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Abstract
Multisample covariance estimation—that is, estimation of the covariance matrices

associated with k distinct populations—is a classical problem in multivariate statis-
tics. A common solution is to base estimation on the outcome of a test that these
covariance matrices show some given pattern. Such a preliminary test may, e.g.,
investigate whether or not the various covariance matrices are equal to each other
(test of homogeneity), or whether or not they have common eigenvectors (test of
common principal components), etc. Since it is usually unclear what the possible
pattern might be, it is natural to consider a collection of such patterns, leading to a
collection of preliminary tests, and to base estimation on the outcome of such a mul-
tiple testing rule. In the present work, we therefore study preliminary test estimation
based on multiple tests. Since this is of interest also outside k-sample covariance
estimation, we do so in a very general framework where it is only assumed that the
sequence of models at hand is locally asymptotically normal. In this general setup,
we define the proposed estimators and derive their asymptotic properties. We come
back to k-sample covariance estimation to illustrate the asymptotic and finite-sample
behaviours of our estimators. Finally, we treat a real data example that allows us to
show their practical relevance in a supervised classification framework.

Keywords: Covariance matrix estimation; Local asymptotic normality; Multisample prob-
lems; Preliminary test estimation; Valid post-selection inference.
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1 Introduction

The present paper is motivated by the problem of estimating the covariance matrices

ΣΣΣ1, . . . ,ΣΣΣk associated with k distinct p-dimensional populations. This is a very classi-

cal point estimation problem in multivariate analysis. It is, e.g., of paramount importance

when building discriminant analysis rules or when performing MANOVA or MANOCOVA.

When ΣΣΣ1, . . . ,ΣΣΣk are unconstrained, this multisample problem of course reduces to a col-

lection of k separate estimation problems. In many applications, however, it is assumed or

suspected that there is some link between the various covariance matrices. In line with this,

Boente and Orellana (2004) and Jensen and Madsen (2004) considered k-sample covari-

ance estimation under the assumption of proportionality, that specifies that ΣΣΣ1, . . . ,ΣΣΣk are

equal to a common covariance matrix ΣΣΣ up to group-specific scalar factors. Flury (1984)

tackled the same estimation problem in the common principal components (CPC) model,

under which ΣΣΣ1, . . . ,ΣΣΣk share the same eigenvectors. Many later works focused on this

CPC model: Flury (1986) derived what is now the textbook Gaussian asymptotic theory;

Boente et al. (2002) defined robust estimation procedures for this model, whereas Hallin

et al. (2014) focused on rank-based estimation; Browne and McNicholas (2014) considered

the problem in high dimensions, while functional extensions were proposed in Benko et al.

(2009).

Prior to performing k-sample covariance estimation under some specific assumption

(proportionality, CPC, etc.), it is of course natural to first perform a test to investigate

whether or not the data are compatible with that particular assumption. If one assumes

that the k covariance matrices are equal to each other, then one should accordingly perform

a test of homogeneity, among those from Schott (2001) or Hallin and Paindaveine (2009),

etc. For tests of proportionality, one may refer to Liu et al. (2014), Tsukuda and Matsuura
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(2019) and the references therein, while tests for the CPC structure were proposed in Flury

(1986), Schott (1991), Boente et al. (2009), and Hallin et al. (2013), to cite only a few.

