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Abstract. In the framework of axial data, the most classical test of uniformity on the unit sphere of Rp is the Bingham (Ann. Statist.
2 (1974) 1201–1225) test. In this work, we study the non-null behaviour of this test in high-dimensional asymptotic scenarios where
p = pn diverges to infinity with the sample size n. We consider a semiparametric class of alternatives that includes Watson alternatives
and we derive a local asymptotic normality property. Le Cam’s third lemma reveals that the Bingham test is blind to the corresponding
contiguous alternatives, though. By using martingale central limit theorems, we therefore study the behaviour of the Bingham test
under more severe alternatives. Far from restricting to the aforementioned semiparametric alternatives, our results cover a broad class
of rotationally symmetric alternatives, which allows us to consider non-axial alternatives, too. In every distributional framework we
consider, the “detection threshold” of the Bingham test is identified and a comparison with the classical test of uniformity for non-axial
data, namely the Rayleigh (Philos. Mag. 37 (1919) 321–346) test, is made possible. In the framework of axial data, we derive a lower
bound on the minimax separation rate and establish that the Bingham test is minimax rate-optimal in the class of Watson distributions.

Résumé. Pour des données axiales, le test d’uniformité le plus classique sur la sphère unité de Rp est le test de Bingham (Ann. Statist. 2
(1974) 1201–1225). Dans cet article, nous étudions la puissance de ce test dans des scénarios asymptotiques de grande dimension pour
lesquels p = pn diverge vers l’infini avec la taille d’échantillon n. Nous considérons une classe semiparamétrique de contre-hypothèses
incluant les distributions de Watson et nous établissons une propriété de normalité locale asymptotique. Le troisième lemme de Le Cam
révèle cependant que le test Bingham ne détecte pas les contre-hypothèses contiguës associées. En utilisant un théorème central limite
pour des différences de martingales, nous étudions donc le comportement du test de Bingham sous des contre-hypothèses plus sévères.
Loin de nous restreindre aux contre-hypothèses semiparamétriques mentionnées ci-dessus, nos résultats couvrent une large classe
de contre-hypothèses à symétrie rotationnelle, ce qui nous permet de considérer également des contre-hypothèses non axiales. Dans
chaque contexte distributionnel, nous obtenons le “seuil de détection” du test de Bingham, ce qui rend possible une comparaison avec
le test classique d’uniformité pour des données non axiales, c’est-à-dire le test de Rayleigh (Philos. Mag. 37 (1919) 321–346). Dans le
cas axial, nous déterminons une borne inférieure pour le taux de séparation minimax et établissons que le test de Bingham est minimax
optimal dans la classe des distributions de Watson.

MSC2020 subject classifications: Primary 62H11; 62F05; secondary 62E20

Keywords: Directional statistics; High-dimensional statistics; Local asymptotic normality; Minimax separation rates; Rotationally symmetric
distributions; Tests of uniformity

1. Introduction

We consider the problem of testing uniformity over the p-dimensional unit sphere Sp−1 := {x ∈ R
p : ‖x‖2 = x′x =

1}. More specifically, on the basis of mutually independent observations Xn1, . . . ,Xnn with the same distribution Dn

on Spn−1 (it will become clear below why we adopt a triangular array notation), we consider the problem of testing
the null hypothesis that Dn is the uniform distribution. This is a fundamental problem in directional statistics that has
been considered a lot recently; for instance, [30] considered the problem in the presence of noisy data, [19] used nearest
neighbor distances, [42] obtained Bayesian optimality properties of some tests while [26] and [29] provided new Sobolev
tests. This problem is also discussed at length in strictly all textbooks in the field; see, among many others, [20,31], and
[32]. For a most recent account, we refer to the review paper [23].
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In directional statistics, one often discriminates between axial and non-axial distributions. An axial distribution is
antipodally symmetric, in the sense that it attributes equal probability masses to antipodal regions on the sphere. Such
distributions need be considered when facing axial data, that is, in applications that do not offer genuine locations on the
sphere but rather undirected axes (an example is given by the directions of optical axes in quartz crystals; see, e.g., [32]).
There is a large literature considering axial distributions and inference for axial data; see, among many others, [2,6,8,18,
28,41,43], and [44]. For the problem of testing uniformity on the unit sphere, monographs discriminate between tests of
uniformity for axial data and tests of uniformity for non-axial data, that are designed to show power primarily against axial
alternatives or non-axial alternatives, such as Watson distributions or Fisher–von Mises–Langevin (FvML) distributions,
respectively. In the classical setup where pn ≡ p, the textbook test of uniformity for axial data is the Bingham [8] test,
that rejects the null hypothesis of uniformity at asymptotic level α when

Qn = npn(pn + 2)

2

(
tr
[
S2

n

]− 1

pn

)
> χ2

dpn ,1−α,

where Sn := (1/n)
∑n

i=1 XniX′
ni is the covariance matrix of the observations (using the centre of the sphere as a specified

location), tr[A] is the trace of the matrix A, and χ2
dp,1−α denotes the upper α-quantile of the chi-square distribution

with dp := p(p + 1)/2 − 1 degrees of freedom. A modification of this test to bring the null distribution close to its
asymptotic distribution has been proposed in [28], while [22] used it to build tests for rotational symmetry. For Euclidean
data, this test can also be seen as the sign test of sphericity from [24].

Nowadays, it is more and more common to face high-dimensional spherical data, for instance in brain shape modeling
([18]) or text mining ([3,4]). In line with this, inference on high-dimensional spheres has been much considered in the
last decades. While other inference problems have also been considered (see, e.g., [37] for high-dimensional location
problems), most of the focus has been on the problem of testing uniformity on the unit sphere. An asymptotic investi-
gation of this problem requires that the dimension pn diverges to infinity with n (see, e.g., [9] and [15]), which makes
it necessary to adopt the triangular framework above (some other works, including [11,12], actually rather consider a
fixed-n large-p asymptotic scenario; see also the monograph [13]). Further relevant references include [14], that defines a
test of uniformity that can be applied in high dimensions, or [27], where uniformity testing on high-dimensional spheres
finds applications in outlier detection.

In the present work, we consider the problem of testing uniformity on Spn−1, in a double asymptotic scenario where pn

diverges to infinity with n. A result from [35] (see their Theorem 2.5) implies that, under the null hypothesis of uniformity,

QSt
n = Qn − dpn√

2dpn

= pn

n

n∑
i<j

i,j=1

{(
X′

niXnj

)2 − 1

pn

}
D→ N (0,1), (1)

as soon as pn diverges to infinity with n, where
D→ denotes weak convergence and N (0,1) is the standard normal

distribution. Therefore, denoting as zα the upper α-quantile of this distribution, the Bingham test, that equivalently rejects
the null hypothesis of uniformity at asymptotic level α when

QSt
n = Qn − dpn√

2dpn

>
χ2

dpn ,1−α − dpn√
2dpn

(= zα + o(1)
)
, (2)

has asymptotic size α under the null hypothesis, irrespective of the rate at which pn diverges to infinity with n. This shows
that the original, low-dimensional, Bingham test does not need any modification to achieve asymptotically the target null
size in high dimensions, hence is, in this sense, robust to high-dimensionality. The resulting test is therefore a natural test
of uniformity in high dimensions, particularly so in the context of axial data – just as the Rayleigh [39] test is a natural
test of uniformity in high dimensions in the framework of non-axial data; see [15].

Now, the robustness to high-dimensionality above is a null result, that might be achieved at the expense of power. To
date, there is unfortunately no guarantee that the Bingham test exhibits power in high dimensions. This is in contrast with
(a) low dimensions – where the non-null behaviour of the Bingham test is well understood (see, e.g., [17] and [32]) – and
with (b) other classical tests in high dimensions ([15] extensively studied the non-null behaviour of the Rayleigh test of
uniformity in high dimensions). In the present paper, we therefore study the non-null behaviour of the Bingham test of
uniformity in a double asymptotic scenario where the dimension pn diverges to infinity with n. We consider both axial
and non-axial alternatives to uniformity.

Since the Bingham test is primarily designed for axial alternatives, we first consider a semiparametric class of alter-
natives of this type, that includes the classical Watson alternatives. In this particular class, we obtain a local asymptotic
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normality (LAN) result and show that the Bingham test is unfortunately blind to the corresponding contiguous alterna-
tives (Section 2). It is then natural to investigate whether or not this test shows power against more severe alternatives. To
tackle this question, we conduct a systematic investigation, relying on martingale central limit theorems, of the non-null
behaviour of the Bingham test under a very broad class of rotationally symmetric alternatives. This identifies the “detec-
tion threshold” of the Bingham test, that discriminates between alternatives to which the test will be blind and those under
which it will be consistent (Section 3). We then apply our general non-null results to describe the non-null behaviour
of the Bingham test in the aforementioned semiparametric class of axial alternatives; we complement our analysis by
deriving a lower bound on the corresponding minimax separation rate and by proving that the Bingham test is minimax
rate-optimal in the class of Watson distributions (Section 4). Since the results of Section 3 do not require the underly-
ing alternatives to be axial, we also describe the non-null behaviour of the Bingham test in a semiparametric class of
non-axial alternatives, that contains the classical FvML alternatives (Section 5). Both in the axial and non-axial cases, our
results allow for a comparison with the Rayleigh test in terms of consistency rates and asymptotic power. Throughout, our
asymptotic findings are confirmed via Monte Carlo exercises. Finally, a wrap up is provided (Section 6). An Appendix
collects the proofs.

2. A LAN result in the high-dimensional axial case

In this section, we consider a semiparametric extension of the class of Watson distributions, containing axial distributions
admitting a density of the form (throughout, densities over Sp−1 are with respect to the surface area measure)

x �→ cp,κ,f �(
p−1

2 )

2π(p−1)/2
f
(
κ
(
x′θθθ
)2)

, with cp,κ,f = 1/

∫ 1

−1

(
1 − s2)(p−3)/2

f
(
κs2)ds, (3)

where θθθ ∈ Sp−1, κ ∈ R, and f belongs to the class F of functions from R to R
+ that are monotone increasing, twice

differentiable at 0, and satisfy f (0) = f ′(0) = 1 (these restrictions on f ensure that κ and f are identifiable); here, �(·)
denotes the usual Euler Gamma function. The expression of the normalizing constant cp,κ,f results from the fact that
if X admits the density in (3), then X′θθθ admits the density s �→ cp,κ,f (1 − s2)(p−3)/2f (κs2)I[s ∈ [−1,1]], where I[A]
is the indicator function of A. The density above attributes equal probabilities to antipodal regions on the sphere, hence
is suitable for axial data, that is, data where only undirected axes, or equivalently pairs of antipodal points, are observed.
In line with this, the particular case obtained with f (s) = exp(s) provides the Watson distributions, which are the most
commonly used rotationally symmetric axial distributions. The parameter κ is a concentration parameter: increasingly
large positive values of κ provide bipolar distributions, that are more and more concentrated (symmetrically) about both
poles ±θθθ , whereas increasingly large negative values of κ are associated with girdle distributions, that more and more
concentrate over the hyper-equator {x ∈ Sp−1 : x′θθθ = 0}. Irrespective of f , the value κ = 0 corresponds to the uniform
distribution over Sp−1. In the semiparametric model associated with the densities in (3), testing uniformity versus non-
uniformity over the sphere consists in testing H0 : κ = 0 versus H1 : κ �= 0.

The distributional framework above provides natural alternatives to uniformity. Accordingly, for any sequence of
positive integers (pn), sequence (θθθn) such that θθθn ∈ Spn−1 for any n, real sequence (κn), and f ∈ F , we will denote
as P(n)

θθθn,κn,f
the hypothesis under which Xn1, . . . ,Xnn form a random sample from the density (3) with the corresponding

parameters θθθn, κn, and f (to keep the notation as light as possible, we do not stress the dimension pn in the notation).
For simplicity, we write P(n)

0 := P(n)
θθθn,0,f

for the uniform particular case. In the high-dimensional framework considered in
this work, we then have the following LAN result (see Appendix A for a proof).

Theorem 2.1. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n. Let κn = τnpn/
√

n, where (τn) is O(1), and fix f ∈ F . Then, as n → ∞ under P(n)
0 ,

	n = log
dP(n)

θθθn,κn,f

dP(n)
0

= τn
θθθn − τ 2
n + oP(1),

where 
θθθn
:= √

n(pnθθθ
′
nSnθθθn − 1) is asymptotically normal with mean zero and variance two (here, Sn refers to the

covariance matrix defined in the Introduction).

This result shows that, for any f ∈ F , the sequence of models {P(n)
θθθn,κ,f : κ ∈R} is locally asymptotically normal at κ =

0 with central sequence 
θθθn
, Fisher information � = 2, and contiguity rate pn/

√
n. As a direct corollary, the sequences of
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null hypotheses (P(n)
0 ) and alternative hypotheses (P(n)

θθθn,κn,f
) with κn = O(pn/

√
n) are mutually contiguous; that is, there

do no exist consistent tests when testing uniformity against such alternatives. The result also readily implies that the Le
Cam optimal test of uniformity in this model rejects the null hypothesis at asymptotic level α whenever |
θθθn

| > √
2zα/2.

A routine application of Le Cam’s third lemma then entails that, under P(n)
θθθn,κn,f

with κn = τnpn/
√

n and τn → τ , the
central sequence 
θθθn

is asymptotically normal with mean 2τ and variance 2, which provides the asymptotic power

lim
n→∞ P(n)

θθθn,κn,f

[|
θθθn | >
√

2zα/2
]= 2 −

∑
s∈{−1,1}

�(zα/2 + s
√

2τ), (4)

where � denotes the cumulative distribution function of the standard normal distribution. This optimal test can thus
detect these contiguous alternatives and shows a symmetric power pattern against girdle alternatives (τ < 0) and bipolar
alternatives (τ > 0).

These results show that optimal testing of uniformity for high-dimensional axial data is based on Sn, at least in the
considered model. This is to be compared with the non-axial case investigated in [15], where optimal testing of uniformity
in high dimensions is rather based on X̄n := n−1∑n

i=1 Xni . Another difference between the axial and non-axial cases
materializes in the corresponding contiguity rates: the contiguity rate pn/

√
n in the axial case above is worse than the

contiguity rate
√

pn/
√

n obtained in the non-axial case; see Theorem 5.1 below. In high dimensions, it is therefore more
challenging to detect axial departures from uniformity than non-axial ones.

Now, it is important to note that the optimal test above is of little practical relevance because it requires the polar
axis ±θθθn to be known, which is almost never the case in applications. In contrast, the Bingham test does not require such
knowledge. It is therefore natural to derive the asymptotic power of this test against the contiguous alternatives considered
in (4). Interestingly, this can be done via Le Cam’s third lemma. We have the following result (see Appendix A for a proof).

Proposition 2.1. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n. Let κn = τnpn/
√

n, with (τn) → τ , and fix f ∈ F . Then, Cov[QSt
n ,	n] = o(1) as n → ∞ under P(n)

0 , so that

Le Cam’s third lemma implies that QSt
n remains asymptotically standard normal under P(n)

θθθn,κn,f .

