(n)
θθθ , the result follows from (A.26). �

Proof of Theorem 2. Writing ννν−1
n (θ̂θθU − θθθn) = ννν−1

n (θ̂θθU − θθθ)− ννν−1
n (θθθn − θθθ) and ννν−1

n (θ̂θθC − θθθn) =

ννν−1
n (θ̂θθC − θθθ)− ννν−1

n (θθθn − θθθ), Assumption (B) entails that
ννν−1
n (θ̂θθU − θθθn)

ννν−1
n (θ̂θθC − θθθn)

D(n)

Λ(n)

 =


AθθθS

(n)
θθθ − τττn

ΥΥΥBθθθS
(n)
θθθ − τττn

D(n)

Λ(n)

+ oP(1) (A.27)

under P
(n)
θθθ , θθθ ∈ΘΘΘ0. Using Assumption (B) again, we have

AθθθS
(n)
θθθ − τττn

ΥΥΥBθθθS
(n)
θθθ − τττn

D(n)

Λ(n)

+ oP(1)
D→ N




−τττ

−τττ

0

− 1
2τττ
′ΓΓΓθθθτττ

 ,F


under P

(n)
θθθ , θθθ ∈ ΘΘΘ0, with

F :=


AθθθΣΣΣθθθA

′
θθθ AθθθΣΣΣθθθB

′
θθθΥΥΥ
′ AθθθΣΣΣθθθC

′
θθθ AθθθΩΩΩθθθτττ

ΥΥΥBθθθΣΣΣθθθA
′
θθθ ΥΥΥBθθθΣΣΣθθθB

′
θθθΥΥΥ
′ ΥΥΥBθθθΣΣΣθθθC

′
θθθ ΥΥΥBθθθΩΩΩθθθτττ

CθθθΣΣΣθθθA
′
θθθ CθθθΣΣΣθθθB

′
θθθΥΥΥ
′ CθθθΣΣΣθθθC

′
θθθ CθθθΩΩΩθθθτττ

τττ ′ΩΩΩθθθA
′
θθθ τττ ′ΩΩΩθθθB

′
θθθΥΥΥ
′ τττ ′ΩΩΩθθθC

′
θθθ τττ ′ΓΓΓθθθτττ

 .
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Thus, the third Le Cam Lemma (jointly with the fact that (A.27) also holds under P
(n)
θθθn

, from

contiguity) directly yields that, under P
(n)
θθθn

, ννν−1
n (θ̂θθU − θθθn)

ννν−1
n (θ̂θθC − θθθn)

D(n)

 D→ N


 (AθθθΩΩΩθθθ − Ip)τττ

(ΥΥΥBθθθΩΩΩθθθ − Ip)τττ

CθθθΩΩΩθθθτττ

 , F̃

 ,

where F̃ is obtained from F by deleting its last column and last row. Since

ννν−1
n (θ̂θθPTE − θθθn) = (1− λ(‖D‖2))ννν−1

n (θ̂θθU − θθθn) + λ(‖D‖2)ννν−1
n (θ̂θθC − θθθn),

the result then directly follows from the continuous mapping theorem. �

The proof of Proposition 1 requires the following preliminary result.

Lemma 1 (Saleh (2006), pp. 32). Let Z be a Gaussian random p-vector with mean vector µµµ and

covariance matrix Ip. Then, for any real measurable function ϕ,

(i) E[ϕ(‖Z‖2)Z] = E[ϕ(V )]µµµ

and

(ii) E[ϕ(‖Z‖2)ZZ′] = E[ϕ(V ))]Ip + E[ϕ(W )]µµµµµµ′,

where V ∼ χ2
p+2(‖µµµ‖2) and W ∼ χ2

p+4(‖µµµ‖2).

Proof of Proposition 1. Since E[D] = P⊥ΥΥΥ,effΓΓΓ
1/2
θθθ τττ and since PΥΥΥ,eff is idempotent, we have

E[µµµVic
PTE,eff ] = E[ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,eff((1− λ(‖D‖2))D−ΓΓΓ

1/2
θθθ τττ)]

= −ΓΓΓ
−1/2
θθθ P⊥ΥΥΥ,effE[λ(‖D‖2)D]. (A.28)

Since P⊥ΥΥΥ,eff is a projection matrix with rank p−r, it decomposes into P⊥ΥΥΥ,eff = OΛΛΛO′, where O is

a p×p orthogonal matrix and ΛΛΛ := diag(1, . . . , 1, 0, . . . , 0) is a diagonal matrix with tr[ΛΛΛ] = p−r.