Estimation is then based on the decision of such a preliminary test, as we now illustrate

by considering the assumption of homogeneity. If φcov is a test of the null hypothesis of

homogeneity Hcov
0 : ΣΣΣ1 = . . . = ΣΣΣk, then, writing I[A] for the indicator function of A, the

resulting natural estimator of (ΣΣΣ1, . . . ,ΣΣΣk) is

I[φcov = 1](Σ̂ΣΣ1, . . . , Σ̂ΣΣk) + I[φcov = 0](Σ̂ΣΣ, . . . , Σ̂ΣΣ), (1.1)

where the Σ̂ΣΣ1, . . . , Σ̂ΣΣk are “unconstrained” estimators of ΣΣΣ1, . . . ,ΣΣΣk and where Σ̂ΣΣ is an

estimator of the common value of the ΣΣΣ`’s under the null hypothesis of homogeneity; as

usual, φcov = 1 (resp., φcov = 0) indicates rejection (resp., non-rejection). The estimator

in (1.1) is a preliminary test estimator (PTE) in the sense of Saleh (2006); we refer to

Maeyama et al. (2011) and Paindaveine et al. (2017, 2020) for recent contributions on

such estimators. PTEs typically achieve a good compromise between (Σ̂ΣΣ1, . . . , Σ̂ΣΣk) and

(Σ̂ΣΣ, . . . , Σ̂ΣΣ) in the vicinity of Hcov
0 and, provided that φcov is a consistent test, PTEs are

also asymptotically equivalent to the classical estimator (Σ̂ΣΣ1, . . . , Σ̂ΣΣk) “away from the null

hypothesis Hcov
0 ”, that is, for fixed parameter values that do not satisfy Hcov

0 .

Motivation for the present work lies in the fact that, in many situations, multiple

constraints may be considered. To provide an example in the above k-sample covari-

ance estimation framework, let us factorize the k covariance matrices as ΣΣΣ` = σ2
`V` :=

(detΣΣΣ`)
1/p{ΣΣΣ`/(detΣΣΣ`)

1/p} to emphasize their “scale” σ` and their “shape” V`. With this

notation, one may consider the constraints associated with the null hypotheses of scale

homogeneity Hscale
0 : σ2

1 = . . . = σ2
k and of shape homogeneity Hshape

0 : V1 = . . . = Vk (note

that Hshape
0 coincides with the null hypothesis of proportionality). If φscale and φshape are

tests for these null hypotheses, then a natural estimator is the preliminary multiple-test
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estimator (PMTE)

I[φscale = 1, φshape = 1](σ̂2
1V̂1, . . . , σ̂

2
kV̂k) + I[φscale = 1, φshape = 0](σ̂2

1V̂, . . . , σ̂
2
kV̂)

+I[φscale = 0, φshape = 1](σ̂2V̂1, . . . , σ̂
2V̂k) + I[φscale = 0, φshape = 0](σ̂2V̂, . . . , σ̂2V̂), (1.2)

where the σ̂2
` ’s and V̂`’s are unconstrained estimators (these are the scale and shape of

the unconstrained estimators Σ̂ΣΣ`), σ̂
2 is an estimator of the common value of the σ2

` ’s

under Hscale
0 , and where V̂, similarly, is an estimator of the common value of the V`’s

under Hshape
0 . The estimator in (1.2) is a PTE that involves two constraints, whose in-

tersection is associated with the null hypothesis Hcov
0 of homogeneity of the k covariance

matrices. Obviously, more than two constraints may be considered. For instance, fac-

torizing further the covariance matrices into ΣΣΣ` = σ2
`V` = σ2

`O`ΛΛΛ`O
′
` based on the usual

spectral decomposition of the shape matrix V` (here, O` is an orthogonal matrix and ΛΛΛ`

is a diagonal matrix collecting the eigenvalues of V` on the diagonal), one may consider

the constraints associated with the null hypothesis of scale homogeneity Hscale
0 , the null

hypothesis of shape eigenvalue homogeneity Heig
0 : ΛΛΛ1 = . . . = ΛΛΛk, and the CPC null

hypothesis HCPC
0 : O1 = . . . = Ok. Combining the outcomes of tests for the three null

hypotheses allows one to define a three-constraint PMTE of the same nature as in (1.2).

Such an estimator actually formalizes the estimator practitioners would use in practice

in the present k-sample covariance estimation setup. It remains unclear, however, how

this estimator behaves since, to the best of our knowledge, such PMTEs have not been

considered in the literature.