A direct corollary is that, unlike the optimal test above, the Bingham test does not show power against the contiguous
alternatives considered in (4). In other words, the Bingham test is not rate consistent in high dimensions, in contrast to
what happens in low dimensions; see [17]. Consequently, a natural question, that we tackle in the next two sections, is
whether or not there exist more severe alternatives that can be detected by the Bingham test in high dimensions. The
LAN framework is not suitable to investigate this point, which leads us to perform a direct asymptotic analysis relying on
martingale central limit theorems.

3. Non-null results under general rotationally symmetric alternatives

We now study the non-null asymptotic behaviour of the Bingham test under general rotationally symmetric alterna-
tives. Recall that the distribution of a random vector X with values in Sp−1 is said to be rotationally symmetric
about θθθ(∈ Sp−1) if OX is equal in distribution to X for any p × p orthogonal matrix O such that Oθθθ = θθθ . In this
case, S := (Ip − θθθθθθ ′)X/‖(Ip − θθθθθθ ′)X‖ is uniformly distributed over the hyper-equator {x ∈ Sp−1 : x′θθθ = 0} and is inde-
pendent of X′θθθ . Therefore, the distribution of X is then completely characterized by (θθθ,F ), where F is the cumulative
distribution function of X′θθθ . Depending on the particular rotationally symmetric distribution considered, θθθ and F may
be unidentifiable, but this possible lack of identifiability will not play any role below in the context of testing uniformity
over Sp−1.

In the rest of this section, we consider sequences of alternatives that are described by triangular arrays of obser-
vations Xni , i = 1, . . . , n, n = 1,2, . . . such that, for any n, Xn1,Xn2, . . . ,Xnn are mutually independent and share a
common rotationally symmetric distribution on Spn−1. We denote by P(n)

θθθn,Fn
the corresponding hypothesis when Xn1 is

rotationally symmetric about θθθn and un1 := X′
n1θθθn has cumulative distribution function Fn. The following result provides

the expectation and variance of QSt
n under such sequences of hypotheses (see Appendix B for a proof).

Proposition 3.1. Let (pn) be a sequence of positive integers, (θθθn) be a sequence such that θθθn ∈ Spn−1 for any n, and (Fn)

be a sequence of cumulative distribution functions on [−1,1]. Write en� := en�(Fn) := E[u�
n1] and fn� := fn�(Fn) :=

E[v�
n1] for the �th moments of un1 and vn1 =

√
1 − u2

n1 under P(n)
θθθn,Fn

. Then, letting gn2 := en2 − (1/pn),

E
[
QSt

n

]= p2
n(n − 1)

2(pn − 1)
g2

n2 (5)
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and

Var
[
QSt

n

]= (n − 1)p2
n

2n

{
e2
n4 + 6

pn − 1
(en2 − en4)

2 + 3f 2
n4

p2
n − 1

−
(

pn

pn − 1
g2

n2 + 1

pn

)2}

+ (n − 1)(n − 2)p4
n

n(pn − 1)2

(
en4 − e2

n2

)
g2

n2 (6)

under P(n)
θθθn,Fn

.

Under the null hypothesis of uniformity (which we still denote as P(n)
0 ), the random variable un1 = X′

n1θθθn has, ir-
respective of θθθn, a symmetric distribution over [−1,1] that is such that u2

n1 is Beta distributed with parameters 1/2
and (pn − 1)/2 (see, e.g., [33], Theorem 1.5.7(ii)), so that

en2 = 1

pn

and en4 = 3

pn(pn + 2)
·

Using these values along with the identities fn2 = 1−en2 and fn4 = 1−2en2 +en4, Proposition 3.1 shows that E[QSt
n ] = 0

and Var[QSt
n ] = (n − 1)(pn − 1)/(n(pn + 2)) under P(n)

0 , which is compatible with the null asymptotic normality result
in (1). A key step to study the non-null asymptotic behaviour of the Bingham test in high dimensions is to extend this
asymptotic normality result to the rotationally symmetric alternatives considered in this section. This is the topic of the
following theorem (the proof, that is long and tedious, relies on martingale central limit theorems; see Appendix B).

Theorem 3.1. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n. Assume that the sequence (Fn) is such that, as n → ∞, (a) en4 = o(1/pn), (b) en8 = o(n2/3/p2
n), and (c)

gn2 = O(1/
√

npn). Then,

QSt
n − E[QSt

n ]√
Var[QSt

n ]
D→ N (0,1)

as n → ∞ under P(n)
θθθn,Fn

.

This general asymptotic normality result extends the null one in (1), since Proposition 3.1 implies that E[QSt
n ] = 0

and Var[QSt
n ] = 1 + o(1) under P(n)

0 . It is worth pointing out that, like the result in (1), Theorem 3.1 in principle does
not impose restrictions on the rate at which pn diverges to infinity with n (some restrictions may arise when considering
some particular alternatives, though; see, e.g., Theorems 4.1 and 5.2 below). More importantly, we can now state the
main result of this paper, that describes the non-null behaviour of the Bingham test statistic under general rotationally
symmetric alternatives (see Appendix B for a proof).

Theorem 3.2. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n. Assume that the sequence (Fn) is such that, as n → ∞, (a) en4 = o(1/pn) and (b) en8 = o(n2/3/p2
n). Then, we

have the following: (i) if (c) gn2 = o(1/
√

npn), then

QSt
n

D→N (0,1)

as n → ∞ under P(n)
θθθn,Fn

; (ii) if (c) gn2 = ξn/
√

npn with (ξn) → ξ(�= 0), then

QSt
n

D→N
(

ξ2

2
,1

)

as n → ∞ under P(n)
θθθn,Fn

; (iii) if (c)
√

npn|gn2| → ∞, then, for any real number M ,

P(n)
θθθn,Fn

[
QSt

n > M
]→ 1 (7)

as n → ∞ ((7) still holds if (a)–(b) are replaced with the single condition en4 = o(ng2
n2), which, in case (iii), is weaker

than (a)–(b)).
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Since gn2 = en2 − 1/pn = 0 under the null hypothesis of uniformity, |gn2| can be read as a measure of the severity of
the alternatives at hand. In this context, Theorem 3.2 states that the Bingham test is blind to alternatives for which gn2 =
ξn/

√
npn with ξn → 0 (Part (i) of the result) and is consistent under alternatives for which gn2 = ξn/

√
npn with |ξn| → ∞

(Part (iii) of the result). Therefore, using the terminology from [5], the “detection threshold” of the Bingham test in high
dimensions is associated with alternatives in gn2 = ξn/

√
npn, with ξn → ξ(�= 0), under which the Bingham test achieves

the non-trivial asymptotic power

lim
n→∞ P(n)

θθθn,Fn

[
QSt

n > zα

]= 1 − �

(
zα − ξ2

2

)
(8)

(Part (ii) of the result). We stress that the results of this section are very general: first, they do not require that the
considered rotationally symmetric distributions admit a density of a specific form on the sphere (such as the Watson-
type densities of the previous section), nor even that they admit a density at all. Second, they do not restrict to axial
distributions, that is, they do not assume that Fn is the cumulative distribution function of a symmetric distribution
over [−1,1]; see Section 5.

We conducted the following simulation exercise to check the validity of Theorem 3.2. For each n ∈ {100,400,800}
and each corresponding dimension pn = �na� with a ∈ { 1

2 , 3
4 ,1, 5

4 } (leading to 12 combinations of n and pn), we gen-
erated M = 2500 independent random samples of size n from five rotationally symmetric distributions over Spn . Each
rotationally symmetric distribution uses θθθn = (1,0, . . . ,0)′ ∈ R

pn and Fn that is the cumulative distribution function of
the Beta(αn,βn) distribution, where the parameters

αn = 1

2
− p2

ngn2

2pn(gn2 − 1) + 2
and βn = pn − 1

2
(9)

are based on

• (0) gn2 = 0
• (i) gn2 = 1/(npn)

• (ii)a gn2 = ξ/
√

npn, with ξ = 2
• (ii)b gn2 = ξ/

√
npn, with ξ = 3

• (iii) gn2 = 1/(n1/4√pn).

As the notation suggests, αn and βn are such that gn2 in (9) is equal to en2 − (1/pn), where en2 is the second moment
associated with Fn, so that this quantity gn2 coincides with the one in Theorem 3.2. Case (0) yields the null hypothesis
of uniformity over Spn−1, whereas cases (i)–(iii) provide increasingly severe alternatives. For each of the 12 combina-
tions (n,pn) and each of these five cases, Figure 1 then reports kernel density estimates (obtained from the R command
density with default parameter values) of the resulting M = 2500 values of the Bingham statistic QSt

n (as well as raw
histograms in case (ii)a). The figure also provides the densities of the corresponding asymptotic distributions in cases (0)–
(ii)b , that are obtained from Theorem 3.2(i)–(ii). Clearly, empirical results are in perfect agreement with the theory, not
only for the matching between finite-sample and asymptotic distributions in cases (0)–(ii)b but also for the consistency
behaviour in case (iii) (since kernel density estimates in this case shift to infinity as expected).

4. Non-null results under Watson-type alternatives

We consider again the Watson-type alternatives to uniformity introduced in Section 2. As Proposition 2.1 showed, the
Bingham test is blind to alternatives of the form κn = τnpn/

√
n, with (τn) → τ . The objective of the present section is

to apply the results of Section 3 to identify the Watson-type alternatives that can be detected by the Bingham test in high
dimensions. In order to do so, we need to study the asymptotic behaviour of en2, en4 and en8 in the semiparametric model
at hand. This is the topic of the following proposition (see Appendix C for a proof).

Proposition 4.1. Let (pn) be a sequence of positive integers diverging to ∞, (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n, and (κn) be a real sequence that is o(pn) as n → ∞. Fix f ∈F . Then, under P(n)
θθθn,κn,f ,

en2 = 1

pn

+ 2κn

p2
n

+ o

(
κn

p2
n

)
and en4 = 3

p2
n

+ o

(
1

p2
n

)

as n → ∞, so that en8 = O(1/p2
n) as n → ∞.
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Fig. 1. For any sample size n ∈ {100,400,800} and any corresponding dimensions p = pn = �na� with a ∈ { 1
2 , 3

4 ,1, 5
4 }, kernel estimates

of the density of QSt
n (solid lines) obtained from M = 2500 independent samples from the rotationally symmetric distributions associated

with θθθn = (1,0, . . . ,0)′ ∈ R
p and the cumulative distribution functions Fn associated with (0)–(iii) in page 572. In case (ii)a , raw histograms are

provided. In cases (0)–(ii)b , the corresponding asymptotic densities, obtained from Theorem 3.2(i)–(ii), are also plotted (dashed lines).

The following result is then a corollary of Theorem 3.2 (see Appendix C for a proof).

Theorem 4.1. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n. Fix f ∈ F . Then, we have the following: (i) if κn = o(p
3/2
n /

√
n) and pn = O(n) (or more generally, if κn =

o(p
3/2
n /

√
n) and κn = o(pn)), then

QSt
n

D→N (0,1) (10)
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as n → ∞ under P(n)
θθθn,κn,f

; (ii) if κn = τnp
3/2
n /

√
n with (τn) → τ(�= 0) and pn = o(n), then

QSt
n

D→ N
(
2τ 2,1

)
(11)

as n → ∞ under P(n)
θθθn,κn,f ; (iii) if

√
n|κn|/p3/2

n → ∞ and κn = o(pn), then, for any real number M ,

P(n)
θθθn,κn,f

[
QSt

n > M
]→ 1

as n → ∞.

Part (i) of this result confirms that the Bingham test is blind to alternatives in κn = o(pn/
√

n), irrespective of the
rate at which pn diverges to infinity with n. Under some mild assumption on this rate, this extends to alternatives
in κn = o(p

3/2
n /

√
n), whereas Part (iii) of the result shows that the Bingham test is consistent under alternatives such

that
√

n|κn|/p3/2
n → ∞. For Watson-like alternatives, the detection threshold is thus κn ∼ p

3/2
n /

√
n; the corresponding

asymptotic power, under P(n)
θθθn,κn,f , with κn = τnp

3/2
n /

√
n and (τn) → τ , is

lim
n→∞ P(n)

θθθn,κn,f

[
QSt

n > zα

]= 1 − �
(
zα − 2τ 2).

These powers are symmetric for girdle-type alternatives (τ < 0) and bipolar alternatives (τ > 0), as it was already the
case in low dimensions; see [17].

We conducted the following simulation. For any n ∈ {100,400,800}, we generated M = 2500 independent random
samples of size n from the Watson distribution with dimension pn = �√n�, location θθθn = (1,0, . . . ,0)′ ∈ R

pn , and
concentration

• (i) κn = τpn/
√

n,
• (ii) κn = τp

3/2
n /

√
n,

• (iii) κn = τp
7/4
n /

√
n,

in each case with τ = 0,0.4, . . . ,2. Figure 2 reports the rejection frequencies of the Bingham test as well as the corre-
sponding asymptotic powers obtained from Theorem 4.1. The figure also provides the rejection frequencies and asymp-
totic powers of the Rayleigh [39] test (these asymptotic powers are obtained from Theorem 5.1 in [15]). Clearly, the
results are in excellent agreement with the theory. In particular, the Bingham test is blind to the alternatives associated
with (i) and is consistent under those in (iii). Under the threshold ones in (ii), this test shows rejection frequencies that
are close to the corresponding asymptotic powers. The Rayleigh test is blind to all alternatives considered, which is also
in line with the theory: since en1 = 0 under any hypothesis of the form P(n)

θθθn,κn,f
, Theorem 5.1 in [15] implies that the

Rayleigh test will be blind to all Watson-type alternatives, irrespective of their severity.
While this Monte Carlo study nicely confirms the asymptotic results in Theorem 4.1, an important question remains

open: is the Bingham test rate-optimal for the present problem, that is, is it so that any feasible test will be blind to
alternatives that are less severe than those seen by the Bingham test in Theorem 4.1(ii)? The following result shows that
this is indeed the case.

Theorem 4.2. Let (κn) be a real sequence such that κn = o(p
3/2
n /

√
n) and κn = o(pn), and assume that pn/

3
√

n → ∞
(in particular, this covers the setup where κn = o(p

3/2
n /

√
n), with pn/

3
√

n → ∞ and pn = O(n)). Let fW(s) = exp(s) be
the function f providing Watson distributions. Then, any test φn satisfies

inf
θθθn∈Spn−1

E
P(n)
θθθn,κn,fW

[φn] ≤ E
P(n)

0
[φn] + o(1)

as n → ∞.

This result shows that, as soon as pn/
3
√

n → ∞, any test of uniformity φn whose asymptotic null size is smaller than
or equal to α will exhibit, under the Watson version of the alternatives considered in Theorem 4.1(i), a worst power that
is asymptotically upper-bounded by α (as we explain below the proof of Lemma C.1, performing higher-order expan-
sions of confluent hypergeometric functions of matrix arguments than the second-order one we perform in the proof of
Theorem 4.2 would probably allow us to weaken the condition pn/

3
√

n → ∞ into pn/nδ → ∞ for an arbitrary δ > 0).
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Fig. 2. For any n ∈ {100,400,800}, rejection frequencies of the Bingham test (solid green curve) and of the Rayleigh test (solid red curve), ob-
tained from a collection of M = 2500 independent random samples of size n from the Watson distribution with dimension pn = �√n�, loca-

tion θθθn = (1,0, . . . ,0)′ ∈ R
pn , and concentration κn = τpn/

√
n (top), κn = τp

3/2
n /

√
n (middle), or κn = τp

7/4
n /

√
n (bottom). The corresponding

asymptotic powers are also plotted (dashed curves).