The random vector E := O′D is then Gaussian with mean vector ΛΛΛO′ΓΓΓ
1/2
θθθ τττ and covariance

matrix ΛΛΛ. Lemma 1(i) thus entails that

E[λ(‖D‖2)D] = OE[λ(‖E‖2)E] = γ2P
⊥
ΥΥΥ,effΓΓΓ

1/2
θθθ τττ , (A.29)

where γ2 is based on a non-central chi-square distribution with p− r+ 2 degrees of freedom and

non-centrality parameter (ΛΛΛO′ΓΓΓ
1/2
θθθ τττ)′ΛΛΛO′ΓΓΓ

1/2
θθθ τττ = τττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ τττ . Plugging this into (A.28)

provides the result for E[µµµVic
PTE,eff ].

We thus turn to Var[µµµVic
PTE,eff ]. Since (1− λ(v))2 = 1− λ(v), we have

Var[µµµVic
PTE,eff ] = ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,effVar[(1− λ(‖D‖2))D]P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ
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= ΓΓΓ
−1/2
θθθ P⊥ΥΥΥ,eff

{
E[(1− λ(‖D‖2))DD′] (A.30)

−(1− γ2)2P⊥ΥΥΥ,effΓΓΓ
1/2
θθθ ττττττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,eff

}
P⊥ΥΥΥ,effΓΓΓ

−1/2
θθθ ,

where we used (A.29). Now, by assumption, E[DD′] = Var[D] + E[D](E[D])′ = P⊥ΥΥΥ,eff +

P⊥ΥΥΥ,effΓΓΓ
1/2
θθθ ττττττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,eff , and, applying Lemma 1(ii) along the same lines as above, we have that

E[λ(‖D‖2)DD′] = OE[λ(‖E‖2)EE′]O′ = γ2P
⊥
ΥΥΥ,eff + γ4P

⊥
ΥΥΥ,effΓΓΓ

1/2
θθθ ττττττ ′ΓΓΓ

1/2
θθθ P⊥ΥΥΥ,eff . Plugging these

expressions into (A.30) then provides the result. �

Proof of Proposition 2. Contiguity implies that (2.4) also holds under P
(n)
θθθn

, so that

ννν−1
n (θ̂θθU − θθθn) = ννν−1

n (θ̂θθU − θθθ)− τττ = ΓΓΓ−1
θθθ ∆∆∆

(n)
θθθ − τττ + oP(1)

under P
(n)
θθθn

. Since Le Cam’s third lemma entails that ∆∆∆
(n)
θθθ is asymptotically normal with mean

vector ΓΓΓθθθτττ and covariance matrix ΓΓΓθθθ under P
(n)
θθθn

, it follows that ννν−1
n (θ̂θθU − θθθn) is asymptotically

normal with mean vector 0 and covariance matrix ΓΓΓ−1
θθθ under P

(n)
θθθn

, which yields AMSEθθθ,τττ (θ̂θθU) =

ΓΓΓ−1
θθθ . Working along the same lines, we have that, under P

(n)
θθθn

,

ννν−1
n (θ̂θθC − θθθn) = ννν−1

n (θ̂θθC − θθθ)− τττ

= ΥΥΥ(ΥΥΥ′ΓΓΓθθθΥΥΥ)−1ΥΥΥ′∆∆∆
(n)
θθθ − τττ + oP(1)

= ΓΓΓ
−1/2
θθθ PΥΥΥ,effΓΓΓ

−1/2
θθθ ∆∆∆

(n)
θθθ − τττ + oP(1).

It directly follows that ννν−1
n (θ̂θθC − θθθn) is, still under P

(n)
θθθn

, asymptotically normal with mean vec-

tor ΓΓΓ
−1/2
θθθ PΥΥΥ,effΓΓΓ

1/2
θθθ τττ − τττ = −ΓΓΓ

−1/2
θθθ P⊥ΥΥΥ,effΓΓΓ

1/2
θθθ τττ and covariance matrix ΓΓΓ

−1/2
θθθ PΥΥΥ,effΓΓΓ

−1/2
θθθ . The

expression for AMSEθθθ,τττ (θ̂θθC) given in Proposition 2 directly follows. �
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