The main objective of the present work is therefore to introduce and to study PMTEs,

and show their practical relevance. The outline of the paper is as follows. We first intro-

duce PMTEs in a general context (Section 2). Then, we derive the asymptotic behaviour of
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such estimators in the common framework of locally asymptotically normal (LAN) models

(Section 3). In particular, we show that away from all constraints, there is no asymptotic

loss to consider PMTEs rather than standard PTEs, since both types of estimators then

turn out to be asymptotically equivalent to the unconstrained estimator. As we show, how-

ever, PMTEs dominate their competitors in the vicinity of the considered constraints. To

demonstrate the practical relevance of PMTEs, we mainly focus on the multisample covari-

ance estimation problem that motivated this work (Section 4). We first derive the various

estimators in this context (Section 4.1), then compare them theoretically and empirically,

respectively through the computation of asymptotic efficiencies and through simulations

(Section 4.2). Last, we illustrate our methodology in a real data example involving different

species of voles (Section 4.3). We conclude with final comments (Section 5). In a supple-

mentary material, we perform finite-sample comparisons with estimators resulting from a

BIC-based model selection (Section A) and provide the technical proofs (Section B).

2 Preliminary multiple-test estimators (PMTEs)

Consider a model that is indexed by a parameter θθθ = (θ1, . . . , θd) ∈ ΘΘΘ ⊂ Rd of dimension d

and assume that, in line with the situation considered in the introduction, m possible

constraints on θθθ are suspected to hold. For the sake of clarity, we first introduce PMTEs

in the case involving m = 2 constraints only. Since we will actually restrict throughout to

linear constraints on θθθ, these two constraints take the form θθθ ∈ M(ΥΥΥj), j = 1, 2, for some

d×rj matrices ΥΥΥj (rj < d), whereM(A) denotes the vector subspace of Rd that is spanned

by the columns of A (without any loss of generality, we will assume in the sequel that

the ΥΥΥj’s have full rank). To make the notation lighter, we will throughout tacitly restrict to

values of θθθ that belong to ΘΘΘ, which allows us to write θθθ ∈M(ΥΥΥj) instead of θθθ ∈ ΘΘΘ∩M(ΥΥΥj),
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or θθθ ∈ Rd\M(ΥΥΥj) instead of θθθ ∈ ΘΘΘ\M(ΥΥΥj), etc. For d = 2, the two constraints are vectorial

lines that are respectively spanned by the d-vectors ΥΥΥj, j = 1, 2. In this framework, we

assume, for each j = 1, 2, that a test φj for the null hypothesisHj0 : θθθ ∈M(ΥΥΥj) is available.

The outcome of these tests is coded as φφφ := (φ1, φ2) ∈ {0, 1}2; as in the introduction,

φj = 1 (resp., φj = 0) indicates that φj leads to rejection (resp., non-rejection) of Hj0.

If φφφ = (1, 1), then it is natural to adopt an unconstrained estimator θ̂θθU (taking values in

Rd), whereas other values of φφφ would lead to considering various constrained estimators of θθθ,

namely a constrained estimator θ̂θθ(0,1) taking values in M(ΥΥΥ1) if φφφ = (0, 1), a constrained

estimator θ̂θθ(1,0) taking values in M(ΥΥΥ2) if φφφ = (1, 0), and a constrained estimator θ̂θθ(0,0)

taking values in M(ΥΥΥ1) ∩M(ΥΥΥ2) if φφφ = (0, 0). Summing up, this leads to the PMTE

θ̂θθPMTE := I[φφφ = (1, 1)]θ̂θθU + I[φφφ = (0, 1)]θ̂θθ(0,1) + I[φφφ = (1, 0)]θ̂θθ(1,0) + I[φφφ = (0, 0)]θ̂θθ(0,0), (2.3)

which is obtained by taking into account the 2m = 4 possible (joint) outcomes of the tests φ1

and φ2.