Now, since the Bingham test is invariant under the group of rotations g(x1, . . . ,xn) = (Ox1, . . . ,Oxn), where O is an ar-
bitrary pn ×pn orthogonal matrix, its power under any alternative P(n)

θθθn,κn,f does not depend on θθθn, so that Theorem 4.1(ii)

ensures that, if κn = τnp
3/2
n /

√
n and (τn) → τ �= 0, then

lim
n→∞ inf

θθθn∈Spn−1
P(n)

θθθn,κn,f

[
QSt

n > zα

]= 1 − �
(
zα − 2τ 2)> α.

As a corollary, the Bingham test is minimax rate-optimal in the parametric Watson model. As a final remark, note that the
lower bound on the minimax separation rate provided in Theorem 4.2 in the parametric Watson model trivially also holds
in the semiparametric model where f would remain unspecified in any class of functions containing the Watson one fW .
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5. Non-null results under non-axial alternatives

As mentioned in Section 3, the general result in Theorem 3.2 does not restrict to axial distributions. It can thus also be used
to investigate the non-null behaviour of the Bingham test under, e.g., Fisher–von Mises–Langevin (FvML) alternatives. In
this section, we consider a semiparametric model that includes FvML distributions, in the same way the semiparametric
model considered in Section 2 contains the Watson ones. More precisely, we consider distributions admitting a density of
the form

x �→ c̃p,κ,f �(
p−1

2 )

2π(p−1)/2
f
(
κx′θθθ
)
, with c̃p,κ,f = 1/

∫ 1

−1

(
1 − s2)(p−3)/2

f (κs) ds, (12)

with θθθ ∈ Sp−1, κ ∈ R
+, and f ∈ F . The particular case of FvML distributions is obtained with f (s) = exp(s). Unlike

the densities in (3), these new densities do not attribute equal probabilities to antipodal regions on the sphere but rather
are monotone, in the sense that the probability mass decreases monotonically when going from the modal location θθθ to its
antipodal location −θθθ . The parameter κ is still a concentration parameter: typically, the larger κ , the more concentrated
(about θθθ ) the probability mass. Irrespective of f , the value κ = 0 provides the uniform distribution over Sp−1, so that
testing uniformity versus non-uniformity over the sphere consists in testing H0 : κ = 0 versus H1 : κ > 0 (negative values
of κ would only swap the roles of θθθ and −θθθ , hence should be discarded in this model). The semiparametric model above
was used in [15] for the problem of testing uniformity, as well as in [36,38] for low- and high-concentration location
problems, respectively.

As in Section 2, the densities in (12) provide natural alternatives to uniformity, which leads us to consider the following
sequences of hypotheses. For any sequence of positive integers (pn), sequence (θθθn) such that θθθn ∈ Spn−1 for any n,
nonnegative real sequence (κn), and f ∈ F , we denote as P̃(n)

θθθn,κn,f the hypothesis under which Xn1, . . . ,Xnn form a

random sample from the density (12) with the corresponding parameters θθθn, κn, and f . We still write P(n)
0 := P̃(n)

θθθn,0,f
for

the uniform particular case. The following LAN result was obtained in [15].

Theorem 5.1. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n. Let κn = τn

√
pn/n, where (τn) is O(1), and fix f ∈F . Then, as n → ∞ under P(n)

0 ,

	n = log
dP̃(n)

θθθn,κn,f

dP(n)
0

= τn
θθθn
− 1

2
τ 2
n + oP(1),

where 
θθθn := √
npnX̄′

nθθθn is asymptotically standard normal (here, X̄n denotes the sample average of Xni , i = 1, . . . , n).

It then easily follows from Le Cam’s third lemma that the Bingham test statistic QSt
n remains asymptotically standard

normal under P̃(n)
θθθn,κn,f

, with κn = τn

√
pn/n and (τn) → τ . Consequently, the Bingham test is blind to such contiguous

alternatives. Again, it is natural to study the non-null behaviour of the Bingham test to see whether or not this test can
detect more severe non-axial alternatives. In order to apply our general result in Theorem 3.2, we need to study the
asymptotic behaviour of the quantities en�, � = 2,4,8, under the above non-axial hypotheses (see Appendix D for a
proof).

Proposition 5.1. Let (pn) be a sequence of positive integers diverging to ∞, (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n, and (κn) be a nonnegative real sequence that is o(
√

pn) as n → ∞. Fix f ∈F . Then, under P̃(n)
θθθn,κn,f ,

en2 = 1

pn

+ κ2
n

p2
n

f ′′(0) + o

(
κ2
n

p2
n

)
and en4 = 3

p2
n

+ o

(
1

p2
n

)

as n → ∞, so that en8 = O(1/p2
n) as n → ∞.

The following theorem then results from Theorem 3.2 (see Appendix D for a proof).

Theorem 5.2. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n. Fix f ∈ F . Then, we have the following: (i) if κn = o(p
3/4
n /n1/4) and pn = O(n) (or more generally, if κn =

o(p
3/4
n /n1/4) and κn = o(

√
pn)), then

QSt
n

D→ N (0,1) (13)
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as n → ∞ under P̃(n)
θθθn,κn,f

; (ii) if κn = τnp
3/4
n /n1/4 with (τn) → τ(> 0) and pn = o(n), then

QSt
n

D→N
(

τ 4

2

(
f ′′(0)

)2
,1

)
(14)

as n → ∞ under P̃(n)
θθθn,κn,f ; (iii) if n1/4κn/p

3/4
n → ∞, κn = o(

√
pn) and f ′′(0) �= 0, then, for any real number M ,

P̃(n)
θθθn,κn,f

[
QSt

n > M
]→ 1

as n → ∞.

Interpreting this result in the same way as Theorem 4.1, we learn that the detection threshold of the Bingham test under
FvML-type alternatives is κn ∼ p

3/4
n /n1/4, with resulting asymptotic powers

lim
n→∞ P̃(n)

θθθn,κn,f

[
QSt

n > zα

]= 1 − �

(
zα − τ 4

2

(
f ′′(0)

)2)

under P̃(n)
θθθn,κn,f

,

with κn = τnp
3/4
n /n1/4 and (τn) → τ . This should be compared to the detection threshold of the Rayleigh test, that

is κn ∼ p
3/4
n /

√
n; see [15]. We can conclude that the Bingham test is not rate-consistent, even for the θθθn-unspecified

problem, which is in line with the fact that the Bingham test is primarily designed for axial data whereas the Rayleigh one
aims at non-axial data. As mentioned in Section 4, however, the Rayleigh test will be blind to arbitrarily severe Watson-
type alternatives, whereas the Bingham test will show power under both FvML-type and Watson-type alternatives.

In order to illustrate these results, we performed the following FvML version of the Watson simulation exercise con-
ducted in Section 4. For any n ∈ {100,400,800}, we generated M = 2500 independent random samples of size n from
the FvML distribution with dimension pn = �√n�, location θθθn = (1,0, . . . ,0)′ ∈R

pn , and concentration

• (i) κn = τp
3/4
n /

√
n,

• (ii) κn = τp
3/4
n /n1/4,

• (iii) κn = τp
5/4
n /n1/4,

still with τ = 0,0.4, . . . ,2 in each case. Figure 3 reports the rejection frequencies of the Bingham test and of the Rayleigh
test, as well as the corresponding asymptotic powers (obtained from Theorem 5.2 for the Bingham test and from The-
orem 5.1 in [15] for the Rayleigh test). The results fully support the comments from the previous paragraph, for both
the Bingham and Rayleigh tests. Strictly speaking, the consistency result in Theorem 5.2(iii) does not apply in the con-
centration scheme (iii) above, as the condition κn = o(

√
pn) is not met there; in Appendix E, however, we show that

this condition is superfluous in the FvML case, so that our theoretical results imply consistency in the concentration
scheme (iii), too.

6. Wrap up

In this paper, we identified the sequences of local alternatives that, within the considered axial model, are contiguous to
the null hypothesis of uniformity on high-dimensional spheres. The Bingham test is blind to these alternatives. By relying
on martingale central limit theorems, we derived the first results characterizing the non-null behaviour of this test in high
dimensions. We identified the rotationally symmetric alternatives under which the Bingham test will show non-trivial
asymptotic powers. We proved that this test will be blind to less severe alternatives and consistent under more severe
ones. Our results impose only very mild assumptions on the considered rotationally symmetric alternatives. In particular,
they apply to both the axial and non-axial cases, which allowed us to determine the detection threshold of the Bingham
test in each case. Our results reveal that although it exhibits slower consistency rates than the Rayleigh test in the non-
axial case, the Bingham test can detect both types of alternatives, whereas the Rayleigh test will be blind to arbitrarily
severe axial alternatives. These results are summarized in Table 1. In the axial case, the Bingham test is also minimax
rate-optimal in the class of Watson distributions.
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Fig. 3. For any n ∈ {100,400,800}, rejection frequencies of the Bingham test (solid green curve) and of the Rayleigh test (solid red curve), ob-
tained from a collection of M = 2500 independent random samples of size n from the FvML distribution with dimension pn = �√n�, loca-

tion θθθn = (1,0, . . . ,0)′ ∈ R
pn , and concentration κn = τp

3/4
n /

√
n (top), κn = τp

3/4
n /n1/4 (middle), or κn = τp

5/4
n /n1/4 (bottom). The corresponding

asymptotic powers are also plotted (dashed curves).

Table 1
For the axial (resp., non-axial) case, this summary table provides the contiguity rate associated with the semiparametric class of distributions considered
in Sections 2 and 4 (resp., in Section 5), as well as the corresponding detection thresholds of the Bingham and Rayleigh tests. Here, ∅ refers to the fact
that Rayleigh test is blind to arbitrarily severe axial alternatives

Axial case Non-axial case

Contiguity rate κn ∼ pn√
n

κn ∼
√

pn√
n

Bingham’s detection threshold κn ∼ p
3/2
n√
n

κn ∼ p
3/4
n

n1/4

Rayleigh’s detection threshold ∅ κn ∼ p
3/4
n√
n
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Appendix A: Proofs for Section 2

We will need two preliminary results. The following result is a high-dimensional version of Lemma A.1 in [17].

Lemma A.1. Let g : R → R be twice differentiable at 0. Let (pn) be a sequence of positive integers diverging to ∞
and (κn) be a real sequence that is o(pn). Then,

Rn(g) := cpn

∫ 1

−1

(
1 − s2)(pn−3)/2

g
(
κns

2)ds = g(0) + κn

pn

g′(0) + 3κ2
n

2p2
n

g′′(0) + o

(
κ2
n

p2
n

)

as n → ∞, where we let cp := 1/
∫ 1
−1(1 − s2)(p−3)/2 ds.

Proof of Lemma A.1. If X is uniformly distributed over Spn−1, then, for any θθθ ∈ Spn−1, the distribution of θθθ ′X is
symmetric about zero and (θθθ ′X)2 ∼ Beta(1/2, (pn − 1)/2); see, e.g., [33], Theorem 1.5.7(ii). Therefore, θθθ ′X has den-
sity s �→ cpn(1 − s2)(pn−3)/2

I[|s| ≤ 1], and we have

cpn

∫ 1

−1
s2(1 − s2)(pn−3)/2

ds = E
[(

θθθ ′X
)2]= 1

pn

, (15)

and

cpn

∫ 1

−1
s4(1 − s2)(pn−3)/2

ds = E
[(

θθθ ′X
)4]= 3

pn(pn + 2)
· (16)

From (15), we can write

Rn(g) − g(0) − κn

pn

g′(0) = cpn

∫ 1

−1

(
1 − s2)(pn−3)/2(

g
(
κns

2)− g(0) − κns
2g′(0)

)
ds.

Note that we can without any loss of generality assume that (κn) is a sequence in R0, which allows us to perform the
change of variables t = |κn|1/2s. Doing so and using (15)–(16) then provides (throughout, sκn denotes the sign of κn)

Rn(g) − g(0) − κn

pn

g′(0) = 3κ2
n

pn(pn + 2)

∫ ∞

−∞
hn(t)

(
g(sκn t

2) − g(0) − sκn t
2g′(0)

t4

)
dt,

or, equivalently,

Rn(g) − g(0) − κn

pn
g′(0) − 3κ2

n

2pn(pn+2)
g′′(0)

3κ2
n

pn(pn+2)

=
∫ ∞

−∞
hn(t)

(
g(sκn t

2) − g(0) − sκn t
2g′(0)

t4

)
dt − 1

2
g′′(0), (17)

where hn is defined through

t �→ hn(t) = t4(1 − t2

|κn| )
(pn−3)/2

I[|t | ≤ |κn|1/2]∫∞
−∞ t4(1 − t2

|κn| )(pn−3)/2I[|t | ≤ |κn|1/2]dt
·

It can be checked that, since κn = o(pn), the sequence (hn) is an approximate δ-sequence, in the sense that
∫∞
−∞ hn(t) dt =

1 for any n and
∫ ε

−ε
hn(t) dt → 1 for any ε > 0. Hence,

lim
n→∞

∫ ∞

−∞
hn(t)

(
g(sκn t

2) − g(0) − sκn t
2g′(0)

t4

)
dt = lim

t→0

g(sκn t
2) − g(0) − sκn t

2g′(0)

t4
,

which, by using L’Hôpital’s rule, is equal to

lim
t→0

2sκn tg
′(sκn t

2) − 2sκn tg
′(0)

4t3
= 1

2
lim
t→0

g′(sκn t
2) − g′(0)

sκn t
2

= 1

2
g′′(0)
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Thus, (17) yields

Rn(g) − g(0) − κn

pn

g′(0) − 3κ2
n

2pn(pn + 2)
g′′(0) = o

(
κ2
n

p2
n

)
,

which establishes the result. �

Lemma A.2. Let (pn) be a sequence of positive integers diverging to ∞ and κn = τnpn/
√

n, where (τn) is O(1) but
not o(1). Writing Enk := E[�f,k(κn(X′

niθθθn)
2)], with �f,k := (logf )k , and Vn := Var[logf (κn(X′

niθθθn)
2)], define

Wni := 1√
nVn

(
logf

(
κn

(
X′

niθθθn

)2)− En1
)
, i = 1, . . . , n.

Then, writing sa for the sign of the real number a, we have that

dn := E

[(

θθθn − √

2sτn

n∑
i=1

Wni

)2]
= o(1) (18)

as n → ∞ under P(n)
0 .

Proof of Lemma A.2. First note that, since X′
niθθθn has density s �→ cpn(1 − s2)(pn−3)/2

I[|s| ≤ 1] under P(n)
0 , we have

En1 = cpn

∫ 1

−1

(
1 − s2)(pn−3)/2

�f,1
(
κns

2)ds

= κn

pn

�′
f,1(0) + 3κ2

n

2p2
n

�′′
f,1(0) + o

(
κ2
n

p2
n

)
= κn

pn

+ 3κ2
n

2p2
n

(
f ′′(0) − 1

)+ o

(
κ2
n

p2
n

)
(19)

and

En2 = cpn

∫ 1

−1

(
1 − s2)(pn−3)/2

�f,2
(
κns

2)ds

= κn

pn

�′
f,2(0) + 3κ2

n

2p2
n

�′′
f,2(0) + o

(
κ2
n

p2
n

)
= 3κ2

n

p2
n

+ o

(
κ2
n

p2
n

)
,

so that

nVn = n
(
En2 − E2

n1

)= 2nκ2
n

p2
n

+ o

(
nκ2

n

p2
n

)
. (20)

Now, write

Mn :=√nVn

(

θθθn

− √
2sτn

n∑
i=1

Wni

)

=
n∑

i=1

{
pn

√
Vn

((
X′

niθθθn

)2 − 1

pn

)
− √

2sτn

(
logf

(
κn

(
X′

niθθθn

)2)− En1
)}

. (21)

Then using the fact that E[(X′
n1θθθn)

2] = 1/pn and E[(X′
n1θθθn)

4] = 3/(pn(pn + 2)) (see the proof of Lemma A.1) pro-
vides Var[(X′

n1θθθn)
2] = 2/p2

n + o(1/p2
n), we obtain

E
[
M2

n

]= nE

[{
pn

√
Vn

((
X′

niθθθn

)2 − 1

pn

)
− √

2sτn

(
logf

(
κn

(
X′

niθθθn

)2)− En1
)}2]

= (4 + o(1)
)
nVn − 2

√
2VnnpnsτnE

[((
X′

n1θθθn

)2 − 1

pn

)(
logf

(
κn

(
X′

n1θθθn

)2)− En1
)]

= 4nVn − 2
√

2nVnsτn

(√
npn

κn

E
[
g
(
κn

(
X′

n1θθθn

)2)]− √
nEn1

)
+ o(nVn), (22)
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where we let g(x) := x logf (x). Using Lemma A.1 again, we obtain

E
[
g
(
κn

(
X′

n1θθθn

)2)]= cpn

∫ 1

−1

(
1 − s2)(pn−3)/2

g
(
κns

2)ds = 3κ2
n

p2
n

+ o

(
κ2
n

p2
n

)
.

Using this jointly with (19) and (20), it follows from (21)–(22) that

dn = 4 −
2
√

2sτn(
3
√

nκn

pn
+ o(

√
nκn

pn
) − {

√
nκn

pn
+ 3

√
nκ2

n

2p2
n

(f ′′(0) − 1) + o(
√

nκ2
n

p2
n

)})√
2nκ2

n

p2
n

+ o(
nκ2

n

p2
n

)

+ o(1)

= 4 − 2
√

2sτn(2τn + o(1))√
2τ 2

n + o(1)
= o(1),

which establishes the result. �

Proof of Theorem 2.1. In this proof, all expectations and variances are taken under the null hypothesis of uniformity P(n)
0

and all stochastic convergences and oP’s are as n → ∞ under P(n)
0 . Using the same notation as in Lemma A.2, consider

then the local log-likelihood ratio

	n = log
dP(n)

θθθn,κn,f

dP(n)
0

=
n∑

i=1

log
cpn,κn,f f (κn(X′

niθθθn)
2)

cpn

= n

(
log

cpn,κn,f

cpn

+ En1

)
+

n∑
i=1

{
logf

(
κn

(
X′

niθθθn

)2)− En1
}

= n

(
log

cpn,κn,f

cpn

+ En1

)
+√nVn

n∑
i=1

Wni.

Lemma A.1 readily yields

log
cpn,κn,f

cpn

= − log

(
cpn

∫ 1

−1

(
1 − s2)(pn−3)/2

f
(
κns

2)ds

)

= − log

(
1 + κn

pn

+ 3κ2
n

2p2
n

f ′′(0) + o

(
κ2
n

p2
n

))

= − κn

pn

− 3κ2
n

2p2
n

f ′′(0) + κ2
n

2p2
n

+ o

(
κ2
n

p2
n

)
, (23)

so that (19) provides

n

(
log

cpn,κn,f

cpn

+ En1

)
= −nκ2

n

p2
n

+ o

(
nκ2

n

p2
n

)
.

Using (20), we thus obtain

	n = −nκ2
n

p2
n

+
√

2nκ2
n

p2
n

+ o

(
nκ2

n

p2
n

) n∑
i=1

Wni + o

(
nκ2

n

p2
n

)
. (24)

Since Wni , i = 1, . . . , n, are mutually independent with mean zero and variance 1/n, we obtain that

E
[
	2

n

]= (E[	n]
)2 + Var[	n] = n2κ4

n

p4
n

+ o

(
n2κ4

n

p4
n

)
+ 2nκ2

n

p2
n

+ o

(
nκ2

n

p2
n

)
.

Recall that the theorem assumes that κn = τnpn/
√

n, with τn = O(1). If τn = o(1), then we obtain that E[	2
n] = o(1),

so that 	n = oP(1), which proves the result in this case. We may thus assume that (τn) is O(1) but not o(1). Then, (24)
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rewrites

	n = −τ 2
n +
√

2τ 2
n + o(1)

n∑
i=1

Wni + o(1) = −τ 2
n + √

2|τn|
n∑

i=1

Wni + oP(1), (25)

where we used the fact that, since (τn) is not o(1),

E

[{(√
2τ 2

n + o(1) −
√

2τ 2
n

) n∑
i=1

Wni

}2]
= o(1)

(
√

2τ 2
n + o(1) +√2τ 2

n )2
= o(1).

Now, applying the Cauchy–Schwarz inequality and the Chebychev inequality, then using Lemma A.1 and (20), pro-
vides that, for some positive constant C and any ε > 0,

(
n∑

i=1

E
[
W 2

niI
[|Wni | > ε

]])2

≤ n2E
[
W 4

ni

]
P
[|Wni | > ε

]≤ n2

ε2
E
[
W 4

ni

]
Var[Wni] = n

ε2
E
[
W 4

ni

]

≤ CnEn4

ε2n2V 2
n

=
C(nκn

pn
�′
f,4(0) + 3nκ2

n

2p2
n

�′′
f,4(0) + o(

nκ2
n

p2
n

))

ε2(
2nκ2

n

p2
n

+ o(
nκ2

n

p2
n

))2
= o(1)

ε2(2τ 2
n + o(1))2

= o(1).

Therefore,
∑n

i=1 Wni satisfies the classical Levy–Lindeberg condition, hence is asymptotically standard normal (re-
call that Wni , i = 1, . . . , n, are mutually independent with mean zero and variance 1/n). The result thus follows from
Lemma A.2. �

The proof of Proposition 2.1 requires the following lemma.

Lemma A.3. If X1, . . . ,Xn is a random sample from the uniform distribution over Sp−1, then E[tr[S2
n](Sn − 1

p
Ip)] = 0,

where we let Sn := 1
n

∑n
i=1 XiX′

i and where Ip denotes the p × p identity matrix.

Proof of Lemma A.3. First note that

tr
[
S2

n

](
Sn − 1

p
Ip

)
= 1

n3

n∑
i,j,k=1

tr
[
XiX′

iXj X′
j

](
XkX′

k − 1

p
Ip

)

= 1

n3

n∑
i,j,k=1

{(
X′

iXj

)2XkX′
k − 1

p

(
X′

iXj

)2Ip

}
. (26)

For i �= j , we have, irrespective of whether k ∈ {i, j} or not,

E
[(

X′
iXj

)2XkX′
k

]= E
[
E
[(

X′
iXj

)2XkX′
k|Xk

]]= 1

p
E
[
XkX′

k

]= 1

p2
Ip = E

[
1

p

(
X′

iXj

)2Ip

]
,

whereas, for i = j , we trivially have

E
[(

X′
iXj

)2XkX′
k

]= E
[
XkX′

k

]= 1

p
Ip = E

[
1

p

(
X′

iXj

)2Ip

]
.

The result thus follows from (26). �

Proof of Proposition 2.1. Theorem 2.1 implies that, as n → ∞ under P(n)
0 ,

Cov
[
QSt

n ,	n

]= τn√
2dpn

E[Qn
θθθn
] + o(1) = np(p + 2)τn

2
√

2dpn

E
[
tr
[
S2

n

]

θθθn

]+ o(1)

= n3/2p2(p + 2)τn

2
√

2dpn

(θθθn ⊗ θθθn)
′E
[

tr
[
S2

n

]
vec

(
Sn − 1

p
Ip

)]
+ o(1), (27)
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so that Lemma A.3 yields that this covariance is o(1) as n → ∞. Since QSt
n is asymptotically standard normal under P(n)

0

(see (1)), Le Cam’s third lemma then entails that QSt
n remains asymptotically standard normal under P(n)

θθθn,κn,f . �

Appendix B: Proofs for Section 3

Throughout, we will make use of the tangent-normal decomposition Xni = uniθθθn + vniSni of Xni , involving

Sni :=
{

(Ip−θθθnθθθ
′
n)Xni

‖(Ip−θθθnθθθ
′
n)Xni‖ if Xni �= θθθn,

0 otherwise,

and vni := (1 − u2
ni)

1/2 (recall that uni = X′
niθθθn). Under P(n)

θθθn,Fn
, uni has cumulative distribution function Fn, the pn-

vector Sni is uniformly distributed over {x ∈ Spn−1 : θθθ ′
nx = 0}, and uni (equivalently, vni ) and Sni are mutually indepen-

dent. Recall that en� = E[u�
ni] and fn� = E[v�

ni] for any positive integer �.
To prove Proposition 3.1, we need both following preliminary results.

Lemma B.1. Under P(n)
θθθn,Fn

, (i) E[SniS′
ni] = (1/(pn − 1))(Ipn − θθθnθθθ

′
n) for any i; (ii) E[(S′

niSnj )
2] = 1/(pn − 1) for

any i �= j ; (iii) E[(S′
niSnj )

4] = 3/(p2
n−1) for any i �= j ; (iv) E[(S′

niSnj )
8] = 105/((p2

n−1)(pn+3)(pn+5)) for any i �= j .

Proof of Lemma B.2. Parts (i)–(iii) were proved in Lemma B.1 from [15], whereas Part (iv) strictly follows from the
same argument as in that lemma by using the fact that E[(U′V)8] = 105/(p(p + 2)(p + 4)(p + 6)) if the independent
random p-vectors U,V are uniformly distributed over Sp−1 (see Lemma A.1 in [35]). �

Lemma B.2. Under P(n)
θθθn,Fn

, (i) E[(X′
niXnj )

2] = png
2
n2/(pn − 1) + (1/pn) for any i �= j , (ii) E[(X′

niXnj )
4] =

e2
n4 + 6(en2 − en4)

2/(pn − 1) + 3f 2
n4/(p

2
n − 1) for any i �= j , (iii) E[(X′

niXnj )
2(X′

nkXn�)
2] = en4e

2
n2 +

2en2 (en2 − en4)fn2/(pn − 1) + f 2
n2fn4/(pn − 1)2 for any i �= j and k �= � such that {i, j, k, �} contains exactly three

different indices, and (iv) E[(X′
niXnj )

2(X′
nkXn�)

2] = (png
2
n2/(pn − 1) + (1/pn))

2 if i, j, k, � are pairwise different.

Proof of Lemma B.2. (i) The tangent-normal decomposition provides X′
niXnj = uniunj + vnivnj (S′

niSnj ), which yields

(
X′

niXnj

)2 = u2
niu

2
nj + v2

niv
2
nj

(
S′

niSnj

)2 + 2univniunj vnj

(
S′

niSnj

)
. (28)

Lemma B.1(ii) then shows that E[(X′
niXnj )

2] = (E[u2
n1])2 + (E[v2

n1])2/(pn − 1) = e2
n2 + f 2

n2/(pn − 1) under P(n)
θθθn,Fn

.
Part (i) of the lemma thus follows by using successively the identities fn2 = 1−en2 and en2 = gn2 +(1/pn). (ii) Using (28)
and the fact that E[(S′

niSnj )
�] = 0 for any odd positive integer �, we obtain

E
[(

X′
niXnj

)4]= E
[
u4

niu
4
nj + 6u2

niu
2
nj v

2
niv

2
nj

(
S′

niSnj

)2 + v4
niv

4
nj

(
S′

niSnj

)4]
= (E[u4

n1

])2 + 6

pn − 1

(
E
[
u2

n1

(
1 − u2

n1

)])2 + 3

p2
n − 1

(
E
[
v4
n1

])2
,

which establishes Part (ii) of the result. (iii) Without any loss of generality, assume that, in {i, j, k, �}, only j and k are
equal to each other. Proceeding as in (ii), we then have

E
[(

X′
niXnj

)2(X′
nkXn�

)2]
= E
[
u2

niu
2
nju

2
nku

2
n� + u2

niu
2
nj v

2
nkv

2
n�

(
S′

nkSn�

)2
+ u2

nku
2
n�v

2
niv

2
nj

(
S′

niSnj

)2 + v2
niv

2
nj v

2
nkv

2
n�

(
S′

niSnj

)2(S′
nkSn�

)2]
= (E[u2

ni

])2E
[
u4

nk

]+ 2

pn − 1
E
[
u2

n1

]
E
[
v2
n1

]
E
[
u2

n1

(
1 − u2

n1

)]+ 1

(pn − 1)2

(
E
[
v2
n1

])2E
[
v4
n1

]
,

where we used the fact that E[(S′
niSnj )

2(S′
nj Sn�)

2] = E[E[(S′
niSnj )

2(S′
nj Sn�)

2|Snj ]] = 1/(pn − 1)4 since

E[(S′
niSnj )

2|Snj ] = 1/(pn − 1). (iv) Since i, j, k, � are pairwise different, X′
niXnj and X′

nkXn� are mutually indepen-
dent, so that the result directly follows from Part (i) of the lemma. �
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Proof of Proposition 3.1. Using Lemma B.2(i), we readily obtain

E
[
QSt

n

]= pn

n

n∑
i<j

i,j=1

(
E
[(

X′
niXnj

)2]− 1

pn

)
= pn

n
× n(n − 1)

2
× pn

pn − 1
g2

n2 = p2
n(n − 1)

2(pn − 1)
g2

n2.

Turning to the variance, we have

Var
[
QSt

n

]= p2
n

n2

∑
1≤i<j≤n

∑
1≤k<�≤n

{
E
[(

X′
niXnj

)2(X′
nkXn�

)2]− (E[(X′
niXnj

)2])2}

= p2
n

n2

∑
1≤i<j≤n

∑
1≤k<�≤n

{
E
[(

X′
niXnj

)2(X′
nkXn�

)2]−( pn

pn − 1
g2

n2 + 1

pn

)2}
.

In this last sum,
( n

2

)
terms correspond to Lemma B.2(ii) and 6

( n
4

)
terms (all equal to zero) correspond to Lemma B.2(iv).