We now discuss the general case involving an arbitrary number m of linear constraints.

To do so, let ΥΥΥj, j = 1, . . . ,m, be full-rank d × rj (rj < d) matrices such that the jth

constraint takes the form Hj0 : θθθ ∈ M(ΥΥΥj) and let φj be a test for the corresponding null

hypothesis. Any element c = (c1, . . . , cm) ∈ Cm := {0, 1}m may be used to indicate which

constraints are satisfied by a given parameter value θθθ: letting Jc = {j = 1, . . . ,m : cj = 0},

θθθ ∈ ∩j∈JcM(ΥΥΥj) means that θθθ meets the constraints indexed by Jc but not the other ones.

Any c ∈ Cm also corresponds to a possible decision for the m-tuple of tests φφφ = (φ1, . . . , φm).

With this notation, the resulting PMTE is then

θ̂θθPMTE :=
∑
c∈Cm

I[φφφ = c]θ̂θθc, (2.4)

where θ̂θθc is a constrained estimator taking values in ∩j∈JcM(ΥΥΥj). In the sequel, it will be
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convenient to fix, for any c ∈ Cm, a full-rank matrix ΥΥΥc such that M(ΥΥΥc) = ∩j∈JcM(ΥΥΥj).

Note that for c = 1m− ej, where 1m is the m-vector of ones and ej is the jth vector of the

canonical basis of Rm, we may simply take ΥΥΥc = ΥΥΥj (so that θ̂θθc is a constrained estimator

based on the jth constraint only), whereas for c = 1m, then we may take ΥΥΥc = Id (so

that θ̂θθc = θθθU is an unconstrained estimator), where I` stands for the `-dimensional identity

matrix. Clearly, for m = 2, the PMTE in (2.4) reduces to the one in (2.3).

3 Asymptotic results

The objective of this section is to derive the asymptotic behaviour of the PMTE in (2.4)

under mild assumptions. We first describe the assumptions we will adopt.

3.1 Assumptions

Our first assumption imposes regularity of the parametric model {P(n)
θθθ : θθθ ∈ ΘΘΘ ⊂ Rd} at

hand. More precisely, it requires that this model is locally asymptotically normal (LAN)

(throughout, all convergences are as n→∞ and
D→ denotes weak convergence).

Assumption (A). There exist a deterministic sequence (νννn) of full-rank d × d matrices

converging to zero (in Frobenius norm, say), a sequence of random d-vectors ∆∆∆
(n)
θθθ (the

central sequence) and a symmetric positive semidefinite d × d matrix ΓΓΓθθθ (the information

matrix ), such that, for any θθθ ∈ ΘΘΘ and any bounded sequence (τττn) in Rd,

(i) Λ(n) := log
dP

(n)
θθθ+νννnτττn

dP
(n)
θθθ

= τττ ′n∆∆∆
(n)
θθθ −

1

2
τττ ′nΓΓΓθθθτττn + oP(1) (3.5)

and (ii) ∆∆∆
(n)
θθθ

D→ N (0,ΓΓΓθθθ) under P
(n)
θθθ .
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This assumption is very mild as it is satisfied by numerous parametric models, including

hidden Markov models (Bickel and Ritov, 1996), many time series models such as, e.g.,

ARMA and GARCH ones (Francq and Zaköıan, 2013), location-scatter elliptical models

(Hallin and Paindaveine, 2006), multisample elliptical models (Hallin et al., 2013, Hallin

et al., 2014), models for directional data (Ley et al., 2013, Garćıa-Portugués et al., 2020),

and many more. Actually, any parametric model with smooth densities and continuous

Fisher information satisfies Assumption (A); see, e.g., Theorems 12.2.2–12.2.3 in Lehmann

and Romano (2005).