Thus,
( n

2

)2 − ( n2 )− 6
( n

4

)= n(n − 1)(n − 2) terms correspond to Lemma B.2(iii), which leads to

Var
[
QSt

n

]= p2
n

n2

[
n(n − 1)

2

{
e2
n4 + 6(en2 − en4)

2

pn − 1
+ 3f 2

n4

p2
n − 1

−
(

pn

pn − 1
g2

n2 + 1

pn

)2}

+ n(n − 1)(n − 2)

{
en4e

2
n2 + 2en2(en2 − en4)fn2

pn − 1
+ f 2

n2fn4

(pn − 1)2
−
(

pn

pn − 1
g2

n2 + 1

pn

)2}]

= (n − 1)p2
n

2n

{
e2
n4 + 6

pn − 1
(en2 − en4)

2 + 3f 2
n4

p2
n − 1

−
(

pn

pn − 1
g2

n2 + 1

pn

)2}

+ (n − 1)(n − 2)p4
n

n(pn − 1)2

(
en4 − e2

n2

)
g2

n2,

which establishes the result. �

The proof of Theorem 3.1 still requires both following lemmas.

Lemma B.3. Let U be uniformly distributed on Sp−1. Then,

E
[(

v′U
)2(w′U

)2]= 2(v′w)2 + 1

p(p + 2)

for any v,w ∈ Sp−1.

Proof of Lemma B.3. Let K� be the �2 × �2 commutation matrix and define J� := (vec I�)(vec I�)
′, where vec A is the

vector stacking the columns of A on top of each other (recall that I� is the � × � identity matrix). Then,

E
[(

v′U
)2(w′U

)2]= E
[
v′UU′vw′UU′w

]= (v ⊗ v)′E
[
vec
(
UU′)vec′(UU′)](w ⊗ w)

Lemma A.2(iii) from [35] then yields

E
[(

v′U
)2(w′U

)2]= 1

p(p + 2)
(v ⊗ v)′(Ip2 + Jp + Kp)(w ⊗ w) = 2(v′w)2 + 1

p(p + 2)
,

where we used the identities (vec A)′(vec B) = tr[A′B] and Kp(w ⊗ w) = (w ⊗ w)K1 = (w ⊗ w). �

Lemma B.4. Under P(n)
θθθn,Fn

,

(i) E
[(

X′
niXn�

)2|Xni

]= pn

pn − 1
gn2u

2
ni + fn2

pn − 1
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for any i �= �,

(ii) E
[(

X′
niXn�

)2(X′
nj Xn�

)2|Xni,Xnj

]
= en2 − en4

pn − 1
+ pnen4 − en2

pn − 1
u2

niu
2
nj

+
(

fn4

p2
n − 1

− en2 − en4

pn − 1

)
v2
niv

2
nj + 2fn4

p2
n − 1

v2
niv

2
nj

(
S′

niSnj

)2 + 4(en2 − en4)

pn − 1
univniunj vnj

(
S′

niSnj

)
for any indices i, j, � such that � /∈ {i, j}, and

(iii) E
[(

X′
niXn�

)2
u2

n�|Xni

]= en2 − en4

pn − 1
+ pnen4 − en2

pn − 1
u2

ni

for any i �= �.

Proof of Lemma B.4. (i) Using (28) and the fact that E[(S′
niSn�)

2|Xni] = 1/(pn − 1) for any i �= �,

E
[(

X′
niXn�

)2|Xni

]= E
[
u2

niu
2
n� + v2

niv
2
n�

(
S′

niSn�

)2 + 2univniun�vn�

(
S′

niSn�

)|Xni

]
= en2u

2
ni + v2

ni

fn2

pn − 1
=
(

en2 − fn2

pn − 1

)
u2

ni + fn2

pn − 1
= pn

pn − 1
gn2u

2
ni + fn2

pn − 1
,

where we used the identities v2
ni = 1 − u2

ni , fn2 = 1 − en2 and g2 = e2 − (1/pn). (ii) Fix i, j, � with � /∈ {i, j}. Since
E[(S′

niSn�)(S′
nj Sn�)

2|Xni,Xnj ] = 0, we have

E
[(

X′
niXn�

)2(X′
nj Xn�

)2|Xni,Xnj

]
= E
[
u2

niu
2
nju

4
n� + u2

niv
2
nju

2
n�v

2
n�

(
S′

nj Sn�

)2 + v2
niu

2
nju

2
n�v

2
n�

(
S′

niSn�

)2
+ v2

niv
2
nj v

4
n�

(
S′

niSn�

)2(S′
nj Sn�

)2 + 4univniunj vnju
2
n�v

2
n�

(
S′

niSn�

)(
S′

nj Sn�

)|Xni,Xnj

]
.

Therefore, applying Lemma B.3 (in the fourth term of the righthand side) and Lemma B.1(i) (in the fifth one) provides

E
[(

X′
niXn�

)2(X′
nj Xn�

)2|Xni,Xnj

]
= en4u

2
niu

2
nj + en2 − en4

pn − 1

(
u2

niv
2
nj + v2

niu
2
nj

)

+ fn4

p2
n − 1

v2
niv

2
nj

(
1 + 2

(
S′

niSnj

)2)+ 4(en2 − en4)

pn − 1
univniunj vnj

(
S′

niSnj

)
.

The result then follows by using the identity u2
niv

2
nj + v2

niu
2
nj = 1 − u2

niu
2
nj − v2

niv
2
nj (which result from the fact that u2

ni +
v2
ni = 1 for any i). (iii) Finally,

E
[(

X′
niXn�

)2
u2

n�|Xni

]= E
[(

u2
niu

2
n� + v2

niv
2
n�

(
S′

niSn�

)2 + 2univniun�vn�

(
S′

niSn�

))
u2

n�|Xni

]
= en4u

2
ni + en2 − en4

pn − 1
v2
ni = en2 − en4

pn − 1
+ pnen4 − en2

pn − 1
u2

ni,

where we used again the identity v2
ni = 1 − u2

ni . �

We can now turn to the proof of Theorem 3.1. First note that under the assumptions of this theorem, we have en2 =
o(1/

√
pn), which, jointly with Assumptions (a) and (c), entails that Var[QSt

n ] = 1 + o(1). Therefore, it is sufficient to
prove that

QSt
n − E

[
QSt

n

] D→N (0,1). (29)
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To do so, let Fn�, for � = 1, . . . , n, be the σ -algebra generated by Xn1, . . . ,Xn�, and let Fn0 be the trivial σ -
algebra {∅,�}. Denoting as En� conditional expectation with respect to Fn�, we have

QSt
n − E

[
QSt

n

]= pn

n

n∑
i<j

i,j=1

{(
X′

niXnj

)2 − E
[(

X′
niXnj

)2]}=
n∑

�=1

Dn�,

where Dn� := En�[QSt
n ] − En,�−1[QSt

n ], � = 1, . . . , n, is a martingale difference sequence with respect to the filtra-
tion Fn1,Fn2, . . . ,Fnn. Letting throughout a sum over an empty set of indices be zero, we have

Dn� = pn

n

n∑
i<j

i,j=1

{
En�

[(
X′

niXnj

)2]− En,�−1
[(

X′
niXnj

)2]}

= pn

n

�−1∑
i=1

{(
X′

niXn�

)2 − E
[(

X′
niXn�

)2|Xi

]}

+ pn

n

n∑
j=�+1

∑
�+1≤j≤n

{
E
[(

X′
n�Xnj

)2|X�

]− E
[(

X′
n�Xnj

)2]}

= pn

n

�−1∑
i=1

{(
X′

niXn�

)2 −
(

pn

pn − 1
gn2u

2
ni + fn2

pn − 1

)}
+ (n − �)p2

n

n(pn − 1)
gn2
(
u2

n� − en2
)
, (30)

where the last equality follows from Lemma B.2(i) and Lemma B.4(i). Using (30), one can check that one indeed has
QSt

n − E[QSt
n ] =∑n

�=1 Dn�. The proof of Theorem 3.1 is then based on the following central limit theorem for martingale
differences.

Theorem B.1 ([7], Theorem 35.12). Let Dn�, � = 1, . . . , n, n = 1,2, . . ., be a triangular array of random variables such
that, for any n, Dn1,Dn2, . . . ,Dnn is a martingale difference sequence with respect to some filtration Fn1,Fn2, . . . ,Fnn.
Assume that, for any n, �, Dn� has a finite variance. Letting σ 2

n� = E[D2
n�|Fn,�−1] (with Fn0 being the trivial σ -

algebra {∅,�} for all n), further assume that, as n → ∞,

n∑
�=1

σ 2
n� = 1 + oP(1) and

n∑
�=1

E
[
D2

n�I
[|Dn�| > ε

]]→ 0

for any ε > 0. Then
∑n

�=1 Dn� is asymptotically standard normal.

We establish Theorem 3.1 by proving both following propositions.

Proposition B.1. Under the assumptions of Theorem 3.1, (i)
∑n

�=1 E[σ 2
n�] = 1 and (ii) Var[∑n

�=1 σ 2
n�] = o(1) as n → ∞,

so that
∑n

�=1 σ 2
n� = 1 + oP(1) as n → ∞.

Proposition B.2. Under the assumptions of Theorem 3.1,
∑n

�=1 E[D2
n�I[|Dn�| > ε]] → 0 for any ε > 0.

Proof of Proposition B.1. (i) Using (30), σ 2
n� = En,�−1[D2

n�] takes the form

σ 2
n� = p2

n

n2

�−1∑
i,j=1

{
En,�−1

[(
X′

niXn�

)2(X′
nj Xn�

)2]

−
(

pn

pn − 1
gn2u

2
ni + fn2

pn − 1

)(
pn

pn − 1
gn2u

2
nj + fn2

pn − 1

)}

+ (n − �)2p4
n

n2(pn − 1)2
g2

n2 Var
[
u2

n�

]+ 2(n − �)p3
n

n2(pn − 1)
gn2

�−1∑
i=1

En,�−1
[(

X′
niXn�

)2(
u2

n� − en2
)]
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=: p2
n

n2

�−1∑
i,j=1

An,ij + (n − �)2p4
n

n2(pn − 1)2
g2

n2 Var
[
u2

n�

]+ 2(n − �)p3
n

n2(pn − 1)
gn2

�−1∑
i=1

Bn,i .

Using the identity u2
ni + u2

ni = 1 + u2
niu

2
nj − v2

niv
2
nj , Lemma B.4(ii) implies that

An,ij = en2 − en4

pn − 1
+ pnen4 − en2

pn − 1
u2

niu
2
nj +
(

fn4

p2
n − 1

− en2 − en4

pn − 1

)
v2
niv

2
nj

+ 2fn4

p2
n − 1

v2
niv

2
nj

(
S′

niSnj

)2 + 4(en2 − en4)

pn − 1
univniunj vnj

(
S′

niSnj

)

− p2
n

(pn − 1)2
g2

n2u
2
niu

2
nj −
(

fn2

pn − 1

)2

− pnfn2gn2

(pn − 1)2

(
1 + u2

niu
2
nj − v2

niv
2
nj

)
,

which, after some algebra, rewrites

An,ij = pn(en4 − e2
n2)

pn − 1
u2

niu
2
nj +
(

fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
v2
niv

2
nj

+ 2fn4

p2
n − 1

v2
niv

2
nj

(
S′

niSnj

)2 + 4(en2 − en4)

pn − 1
univniunj vnj

(
S′

niSnj

)− en4 − e2
n2

pn − 1
·

Similarly, after some algebra, Lemma B.4(i) and (iii) yield

Bn,i = en2 − en4

pn − 1
+ pnen4 − en2

pn − 1
u2

ni − en2

(
pn

pn − 1
gn2u

2
ni + fn2

pn − 1

)

= pn(en4 − e2
n2)

pn − 1

(
u2

ni − 1

pn

)
.

Therefore, we conclude that

σ 2
n� = p2

n

n2

�−1∑
i,j=1

{
pn(en4 − e2

n2)

pn − 1
u2

niu
2
nj +
(

fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
v2
niv

2
nj

+ 2fn4

p2
n − 1

v2
niv

2
nj

(
S′

niSnj

)2 + 4(en2 − en4)

pn − 1
univniunj vnj

(
S′

niSnj

)}

− (� − 1)2p2
n

n2(pn − 1)

(
en4 − e2

n2

)+ (n − �)2p4
n

n2(pn − 1)2

(
en4 − e2

n2

)
g2

n2

+ 2(n − �)p4
n

n2(pn − 1)2

(
en4 − e2

n2

)
gn2

�−1∑
i=1

(
u2

ni − 1

pn

)
. (31)

Splitting the double sum over i, j according to whether i = j or i �= j , taking expectation yields

E
[
σ 2

n�

]= (� − 1)(� − 2)
p2

n

n2

{
pn(en4 − e2

n2)

pn − 1
e2
n2 +

(
fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
f 2

n2

+ 2fn4f
2
n2

(pn − 1)2(pn + 1)

}
+ (� − 1)

p2
n

n2

{
pn(en4 − e2

n2)

pn − 1
en4 +

(
fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
fn4

+ 2f 2
n4

p2
n − 1

+ 4(en2 − en4)
2

pn − 1

}
− (� − 1)2p2

n

n2(pn − 1)

(
en4 − e2

n2

)+ (n − �)2p4
n

n2(pn − 1)2

(
en4 − e2

n2

)
g2

n2

+ 2(� − 1)(n − �)p4
n

n2(pn − 1)2

(
en4 − e2

n2

)
g2

n2,
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which eventually provides

n∑
�=1

E
[
σ 2

n�

]= (n − 1)(n − 2)p2
n

3n

{
pn(en4 − e2

n2)

pn − 1
e2
n2 +

(
fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
f 2

n2

+ 2fn4f
2
n2

(pn − 1)2(pn + 1)

}
+ (n − 1)p2

n

2n

{
pn(en4 − e2

n2)

pn − 1
en4 +

(
fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
fn4

+ 2f 2
n4

p2
n − 1

+ 4(en2 − en4)
2

pn − 1

}
− (n − 1)(2n − 1)p2

n

6n(pn − 1)

(
en4 − e2

n2

)+ (n − 1)(2n − 1)p4
n

6n(pn − 1)2

(
en4 − e2

n2

)
g2

n2

+ (n − 1)(n − 2)p4
n

3n(pn − 1)2

(
en4 − e2

n2

)
g2

n2 = 1,

where the last equality is obtained after painful, yet straightforward, algebra. (ii) Note that (31) implies that

σ 2
n� = p2

n

n2

�−1∑
i,j=1

{
pn(en4 − e2

n2)

pn − 1
u2

niu
2
nj +
(

fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
v2
niv

2
nj

+ 2fn4

p2
n − 1

v2
niv

2
nj

(
S′

niSnj

)2 + 4(en2 − en4)

pn − 1
univniunj vnj

(
S′

niSnj

)}

+ 2(n − �)p4
n

n2(pn − 1)2

(
en4 − e2

n2

)
gn2

�−1∑
i=1

u2
ni + Cn�

for some real constant Cn�. Therefore,

Var

[
n∑

�=1

σ 2
n�

]
≤ 2
(
Var[T1n] + Var[T2n]

)
,

where we let

T1n := p2
n

n2

n∑
�=1

�−1∑
i,j=1

{
pn(en4 − e2

n2)

pn − 1
u2

niu
2
nj +
(

fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
v2
niv

2
nj

+ 2fn4

p2
n − 1

v2
niv

2
nj

(
S′

niSnj

)2 + 4(en2 − en4)

pn − 1
univniunj vnj

(
S′

niSnj

)}

and

T2n := 2p4
n

n2(pn − 1)2

(
en4 − e2

n2

)
gn2

n∑
�=1

(n − �)

�−1∑
i=1

u2
ni .