Our second assumption, that relates to the constrained/unconstrained estimators and

preliminary tests to be used in the proposed PMTE, is as follows (throughout, tr[A] will

denote the trace of A and χ2
`,1−α will stand for the upper α-quantile of the chi-square

distribution with ` degrees of freedom).

Assumption (B). The estimators θ̂θθc, c ∈ Cm, and preliminary tests φj, j = 1, . . . ,m, satisfy

the following properties:

(i) for any θθθ ∈ M(ΥΥΥc), we have ννν−1
n (θ̂θθc − θθθ) = ΥΥΥcBc,θθθS

(n)
θθθ + oP(1) under P

(n)
θθθ for some

d× d matrix Bc,θθθ and some sequence of random d-vectors S
(n)
θθθ such that(

S
(n)
θθθ

∆∆∆
(n)
θθθ

)
D→ N

((
0

0

)
,

(
ΣΣΣθθθ ΩΩΩθθθ

ΩΩΩθθθ ΓΓΓθθθ

))
(3.6)

under P
(n)
θθθ (here, ννν−1

n and ∆∆∆
(n)
θθθ are as in Assumption (A));

(ii) the test φj rejects the null hypothesis Hj0 : θθθ ∈ M(ΥΥΥj) at asymptotic level α when

Q
(n)
j := ‖D(n)

j ‖2 := (D
(n)
j )′D

(n)
j > χ2

d−rj ,1−α, where, for any θθθ ∈ M(ΥΥΥj), the ran-

dom d-vector D
(n)
j is such that D

(n)
j = Cj,θθθS

(n)
θθθ + oP(1) under P

(n)
θθθ , with S

(n)
θθθ as

in (i) and with Cj,θθθ a d× d matrix satisfying ΣΣΣθθθC
′
j,θθθCj,θθθΣΣΣθθθC

′
j,θθθCj,θθθΣΣΣθθθ = ΣΣΣθθθC

′
j,θθθCj,θθθΣΣΣθθθ
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and tr[C′j,θθθCj,θθθΣΣΣθθθ] = d − rj for any θθθ ∈ M(ΥΥΥj). Furthermore, φj is consistent un-

der P
(n)
θθθ for any θθθ /∈M(ΥΥΥj).

Assumption (B) might look restrictive but it is actually extremely mild: provided that As-

sumption (A) holds, it indeed only requires the existence of an unconstrained estimator θ̂θθU

admitting a Bahadur-type representation. To see this, assume for the sake of simplicity

that νννn is as usual given by νννn = n−1/2Id (extension to a general νννn is trivial), and that,

for any θθθ ∈ ΘΘΘ, the estimator θ̂θθU satisfies the Bahadur representation

√
n(θ̂θθU − θθθ) =

1√
n

n∑
i=1

T
(n)
i,θθθ + oP(1) (3.7)

under P
(n)
θθθ , where the random d-vectors T

(n)
i,θθθ , i = 1, . . . , n, are mutually independent and

share a common distribution that has mean zero and has finite second-order moments. Since

the CLT for triangular arrays entails that S
(n)
θθθ := n−1/2

∑n
i=1 T

(n)
i,θθθ satisfies (3.6) under the

usual mild Lévy–Lindeberg condition, this already ensures that Assumption (B)(i) holds

for c = 1m, with B1m,θθθ := Id (recall that ΥΥΥ1m = Id). Now, for any other c ∈ Cm,

the constrained estimator θ̂θθc := Pcθ̂θθU, where Pc := ΥΥΥc(ΥΥΥ
′
cΥΥΥc)

−1ΥΥΥ′c is the matrix of the

orthogonal projection onto the constraint M(ΥΥΥc), is such that, for any θθθ ∈M(ΥΥΥc),

√
n(θ̂θθc − θθθ) = Pc

√
n(θ̂θθU − θθθ) =

1√
n

n∑
i=1

PcT
(n)
i,θθθ + oP(1) = PcS

(n)
θθθ + oP(1)

under P
(n)
θθθ , which shows that Assumption (B)(i) is fulfilled. As for Assumption (B)(ii), it

will be satisfied by Wald tests for Hj0 : θθθ ∈M(ΥΥΥj) constructed in the usual way from (3.7).