In the rest of the proof, C is a positive constant that may change from line to line. Let us start with the variance of T2n.
Since

n∑
�=1

(n − �)

�−1∑
i=1

u2
ni =

n−1∑
i=1

cniu
2
ni,

for positive constants cni that are upper-bounded by n2, we have

Var[T2n] ≤ C
p8

n

n4(pn − 1)4

(
en4 − e2

n2

)2
g2

n2(n − 1)n4(en4 − e2
n2

)≤ Cnp4
n

(
en4 − e2

n2

)3
g2

n2 = o(1)

by Assumptions (a) and (c). We turn to T1n, that can be split into T
(a)

1n + T
(b)

1n , where

T
(a)
1n = p2

n

n2

n−1∑
i=1

(n − i)

{
pn(en4 − e2

n2)

pn − 1
u4

ni +
(

3fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
v4
ni
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+ 4(en2 − en4)

pn − 1
u2

niv
2
ni

}

and

T
(b)
1n = 2p2

n

n2

n−1∑
i<j

i,j=1

(n − j)

{
pn(en4 − e2

n2)

pn − 1
u2

niu
2
nj +
(

fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
v2
niv

2
nj

+ 2fn4

p2
n − 1

v2
niv

2
nj

(
S′

niSnj

)2 + 4(en2 − en4)

pn − 1
univniunj vnj

(
S′

niSnj

)}

:= p2
n

n2

n−1∑
i<j

i,j=1

(n − j)wn,ij .

Firstly, since Var[ur
n1v

s
n1] ≤ E[u2r

n1v
2s
n1] ≤ en,2r for any r, s ≥ 0 (here, we let en0 = 1),

Var
[
T

(a)
1n

]
≤ p4

n

n
Var

[
pn(en4 − e2

n2)

pn − 1
u4

n1 +
(

3fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
v4
n1 + 4(en2 − en4)

pn − 1
u2

n1v
2
n1

]

≤ Cp4
n

n

{
p2

n(en4 − e2
n2)

2

(pn − 1)2
en8 +

(
3fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)2

+ 16(en2 − en4)
2

(pn − 1)2
en4

}

≤ C

n

{
p4

n

(
en4 − e2

n2

)2
en8 + f 2

n4 + f 4
n2 + p2

n

(
en4 − e2

n2

)2 + p2
n(en2 − en4)

2en4
}= o

(
1

n1/3

)

under Assumptions (a)–(b). Secondly,

Var
[
T

(b)
1n

]= Cp4
n

n4

n∑
i<j

i,j=1

n∑
k<�

k,�=1

(n − j)(n − �)Cov[wn,ij ,wn,k�].

Using the same argument as in the proof of Proposition 3.1, this sum over i, j, k, � contains
( n

2

)
terms corresponding

to Var[wn,ij ] and n(n − 1)(n − 2) terms corresponding to Cov[wn,ij ,wn,k�] with i �= j , k �= � and #{i, j, k, �} = 3 (terms
for which the four indices are pairwise different are equal to zero since wn,ij and wn,k� are then mutually independent).
Therefore,

Var
[
T

(b)
1n

]≤ Cp4
n

(
Var[wn,12] + nCov[wn,12,wn,13]

)
. (32)

Since Var[Z] ≤ E[Z2] for any random variable Z,

Var[wn,12]

≤ C

{
p2

n(en4 − e2
n2)

2

(pn − 1)2
Var
[
u2

n1u
2
n2

]+( fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)2

Var
[
v2
n1v

2
n2

]

+ 4f 2
n4

(p2
n − 1)2

Var
[
v2
n1v

2
n2

(
S′

n1Sn2
)2]+ 16(en2 − en4)

2

(pn − 1)2
Var
[
un1vn1un2vn2

(
S′

n1Sn2
)]}

≤ C

{
p2

n(en4 − e2
n2)

2

(pn − 1)2
e2
n4 +

(
fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)2

f 2
n4

+ 12f 4
n4

(p2
n − 1)3

+ 16(en2 − en4)
4

(pn − 1)3

}
,
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which is o(1/p4
n), since

fn4

p2
n − 1

− f 2
n2

(pn − 1)2
= 4en2 − 2 + (p − 1)en4 − (p + 1)e2

n2

(p2 − 1)(p − 1)
= o

(
1

p2
n

)

under Assumption (a). Now,

Cov[wn,12,wn,13]

= p2
n(en4 − e2

n2)
2

(pn − 1)2
en4e

2
n2 +

(
fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)2

fn4f
2
n2

+ 4f 3
n4f

2
n2

(p2
n − 1)2(pn − 1)2

+ 2pn(en4 − e2
n2)

pn − 1

(
fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
(en2 − en4)en2fn2

+ 4pn(en4 − e2
n2)fn4

(pn − 1)2(p2
n − 1)

(en2 − en4)en2fn2 + 4f 2
n4f

2
n2

(p2
n − 1)(pn − 1)

(
fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)

−
{

pn(en4 − e2
n2)

pn − 1
e2
n2 +

(
fn4

p2
n − 1

− f 2
n2

(pn − 1)2
+ en4 − e2

n2

pn − 1

)
f 2

n2 + 2fn4f
2
n2

(p2
n − 1)(pn − 1)

}2

·

Tedious computations provide

Cov[wn,12,wn,13] = p4
n

(pn − 1)4

(
en4 − e2

n2

)3
g2

n2,

which is o(n−1p−4
n ) under Assumptions (a) and (c). From (32), we conclude that Var[T (b)

1n ] is o(1), which establishes the
result. �

Proof of Proposition B.2. Since Var[Dn�] ≤ E[D2
n�] = E[σ 2

n�], Proposition B.1(i) shows that
∑n

�=1 Var[Dn�] ≤∑n
�=1 E[σ 2

n�] = 1. Therefore, applying Cauchy–Schwarz inequality, Chebychev inequality, then Cauchy–Schwarz in-
equality again, yields

n∑
�=1

E
[
D2

n�I
[|Dn�| > ε

]]≤ n∑
�=1

√
E
[
D4

n�

]√
P
[|Dn�| > ε

]≤ 1

ε

n∑
�=1

√
E
[
D4

n�

]√
Var[Dn�]

≤ 1

ε

√√√√ n∑
�=1

E
[
D4

n�

]√√√√ n∑
�=1

Var[Dn�] ≤ 1

ε

√√√√ n∑
�=1

E
[
D4

n�

]
. (33)

Letting

Yni� := (X′
niXn�

)2 − pn

pn − 1
gn2u

2
ni − fn2

pn − 1
,

(30) provides

E
[
D4

n�

]≤ Cp4
n

n4
E

[(
�−1∑
i=1

Yni�

)4]
+ C(n − �)4p8

n

n4(pn − 1)4
g4

n2E
[(

u2
n� − en2

)4]
,

hence

n∑
�=1

E
[
D4

n�

]≤ Cp4
n

n4

n∑
�=1

�−1∑
i,j,r,s=1

E[Yni�Ynj�Ynr�Yns�] + Cnp4
ng

4
n2en8

= Cp4
n

n4

n∑
�=1

�−1∑
i,j,r,s=1

E[Yni�Ynj�Ynr�Yns�] + o

(
1

n1/3

)
. (34)
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Now, in the sum over i, j, r, s, there are � − 1 ≤ n terms for which {i, j, r, s} has cardinality one; for these terms, (28)
yields

E
[|Yni�Ynj�Ynr�Yns�|

]= E
[
Y 4

n1�

]≤ CE

[(
X′

n1Xn�

)8 + p4
n

(pn − 1)4
g4

n2u
8
n1 + f 4

n2

(pn − 1)4

]

≤ C

{
E
[
u8

n1u
8
n� + v8

n1v
8
n�

(
S′

n1Sn�

)8 + u4
n1v

4
n1u

4
n�v

4
n�

(
S′

n1Sn�

)4]+ g4
n2en8 + f 4

n2

p4
n

}

≤ C

{
e2
n8 + 105

(p2
n − 1)(pn + 3)(pn + 5)

+ 3e2
n4

p2
n − 1

+ g4
n2en8 + f 4

n2

p4
n

}
= o

(
n4/3

p4
n

)
, (35)

where we used Lemma B.1(iv), the identities v4
n1, v

4
n� ≤ 1, and Assumptions (a)–(c). In the sum over i, j, r, s, there

are 3(�− 1)(�− 2) ≤ 3n2 for which {i, j, r, s} has cardinality two and contains two pairs of equal indices. For such terms,
Lemma B.2(ii) yields

E
[|Yni�Ynj�Ynr�Yns�|

]= (E[Y 2
n1�

])2 ≤ C

{
E
[(

X′
niXn�

)4]+ p2
n

(pn − 1)2
g2

n2en4 + f 2
n2

(pn − 1)2

}2

≤ C

{
e2
n4 + 2(en2 − en4)

2

pn − 1
+ 3f 2

n4

p2
n − 1

+ g2
n2en4 + f 2

n2

p2
n

}2

= O

(
1

p4
n

)
.

Similarly, the sum over i, j, r, s in (34) contains no more than C1n
2 terms (where C1 does not depend on �) such

that {i, j, r, s} has cardinality two and contains a triple of equal indices. For such terms, Lemma B.4(i) yields

E[Yni�Ynj�Ynr�Yns�] = E
[
E
[
Y 3

n1�Yn2�|Xn�

]]= E
[
E
[
Y 3

n1�|Xn�

]
E[Yn2�|Xn�]

]
= pn

pn − 1
gn2E
[
E
[
Y 3

n1�|Xn�

](
u2

n� − en2
)]= pn

pn − 1
gn2E
[
Y 3

n1�

(
u2

n� − en2
)]

,

so that the Hölder inequality provides

∣∣E[Yni�Ynj�Ynr�Yns�]
∣∣≤ Cgn2E

[
Y 3

n1�

(
u2

n� − en2
)]≤ Cgn2

(
E
[
Y 4

nr�

])3/4(E[(u2
n� − en2

)4])1/4

≤ Cgn2
(
E
[
Y 4

nr�

])3/4
e

1/4
n8 = O

(
1√
npn

)
o

(
n

p3
n

)
o

(
n1/6

√
pn

)
= o

(
n2/3

p4
n

)
,

where we used (35). The sum over i, j, r, s in (34) contains no more than C2n
3 (where C2 does not depend on �) terms

such that {i, j, r, s} has cardinality three. Proceeding as above, the corresponding terms are seen to satisfy

E[Yni�Ynj�Ynr�Yns�] = E
[
E
[
Y 2

n1�|Xn�

]
E[Yn2�|Xn�]E[Yn3�|Xn�]

]
= p2

n

(pn − 1)2
g2

n2E
[
E
[
Y 2

n1�|Xn�

](
u2

n� − en2
)2]= pn

pn − 1
g2

n2E
[
Y 2

n1�

(
u2

n� − en2
)2]

,

which, by using the Cauchy–Schwarz inequality, yields

∣∣E[Yni�Ynj�Ynr�Yns�]
∣∣≤ Cg2

n2E
[
Y 2

n1�

(
u2

n� − en2
)2]≤ Cg2

n2

√
E
[
Y 4

n1�

]√
E
[(

u2
n� − en2

)4]
≤ Cg2

n2

√
E
[
Y 4

nr�

]√
en8 = O

(
1

npn

)
o

(
n2/3

p2
n

)
o

(
n1/3

pn

)
= o

(
1

p4
n

)
.

Finally, there obviously are less than (� − 1)4 ≤ n4 terms such that {i, j, r, s} has cardinality four, and these terms are
such that∣∣E[Yni�Ynj�Ynr�Yns�]

∣∣= ∣∣E[E[Yn1�|Xn�]E[Yn2�|Xn�]E[Yn3�|Xn�]E[Yn4�|Xn�]
]∣∣

= p4
n

(pn − 1)4
g4

n2E
[(

u2
n� − en2

)4]≤ Cg4
n2en8 = O

(
1

n2p2
n

)
o

(
n2/3

p2
n

)
= o

(
1

n4/3p4
n

)
.
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Altogether, (34) thus yields

n∑
�=1

E
[
D4

n�

]= Cnp4
n

n4

{
no

(
n4/3

p4
n

)
+ 3n2O

(
1

p4
n

)
+ C1n

2o

(
n2/3

p4
n

)

+ C2n
3o

(
1

p4
n

)
+ n4o

(
1

n4/3p4
n

)}
+ o

(
1

n1/3

)
= o(1).

From (33), we thus conclude that

n∑
�=1

E
[
D2

n�I
[|Dn�| > ε

]]≤ 1

ε

√√√√ n∑
�=1

E
[
D4

n�

]= o(1),

which establishes the result. �

Proof of Theorem 3.2. (i)–(ii) In these cases, we have
√

npngn2 → ξ , with ξ = 0 in case (i) and ξ �= 0 in case (ii). Under
Assumption (a) and gn2 = O(1/

√
npn), Proposition 3.1 then yields

μn := E
[
QSt

n

]= p2
n(n − 1)

2(pn − 1)
g2

n2 = ξ2

2
+ o(1)

and

σ 2
n := Var

[
QSt

n

]= (n − 1)p2
n

2n

{
3f 2

n4

p2
n − 1

−
(

O

(
1

npn

)
+ 1

pn

)2}
+ o(1) = 1 + o(1),

so that Theorem 3.1 and Slutzky’s lemma provide

QSt
n = σn

(
QSt

n − E[QSt
n ]√

Var[QSt
n ]
)

+ μn
D→ N

(
ξ2

2
,1

)
,

as was to be shown. (iii) Assume that
√

npn|gn2| → ∞ and fix M > 0 (clearly, it is enough to prove the result for M > 0).
Proposition 3.1 then ensures that μn diverges to infinity, so that there exists n0 such that μn > M for any n ≥ n0. For any
such n, the Chebychev inequality yields

P(n)
θθθn,Fn

[
QSt

n ≤ M
]= P(n)

θθθn,Fn

[
QSt

n − μn ≤ M − μn

]
≤ P(n)

θθθn,Fn

[∣∣QSt
n − μn

∣∣≥ μn − M
]≤ σ 2

n

(μn − M)2
= σ 2

n

μ2
n

(
1 + o(1)

)
.

Now, if en4 = o(ng2
n2), then we also have pne

2
n2 = o(npng

2
n2) and pne

2
n2 = o((npng

2
n2)

2). Therefore,

σ 2
n

μ2
n

≤ Cp2
n

(npng
2
n2)

2

{
e2
n4 + 6

pn − 1
(en2 − en4)

2 + 3f 2
n4

p2
n − 1

−
(

pn

pn − 1
g2

n2 + 1

pn

)2}

+ Cnp2
n

(npng
2
n2)

2

(
en4 − e2

n2

)
g2

n2

≤ C

(npng
2
n2)

2

{
p2

ne
2
n4 + 12pn(en2 − en4)

2}+ Cpn

npng
2
n2

(
en4 − e2

n2

)+ o(1) = o(1),

which implies that P(n)
θθθn,Fn

[QSt
n ≤ M] → 0, hence establishes the result. �
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Appendix C: Proofs for Section 4

Proof of Proposition 4.1. Since κn is assumed to be o(pn) as n → ∞, Lemma A.1 provides

en2 = 1

κn

(
cpn

cpn,κn,f

)−1

cpn

∫ 1

−1

(
1 − s2)(pn−3)/2(

κns
2)f (κns

2)ds

=
1
κn

( κn

pn
+ 3κ2

n

p2
n

+ o(
κ2
n

p2
n
))

1 + κn

pn
+ o( κn

pn
)

=
1
pn

+ 3κn

p2
n

+ o( κn

p2
n
)

1 + κn

pn
+ o( κn

pn
)

= 1

pn

+ 2κn

p2
n

+ o

(
κn

p2
n

)
,

which proves the result for en2. The same lemma also yields

en4 = 1

κ2
n

(
cpn

cpn,κn,f

)−1

cpn

∫ 1

−1

(
1 − s2)(pn−3)/2(

κns
2)2f (κns

2)ds

=
1
κ2
n
(

3κ2
n

p2
n

+ o(
κ2
n

p2
n
))

1 + κn

pn
+ o( κn

pn
)

=
3
p2

n
+ o( 1

p2
n
)

1 + κn

pn
+ o( κn

pn
)

= 3

p2
n

+ o

(
1

p2
n

)
.

The claim for en8 directly follows from the identity en8 ≤ en4. �

Proof of Theorem 4.1. First note that, in all cases (i)–(iii), we have κn = o(pn), so that Proposition 4.1 applies and
ensures that conditions (a)–(b) in Theorem 3.2 are fulfilled. Let us then treat cases (i)–(iii) separately. (i) Since κn =
o(p

3/2
n /

√
n), Proposition 4.1 implies that

gn2 = en2 − 1

pn

= O

(
κn

p2
n

)
= o

(
1√
npn

)
,

so that Theorem 3.2(i) shows that QSt
n is asymptotically standard normal. (ii) Since

√
nκn/p

3/2
n → τ(�= 0) and pn = o(n),

Proposition 4.1 provides

√
npngn2 = 2

√
nκn

p
3/2
n

+ o

(√
nκn

p
3/2
n

)
= 2τ + o(1),

Theorem 3.2(ii) shows that QSt
n

D→ N (ξ2/2,1), with ξ = 2τ , which establishes the result. (iii) The claim follows from
Theorem 3.2(iii) since

√
npn|gn2| = 2

√
nκn

p
3/2
n

+ o

(√
nκn

p
3/2
n

)

diverges to infinity. �

We now turn to the proof of Theorem 4.2, that requires both following technical results providing asymptotic expan-
sions of confluent hypergeometric functions of matrix arguments; see, e.g., Section 7.3 of [33] for the definition of these
functions.

Lemma C.1. Let A be the collection of � × � real symmetric matrices whose eigenvalues all belong to (−1,1). Then, (i)
for any A ∈ A,

1F1

(
a,

m

2
,
m

2
A
)

= |I� − A|−a

{
1 − a

2m

((
tr[A1]

)2 + (2a + 1) tr
[
A2

1

])+ 1

m2
Pa(A1) + O

(
1

m3

)}



594 C. Cutting, D. Paindaveine and T. Verdebout

as m → ∞, where we let A1 := A(I� − A)−1 and where B �→ Pa(B) is a continuous function that, for any �× � matrix B,
satisfies Pa(λB) = O(λ2)Pa(B) as λ → 0. Moreover, (ii) this expansion is uniform over any compact subset of A in the
sense that

sup
A∈K

∣∣∣∣|I� − A|a1F1

(
a,

m

2
,
m

2
A
)

−
{

1 − a

2m

((
tr[A1]

)2 + (2a + 1) tr
[
A2

1

])+ 1

m2
Pa(A1)

}∣∣∣∣= O

(
1

m3

)

for any compact subset K of A.

Proof of Lemma C.1. For any partition κ = (k1, k2, . . . , k�) of the nonnegative integer k (that is, k = k1 + k2 + · · · + k�,
with k1 ≥ k2 ≥ · · · ≥ k� ≥ 0), we let (a)κ :=∏�

i=1(a − 1
2 (i − 1))ki

, where (c)r := c(c + 1) . . . (c + r − 1) for r > 0
and (c)0 := 1, and we denote as Cκ(B) the zonal polynomial associated with κ evaluated at the � × � matrix B; see, e.g.,
Section 7.2 of [33]. With this standard notation,

1F1

(
a,

m

2
,
m

2
A
)

=
∞∑

k=0

∑
κ

(a)κ

(m
2 )κ

Cκ(m
2 A)

k! =
∞∑

k=0

∑
κ

(a)κ

(m
2 )κ

(m
2 )kCκ(A)

k! ,

where the sum in κ is over all partitions κ of k (the last equality results from the homogeneity properties of zonal
polynomials). Expanding (m

2 )κ/(m
2 )k then yields

1F1

(
a,

m

2
,
m

2
A
)

=
∞∑

k=0

∑
κ

(a)κ

(
1 − 1

m
a1(κ) + 1

6m2

(
3a2

1(κ) + a2(κ) − k
)+ O

(
1

m3

))
Cκ(A)

k!

as m → ∞, with a1(κ) =∑�
i=1 ki(ki − i) and a2(κ) =∑�

i=1 ki(4k2
i − 6kii + 3i2); see (5.8) in [21]. Using the identi-

ties (1.6) and (2.18) from the same paper then provides

1F1

(
a,

m

2
,
m

2
A
)

= |I� − A|−a

{
1 − a

2m

((
tr[A1]

)2 + (2a + 1) tr
[
A2

1

])}

+
∞∑

k=0

∑
κ

(a)κ

(
1

6m2

(
3a2

1(κ) + a2(κ) − k
)+ O

(
1

m3

))
Cκ(A)

k!

as m → ∞. Part (i) of the result then follows from the other identities in Lemma 3 from [21] (it is readily checked
that the terms in Pa(B) of the form ca tr[B], which are the only ones that would prevent Pa(λB) to be O(λ2)Pa(B)

as λ → 0, cancel out). Since Part (ii) readily follows by noting that the O(1/m3) quantity above does not depend on A,
this establishes the result. �

The expansion in Lemma C.1 is a second-order refinement of the first-order expansion in (A.6.17) from [13]. Without
this refinement, the condition pn/

3
√

n → ∞ in Theorem 4.2 would have to be reinforced into pn/
√

n → ∞. We conjec-
ture that even higher-order expansions would allow us to weaken the condition pn/

3
√

n → ∞ into pn/nδ → ∞ for an
arbitrary δ > 0, but we did not try to prove this as obtaining such higher-order expansions is extremely laborious.

The following result, that will be needed in the proof of Theorem 4.2, is now a rather direct corollary of Lemma C.1.

Lemma C.2. Let (pn) and (κn) satisfy the assumptions of Theorem 4.2. Let Mz be a pn ×pn matrix whose only non-zero
entries are (Mz)11 = (1 + z)/2 and (Mz)22 = (1 − z)/2, with z ∈ [−1,1]. Then, with tn := κn/pn,

(
1F1

(
1

2
,
pn

2
, tnpn

))2n

= (1 − 2tn)
−n
(
1 + o(1)

)
and (

1F1

(
1

2
,
pn

2
,2tnpnMz

))n

= ((1 − 2tn)
2 − 4t2

nz2)−n/2(1 + o(1)
)

as n → ∞.
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Proof of Lemma C.2. In this proof, all o’s and O’s are as n → ∞. Using Lemma C.1(ii), we have

1F1

(
1

2
,
pn

2
, tnpn

)
= 1

(1 − 2tn)1/2

(
1 − 3t2

n

pn(1 − 2tn)2
+ O

(
t2
n

p2
n

)
+ O

(
1

p3
n

))

= 1

(1 − 2tn)1/2

(
1 + O

(
t2
n

pn

)
+ O

(
1

p3
n

))
.

Since t2
n = o(pn/n) and n/p3

n = o(1), this yields

(1 − 2tn)
n

(
1F1

(
1

2
,
pn

2
, tnpn

))2n

=
(

1 + o

(
1

n

))2n

= 1 + o(1),

which establishes the first result. For the second one, first note that the definition of hypergeometric functions implies
that 1F1(

1
2 ,

pn

2 ,2tnpnMz) =1 F1(
1
2 ,

pn

2 ,2tnpnNz), where Nz = diag((1 + z)/2, (1 − z)/2) is the 2 × 2 upper-left block
of Mz. Lemma C.1(ii) then similarly yields

1F1

(
1

2
,
pn

2
,2tnpnNz

)
= 1

|I2 − 4tnNz|1/2

(
1 − 1

4pn

((
tr[An,z]

)2 + 2 tr
[
A2

n,z

])+ O

(
t2
n

p2
n

)
+ O

(
1

p3
n

))
,

with An,z := 4tnNz(I2 − 4tnNz)
−1. Direct computations show that |I2 − 4tnNz| = (1 − 2tn)

2 − 4t2
nz2 for n large enough

and that (tr[An,z])2 = O(t2
n) = tr[A2

n,z]. Therefore, proceeding as for the first result,

(
(1 − 2tn)

2 − 4t2
nz2)n/2

(
1F1

(
1

2
,
pn

2
,2tnpnMz

))n

=
(

1 + O

(
t2
n

pn

)
+ O

(
1

p3
n

))n

=
(

1 + o

(
1

n

))n

= 1 + o(1),

which establishes the second result. �

We can now prove Theorem 4.2.

Proof of Theorem 4.2. We proceed along the same lines as in the proof of Theorem 1 from [10]. Consider the set Vn :=
{±1}pn , that has cardinality 2pn , and the mixture distribution

P(n)
1 := 1

2pn

∑
vn∈Vn

P(n)

vn/
√

pn,κn,fW
.

For any test φn, we then have

E
P(n)

0
[φn] + sup

θθθn∈Spn−1
E

P(n)
θθθn,κn,fW

[1 − φn]

= sup
θθθn∈Spn−1

(
E

P(n)
0

[φn] + E
P(n)
θθθn,κn,fW

[1 − φn]
)

≥ inf
ψn

sup
θθθn∈Spn−1

(
E

P(n)
0

[ψn] + E
P(n)
θθθn,κn,fW

[1 − ψn]
)≥ inf

ψn

1

2pn

∑
vn∈Vn

(
E

P(n)
0

[ψn] + E
P(n)

vn/
√

pn,κn,fW

[1 − ψn]
)

= inf
ψn

(
E

P(n)
0

[ψn] + E
P(n)

1
[1 − ψn]

)= 1 − inf
ψn

(
E

P(n)
1

[ψn] − E
P(n)

0
[ψn]
)= 1 − 1

2

∥∥P(n)
1 − P(n)

0

∥∥
1,

where ‖Q − P‖1 is the L1 distance between P and Q. Since this rewrites

inf
θθθn∈Spn−1

E
P(n)
θθθn,κn,fW

[φn] ≤ E
P(n)

0
[φn] + 1

2

∥∥P(n)
1 − P(n)

0

∥∥
1,

we have, as n → ∞,

inf
θθθn∈Spn−1

E
P(n)
θθθn,κn,fW

[φn] ≤ E
P(n)

0
[φn] + 1

2

∥∥P(n)
1 − P(n)

0

∥∥
1 + o(1)
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≤ E
P(n)

0
[φn] + 1

2

(
E

P(n)
0

[(
dP(n)

1

dP(n)
0

− 1

)2])1/2

+ o(1)

= E
P(n)

0
[φn] + 1

2

(
E

P(n)
0

[(
dP(n)

1

dP(n)
0

)2]
− 1

)1/2

+ o(1).

Therefore, it is sufficient to prove that

E
P(n)

0

[(
dP(n)

1

dP(n)
0

)2]
= 1 + o(1), (36)

as n → ∞. To do so, note that, from (3), the Watson distributions admit the density

x �→ Cp,κ exp
(
κ
(
x′θθθ
)2) := cp,κ,fW

�(
p−1

2 )

2π(p−1)/2
exp
(
κ
(
x′θθθ
)2)

,

with

cp,κ,fW
= 1/

∫ 1

−1

(
1 − s2)(p−3)/2 exp

(
κs2)ds = �(

p
2 )

√
π�(

p−1
2 )1F1(

1
2 ,

p
2 , κ)

·

Since this yields

dP(n)
1

dP(n)
0

= 1

2pn

∑
vn∈Vn

dP(n)

vn/
√

pn,κn

dP(n)
0

= Cn
pn,κn

2pnCn
pn,0

∑
vn∈Vn

exp

(
κn

n∑
i=1

(
X′

nivn

)2
/pn

)
,

we have

(
dP(n)

1

dP(n)
0

)2

= C2n
pn,κn

4pnC2n
pn,0

∑
vn,wn∈Vn

exp

(
κn

n∑
i=1

(
X′

ni

{(
vnv′

n + wnw′
n

)
/pn

}
Xni

))
,

which provides

E
P(n)

0

[(
dP(n)

1

dP(n)
0

)2]
= C2n

pn,κn

4pnCn
pn,0

∑
vn,wn∈Vn

(∫
Spn−1

exp
(
κnx′{(vnv′

n + wnw′
n

)
/pn

}
x
)
dσ(x)

)n

.