This confirms that the only key point in Assumption (B) is the existence of an unconstrained

estimator θ̂θθU satisfying (3.7). In virtually all models, M-, L-, and R-estimation will provide

an unconstrained estimator of this type, so that Assumption (B) is indeed extremely mild.
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In the LAN framework of Assumption (A), one may alternatively want to rely on (con-

strained) asymptotically efficient estimation. The resulting estimators of θθθ will satisfy

Assumption (B)(i) with S
(n)
θθθ = ∆∆∆

(n)
θθθ (hence with ΣΣΣθθθ = ΩΩΩθθθ = ΓΓΓθθθ), since, for the constraint

associated with c ∈ Cm and any corresponding θθθ ∈M(ΥΥΥc), the constrained asymptotically

efficient estimator θ̂θθc is such that

√
n(θ̂θθc − θθθ) = ΥΥΥc(ΥΥΥ

′
cΓΓΓθθθΥΥΥc)

−1ΥΥΥ′c∆∆∆
(n)
θθθ + oP(1)

under P
(n)
θθθ (for unconstrained estimation, this provides the usual result

√
n(θ̂θθU − θθθ) =

ΓΓΓ−1
θθθ ∆∆∆

(n)
θθθ + oP(1) under P

(n)
θθθ for any θθθ ∈ ΘΘΘ). For testing H0 : θθθ ∈ M(ΥΥΥc) against H1 :

θθθ /∈ M(ΥΥΥc), the locally asymptotically most stringent test rejects H0 : θθθ ∈ M(ΥΥΥc) at

asymptotic level α when

Q
(n)
j :=

∥∥Cj,θ̂θθc
∆∆∆

(n)

θ̂θθc

∥∥2
> χ2

d−rj ,1−α, with Cj,θθθ := (Id −ΓΓΓ
1/2
θθθ ΥΥΥc(ΥΥΥ

′
cΓΓΓθθθΥΥΥc)

−1ΥΥΥ′cΓΓΓ
1/2
θθθ )ΓΓΓ

−1/2
θθθ ;

see, e.g., Chapter 5 of Ley and Verdebout (2017). Remarkably, Assumption B(ii) then

holds with D
(n)
j := Cj,θ̂θθc

∆∆∆
(n)

θ̂θθc
, provided that, under any P

(n)
θθθ , with θθθ ∈M(ΥΥΥc),

Cj,θ̂θθc
∆∆∆

(n)

θ̂θθc
= Cj,θθθ∆∆∆

(n)
θθθ + oP(1) (3.8)

(direct computations indeed provide C′j,θθθCj,θθθΓΓΓθθθC
′
j,θθθCj,θθθ = C′j,θθθCj,θθθ and tr[C′j,θθθCj,θθθΓΓΓθθθ] =

d − rj). Note that for locally and asymptotically discrete estimators θ̂θθc, (3.8) holds in

particular when the LAN property in Assumption (A) is reinforced into a ULAN (uniform

local asymptotic normality) one; see, e.g., Chapter 5 of Ley and Verdebout, 2017 for details.

These considerations explain that Assumptions (A)–(B) will hold for a wide variety of

models and corresponding estimators, including efficient estimators for the large class of

Gaussian processes considered in Dahlhaus (1989), efficient estimators of regression models

with long memory disturbances (Hallin et al., 1999), adaptive estimators in semiparametric
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ARMA, ARCH or TAR time series models (Drost et al., 1997), M-estimators (Lopuhaa,

1992; Paindaveine and Van Bever, 2014) and R-estimators (Hallin et al., 2006, 2014) of

scatter in elliptical models, efficient estimators and R-estimators of location in rotationally

symmetric models for directional data (Ley et al., 2013), to cite only a few.

3.2 Asymptotic results

We now study the asymptotic behaviour of the PMTE estimator in (2.4). Fix c0 ∈ Cm

and consider a parameter value θθθ that is such that θθθ /∈M(ΥΥΥj) for any j such that c0j = 1.

Using the notation introduced in Section 2, this rewrites θθθ ∈ Rd \ ∪j /∈Jc0M(ΥΥΥj). Consider

then the oracle PMTE, θ̂θθPMTE,c0 say, that would be the natural one to consider if it would

be known that θθθ ∈ Rd \∪j /∈Jc0M(ΥΥΥj), that is, the PMTE that does not involve tests of the

constraints that are known not to be met. Letting Cmc0 := {c ∈ Cm : cj = 1 for any j /∈ Jc0},

this oracle PMTE is given by

θ̂θθPMTE,c0 :=
∑
c∈Cmc0

I[φφφ =c0 c]θ̂θθc, (3.9)

where φφφj =c0 c means that φj = cj for any j ∈ Jc0 (so that, as intended, this oracle PMTE

does not involve the tests for the constraints that are known not to be met). We then have

the following result.

Theorem 3.1. Let Assumptions (A) and (B) hold. Fix c0 ∈ Cm. Then, for any θθθ ∈

Rd \ ∪j /∈Jc0M(ΥΥΥj),

ννν−1
n (θ̂θθPMTE − θθθ) = ννν−1

n (θ̂θθPMTE,c0 − θθθ) + oP(1)

as n→∞ under P
(n)
θθθ .
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This result, that interestingly only requires consistency of the tests φj, j = 1, . . . ,m,

shows that the proposed PMTE is asymptotically equivalent in probability to the oracle

PMTE constructed on the basis of the constraints associated with c0 as soon as the true

value of the parameter θθθ is fixed outside these constraints. Note that taking c0 = 1m

readily yields the following corollary.

Corollary 3.1. Let Assumptions (A) and (B) hold. Then, for any θθθ ∈ Rd \ ∪mj=1M(ΥΥΥj),

ννν−1
n (θ̂θθPMTE − θθθ) = ννν−1

n (θ̂θθU − θθθ) + oP(1)

as n→∞ under P
(n)
θθθ .

It directly follows from this result that, away from the constraints, there is no cost,

asymptotically, to use the proposed PMTE rather than its unconstrained antecedent θ̂θθU.

Finally we stress that it is only in the very particular case #Jc0 = 1 that the oracle PMTE

of Theorem 3.1 is a standard single-constraint PTE, with a known asymptotic behaviour;

consequently, in cases where #Jc0 > 1, Theorem 3.1 on its own does not allow one to

deduce the asymptotic behaviour of θ̂θθPMTE from the single-constraint theory.

We thus turn to the study of this asymptotic behaviour in the general case. We will

actually derive the asymptotic distribution of θ̂θθPMTE in two types of asymptotic scenarios,

namely under fixed parameter values meeting (at least) one constraint or under sequences

of local perturbations of such fixed parameter values. To be more precise, fix again c0 ∈

Cm \{1m} and consider now a parameter value θθθ that meets the corresponding constraints;

in other words, θθθ ∈ M(ΥΥΥc0). The aforementioned local perturbations are then of the

form θθθn = θθθ + νννnτττn, where τττn is a bounded sequence in Rd. Since we do not exclude

the case τττn ≡ 0, this actually also covers the case for which θθθ ∈ M(ΥΥΥc0) is fixed. To

describe the asymptotic distribution of θ̂θθPMTE in these asymptotic scenarios, we need to
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introduce the following notation. Recalling that Jc0 = {j = 1, . . . ,m : c0j = 0}, we

will denote the (ordered) elements of Jc0 as j1, . . . , js, and the corresponding 2s elements

of Cmc0 = {c ∈ Cm : cj = 1 for any j /∈ Jc0} as c1, . . . , c2s (the ordering is here arbitrary but

fixed). Based on this notation, let further

F :=


ΥΥΥc1Bc1,θθθ

...