It is easy to check that the eigenvalues of (vnv′
n + wnw′

n)/pn are λ1n = 1 + (v′
nwn)/pn, λ2n = 1 − (v′

nwn)/pn, and
λ3n = · · · = λpnn = 0. Therefore, letting tn := κn/pn, 			(z) = 			n(z) := diag(1 + z/pn,1 − z/pn,0, . . . ,0) and Bv =
Bn,v := diag((1 + v̄)/2, (1 − v̄)/2,0, . . . ,0), where v̄ is the average of v’s entries, we have

E
P(n)

0

[(
dP(n)

1

dP(n)
0

)2]
= C2n

pn,κn

4pnCn
pn,0

∑
wn∈Vn

∑
vn∈Vn

(∫
Spn−1

exp
(
κnx′			

(
v′
nwn

)
x
)
dσ(x)

)n

= C2n
pn,κn

2pnCn
pn,0

∑
vn∈Vn

(∫
Spn−1

exp
(
κnx′			

(
v′
n1
)
x
)
dσ(x)

)n

= C2n
pn,κn

2pnC2n
pn,0

∑
vn∈Vn

(
Cpn,0

∫
Spn−1

exp
(
2tnpnx′Bvnx

)
dσ(x)

)n

= C2n
pn,κn

2pnC2n
pn,0

∑
vn∈Vn

(
1F1

(
1

2
,
pn

2
,2tnpnBvn

))n

(37)

= C2n
pn,κn

C2n
pn,0

E

[(
1F1

(
1

2
,
pn

2
,2tnpnBVn

))n]
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= E[(1F1(
1
2 ,

pn

2 ,2tnpnBVn
))n]

(1F1(
1
2 ,

pn

2 , tnpn))2n
, (38)

where Vn = (Vn1, . . . , Vnpn) is uniformly distributed over Vn, hence has mutually independent Rademacher marginals;
here, the equality in (37) results from page 1208 of [34] or page 4 from [25], whereas the one in (38) follows from the
fact that

Cpn,κn = cpn,κn�(
pn−1

2 )

2π(pn−1)/2
=
(

�(
pn

2 )
√

π�(
pn−1

2 )1F1(
1
2 ,

pn

2 , κn)

)
�(

pn−1
2 )

2π(pn−1)/2
= �(

pn

2 )

2π
pn/2
1 F1(

1
2 ,

pn

2 , κn)

yields Cpn,κn/Cpn,0 =1 F1(
1
2 ,

pn

2 ,0)/1F1(
1
2 ,

pn

2 , κn) = 1/1F1(
1
2 ,

pn

2 , tnpn).
By applying Lemma C.2 to (38), we obtain that, for a sequence ηn that converges to one,

E
P(n)

0

[(
dP(n)

1

dP(n)
0

)2]
= ηnE

[
((1 − 2tn)

2 − 4t2
nV̄2

n)
−n/2

(1 − 2tn)−n

]
= ηnE

[(
1 − snV̄2

n

)−n/2]
,

where we let sn := 4t2
n/(1 − 2tn)

2 and V̄n := 1
pn

∑pn

�=1 Vn�. Now, since 0 ≤ (1 − x)−1/(2x) ≤ 2 for any x ∈ [0, 1
2 ] and sn ≤

1/2 for n large enough, we then have, for n large enough,

E
P(n)

0

[(
dP(n)

1

dP(n)
0

)2]
= ηnE

[((
1 − snV̄2

n

)−1/(2snV̄2
n))nsnV̄2

n
]≤ ηnE

[
2nsnV̄2

n
]= ηnE

[
exp
(
nsnV̄2

n log 2
)]

= ηn

∫ ∞

0
P
[
exp
(
nsnV̄2

n log 2
)≥ u

]
du = ηn

(
1 +
∫ ∞

1
P

[
V̄2

n ≥ logu

(log 2)nsn

]
du

)
.

We then use Hoeffding’s inequality, which, applied to the mutually independent Rademacher random variables Vn�,
provides P[V̄2

n ≥ z] ≤ 2 exp(−2pnz) for any z > 0; see [10], page 2371. This yields

E
P(n)

0

[(
dP(n)

1

dP(n)
0

)2]
≤ ηn

(
1 + 2

∫ ∞

1
exp

(
− 2pn logu

(log 2)nsn

)
du

)
= ηn

(
1 + 2

∫ ∞

1
u

− 2pn
(log 2)nsn du

)

for n large enough. Since the assumptions of Theorem 4.2 ensure that

pn

nsn
= pn(1 − 2tn)

2

4nt2
n

= pn(1 + o(1))

4nt2
n

=
(

4nκ2
n

p3
n(1 + o(1))

)−1

→ ∞,

we have that, still for n large enough,

E
P(n)

0

[(
dP(n)

1

dP(n)
0

)2]
≤ ηn

(
1 + 2

[
u

1− 2pn
(log 2)nsn

1 − 2pn

(log 2)nsn

]∞
1

)
= ηn

(
1 + 2

2pn

(log 2)nsn
− 1

)
→ 1.

Since

1 =
(

E
P(n)

0

[
dP(n)

1

dP(n)
0

])2

≤ E
P(n)

0

[(
dP(n)

1

dP(n)
0

)2]
,

this establishes (36), which proves the result. �

Appendix D: Proofs for Section 5

The following result is a higher-order extension of Lemma A.1 from [15] and is needed to prove Proposition 5.1.
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Lemma D.1. Let g : R → R be four times differentiable at 0. Let (pn) be a sequence of positive integers diverging to ∞
and (κn) be a real sequence that is o(

√
pn). Then,

Rn(g) := cpn

∫ 1

−1

(
1 − s2)(pn−3)/2

g(κns) ds = g(0) + κ2
n

2pn

g′′(0) + κ4
n

8p2
n

g4(0) + o

(
κ4
n

p2
n

)

as n → ∞, still with cp := 1/
∫ 1
−1(1 − s2)(p−3)/2 ds.

Proof of Lemma D.1. We proceed as in the proof of Lemma A.1. Denoting as g� the �th derivative of g, (15) allows us
to write

Rn(g) − g(0) − κ2
n

2pn

g′′(0) = cpn

∫ 1

−1

(
1 − s2)(pn−3)/2

{
g(κns) −

3∑
�=0

1

�!κ
�
ns�g�(0)

}
ds.

We may assume without any loss of generality that (κn) is a sequence in R
+
0 , so that the change of variables t = κns

yields

Rn(g) − g(0) − κ2
n

2pn

g′′(0) = 3κ4
n

pn(pn + 2)

∫ ∞

−∞
hn(t)

{
g(t) −∑3

�=0
1
�! t

�g�(0)

t4

}
dt,

or, equivalently,

Rn(g) − g(0) − κ2
n

2pn
g′′(0) − 3κ4

n

24pn(pn+2)
g4(0)

3κ4
n

pn(pn+2)

=
∫ ∞

−∞
hn(t)

{
g(t) −∑3

�=0
1
�! t

�g�(0)

t4

}
dt − 1

24
g4(0), (39)

where hn is defined through

t �→ hn(t) =
t4(1 − t2

κ2
n
)(pn−3)/2

I[|t | ≤ κn]∫∞
−∞ t4(1 − t2

κ2
n
)(pn−3)/2I[|t | ≤ κn]dt

·

It can be checked that, since κn = o(
√

pn), the sequence (hn) is an approximate δ-sequence, in the sense that∫∞
−∞ hn(t) dt = 1 for any n and

∫ ε

−ε
hn(t) dt → 1 for any ε > 0. Hence,

lim
n→∞

∫ ∞

−∞
hn(t)

{
g(t) −∑3

�=0
1
�! t

�g�(0)

t4

}
dt = lim

t→0

g(t) −∑3
�=0

1
�! t

�g�(0)

t4
,

which, by using three times L’Hôpital’s rule, is equal to

lim
t→0

g3(t) − g3(0)

24t
= 1

24
g4(0),

where the last equality results from differentiability of g3 at zero. Thus, (39) yields

Rn(g) − g(0) − κ2
n

2pn

g′′(0) − 3κ4
n

24pn(pn + 2)
g4(0) = o

(
κ4
n

p2
n

)
,

which establishes the result. �

Proof of Proposition 5.1. Let us first recall that if X admits the density in (12), then X′θθθ admits the density z �→
c̃p,κ,f (1 − s2)(p−3)/2f (κs)I[z ∈ [−1,1]] (which explains the expression of the normalizing constant c̃p,κ,f in (12)).
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Since κn is assumed to be o(
√

pn) as n → ∞, Lemma D.1 provides

en2 = 1

κ2
n

(
cpn

c̃pn,κn,f

)−1

cpn

∫ 1

−1

(
1 − s2)(pn−3)/2

(κns)
2f (κns) ds

=
1
κ2
n
(

κ2
n

pn
+ 12κ4

n

8p2
n
f ′′(0) + o(

κ4
n

p2
n
))

1 + κ2
n

2pn
f ′′(0) + κ4

n

8p2
n
f 4(0) + o(

κ4
n

p2
n
)

=
1
pn

+ 3κ2
n

2p2
n
f ′′(0) + o(

κ2
n

p2
n
)

1 + κ2
n

2pn
f ′′(0) + κ4

n

8p2
n
f 4(0) + o(

κ4
n

p2
n
)

= 1

pn

+ κ2
n

p2
n

f ′′(0) + o

(
κ2
n

p2
n

)
,

which proves the result for en2. The same lemma also yields

en4 = 1

κ4
n

(
cpn

c̃pn,κn,f

)−1

cpn

∫ 1

−1

(
1 − s2)(pn−3)/2

(κns)
4f (κns) ds

=
1
κ4
n
(

24κ4
n

8p2
n

+ o(
κ4
n

p2
n
))

1 + κ2
n

2pn
f ′′(0) + κ4

n

8p2
n
f 4(0) + o(

κ4
n

p2
n
)

=
3
p2

n
+ o( 1

p2
n
)

1 + κ2
n

2pn
f ′′(0) + κ4

n

8p2
n
f 4(0) + o(

κ4
n

p2
n
)

= 3

p2
n

+ o

(
1

p2
n

)
.

The claim for en8 directly follows from the identity en8 ≤ en4. �

Proof of Theorem 5.2. First note that, in all cases (i)–(iii), we have κn = o(
√

pn), so that Proposition 5.1 applies and
ensures that conditions (a)–(b) in Theorem 3.2 are fulfilled. Let us then treat cases (i)–(iii) separately. (i) Since κn =
o(p

3/4
n /n1/4), Proposition 5.1 implies that

gn2 = en2 − 1

pn

= O

(
κ2
n

p2
n

)
= o

(
1√
npn

)
,

so that Theorem 3.2(i) shows that QSt
n is asymptotically standard normal. (ii) Since n1/4κn/p

3/4
n → τ(�= 0) and pn = o(n),

Proposition 5.1 provides

√
npngn2 =

√
nκ2

n

p
3/2
n

f ′′(0) + o

(√
nκ2

n

p
3/2
n

)
= τ 2f ′′(0) + o(1),

Theorem 3.2(ii) shows that QSt
n

D→ N (ξ2/2,1), with ξ = τ 2f ′′(0), which establishes the result. (iii) The claim follows
from Theorem 3.2(iii) since

√
npn|gn2| = 2

√
nκn

p
3/2
n

+ o

(√
nκn

p
3/2
n

)

diverges to infinity. �

Appendix E: Consistency in the FvML case

In this final appendix, we show that the constraint κn = o(
√

pn) in Theorem 5.2(iii) is superfluous in the FvML case,
which validates the concentration scheme (iii) in the simulation exercise we conducted in Section 5 (recall that the
condition κn = o(

√
pn) is not met in this concentration scheme).

Proposition E.1. Let (pn) be a sequence of positive integers diverging to ∞ and (θθθn) be a sequence such that θθθn ∈ Spn−1

for any n. Fix f (z) = exp(z). Assume that the real non-negative sequence (κn) satisfies n1/4κn/p
3/4
n → ∞. Then, (i)√

npngn2 → ∞ as n → ∞ and (ii) en4 = o(ng2
n2) as n → ∞, so that (iii) for any real number M , P̃(n)

θθθn,κn,f [QSt
n > M] → 1

as n → ∞.
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Proof of Proposition E.1. (i) As seen from (2)–(3) in [40] or from Lemma S.2.1 in [16],

en1 = Ipn/2(κn)

I(pn/2)−1(κn)
, en2 = −pn − 1

κn

en1 + 1 (40)

and

en4 = − (pn − 1)(pn(pn + 1) + 2κ2
n)

κ3
n

en1 + (pn − 1)(pn + 1) + κ2
n

κ2
n

, (41)

where Iν(·) stands for the order-ν modified Bessel function of the first kind. It follows from (11) in [1] that

κn

pn

2 +
√

p2
n

4 + κ2
n

≤ en1 ≤ κn

pn

2 − 1 +
√

(
pn

2 + 1)2 + κ2
n

· (42)

Now, note that (40) provides (for pn ≥ 2)

gn2 = en2 − 1

pn

= 1 − 1

pn

− pn − 1

κn

en1 = pn − 1

pn

(
1 − en1

κn/pn

)
≥ 1

2

(
1 − en1

κn/pn

)
.

Since (42) implies in particular that

1 − en1

κn/pn

≥ 1 − 1

1
2 − 1

pn
+
√

( 1
2 + 1

pn
)2 + κ2

n

p2
n

= κ2
n/p2

n

1
2 + 1

pn
+ κ2

n

p2
n

+
√

( 1
2 + 1

pn
)2 + κ2

n

p2
n

,

we thus have

2
√

npngn2 ≥
√

nκ2
n/p

3/2
n

1
2 + 1

pn
+ κ2

n

p2
n

+
√

( 1
2 + 1

pn
)2 + κ2

n

p2
n

·

Therefore, by using the identity
√

a2 + b2 ≤ |a| + |b|, we obtain that (still for pn ≥ 2)

2
√

npngn2 ≥
√

nκ2
n/p

3/2
n

1 + 2
pn

+ κ2
n

p2
n

+ κn

pn

≥
√

nκ2
n/p

3/2
n

2(1 + κn

pn
)2

≥
√

nκ2
n/p

3/2
n

2(2 max(1, κn

pn
))2

=
√

nκ2
n

8p
3/2
n

min

(
1,

p2
n

κ2
n

)
= 1

8
min

((
n1/4κn

p
3/4
n

)2

,
√

npn

)
, (43)

which diverges to infinity by assumption. Part (i) the result follows. (ii) From (43), we have

en4

ng2
n2

= 4pnen4

(2
√

npngn2)2
≤ 256pnen4 max

(
p3

n

nκ4
n

,
1

npn

)
≤ 256 max

(
p4

nen4

nκ4
n

,
1

n

)
. (44)

Now, by using (41) and (42), we obtain

en4 ≤ − (pn − 1)(pn(pn + 1) + 2κ2
n)

κ3
n

× κn/pn

1
2 +
√

1
4 + κ2

n

p2
n

+ (pn − 1)(pn + 1) + κ2
n

κ2
n

= 1 + p2
n − 1

κ2
n

− p2
n − 1

κ2
n( 1

2 +
√

1
4 + κ2

n

p2
n
)

− 2(pn − 1)

pn(
1
2 +
√

1
4 + κ2

n

p2
n
)

= 1 + p2
n − 1

κ2
n

(
1 − 1

1
2 +
√

1
4 + κ2

n

p2
n

)
− 2

1
2 +
√

1
4 + κ2

n

p2
n

+ 2

pn(
1
2 +
√

1
4 + κ2

n

p2
n
)
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= 1 + p2
n − 1

p2
n(

1
2 +
√

1
4 + κ2

n

p2
n
)2

− 2

1
2 +
√

1
4 + κ2

n

p2
n

+ 2

pn(
1
2 +
√

1
4 + κ2

n

p2
n
)

,

which entails

en4 ≤ 1 + 1

( 1
2 +
√

1
4 + κ2

n

p2
n
)2

− 2

1
2 +
√

1
4 + κ2

n

p2
n

+ 2

pn

=
(

1 − 1

1
2 +
√

1
4 + κ2

n

p2
n

)2

+ 2

pn

= κ4
n/p4

n

( 1
2 +
√

1
4 + κ2

n

p2
n
)4

+ 2

pn

≤ κ4
n

p4
n

+ 2

pn

·

Therefore,

en4p
4
n

nκ4
n

≤ 1

n
+ 2p3

n

nκ4
n

= o(1)

by assumption, so that Part (ii) of the result follows from (44). (iii) In view of Parts (i)–(ii) of the result, the claim directly
follows from Theorem 3.2(iii). �
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