ΥΥΥc2sBc2s ,θθθ

 , G :=


Cj1,θθθ

...

Cjs,θθθ

 , and W(D) :=


I[φφφ(D) =c0 c1]

...

I[φφφ(D) =c0 c2s ]

⊗ Id, (3.10)

where D := (D′1, . . . ,D
′
s)
′ takes values in Rsd and where, for any ` = 1, . . . , s, the test φj`(D)

(in the test vector φφφ(D)) is defined as φj`(D) := I[‖D`‖2 > χ2
d−rj` ,1−α

] (note that only the

tests φj`(D), ` = 1, . . . , s, are involved in W(D)). We then have the following result.

Theorem 3.2. Let Assumptions (A) and (B) hold. Fix c0 ∈ Cm \ {1m} and θθθ ∈M(ΥΥΥc0).

Consider the sequence of local perturbations θθθn = θθθ+ νννnτττn, where (τττn) is a sequence in Rd

converging to τττ . Let R and Dc0 be random vectors whose joint distribution is described as(
R

Dc0

)
∼ N

((
FΩΩΩθθθτττ − (12s ⊗ τττ)

GΩΩΩθθθτττ

)
,

(
FΣΣΣθθθF

′ FΣΣΣθθθG
′

GΣΣΣθθθF
′ GΣΣΣθθθG

′

))
.

Then, under P
(n)
θθθn

, the sequence of random d-vectors ννν−1
n (θ̂θθPMTE − θθθn) converges weakly to

W′R, with W := W(Dc0).

In this result, W′R, conditional on Dc0 , is asymptotically normal with mean vector

µµµPMTE = W′{FΩΩΩθθθτττ − (12s ⊗ τττ) + FΣΣΣθθθG
′(GΣΣΣθθθG

′)−(Dc0 −GΩΩΩθθθτττ)
}

(3.11)

and covariance matrix

ΓΓΓPMTE = W′FΣΣΣ
1/2
θθθ

{
Ip −P(ΣΣΣ

1/2
θθθ G′)

}
ΣΣΣ

1/2
θθθ F′W, (3.12)
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with P(A) := A(A′A)−A′ (throughout, A− denotes the Moore–Penrose inverse of A).

This allows us to obtain the unconditional asymptotic distribution of ννν−1
n (θ̂θθPMTE − θθθn)

under P
(n)
θθθn

: indeed, Theorem 3.2 implies that Dc0 is asymptotically normal with mean

vector µµµDc0
:= GΩΩΩθθθτττ and covariance matrix ΣΣΣDc0

= GΣΣΣθθθG
′ under P

(n)
θθθn

, so that, under the

same sequence of hypotheses, ννν−1
n (θ̂θθPMTE − θθθn) converges weakly to a random d-vector Z

with density

z 7→
∫
Rp

φµµµPMTE,ΓΓΓPMTE
(z)φµµµDc0

,ΣΣΣDc0
(x)dx, (3.13)

where φµµµ,ΣΣΣ stands for the density of the d-variate normal distribution with mean vector µµµ

and covariance matrix ΣΣΣ. Comparing competing estimators will not be done on the basis

of (3.13) but rather on asymptotic mean square errors (AMSEs). We define the AMSE

of θ̂θθPMTE under P
(n)
θθθn

as

AMSEθθθ,τττ (θ̂θθPMTE) := E[ZZ′] = Var[Z] + E[Z](E[Z])′,

where Z is the weak limit of ννν−1
n (θ̂θθPMTE − θθθn) under P

(n)
θθθn

. Since E[Z] = E[E[Z|Dc0 ]] =

E[µµµPMTE] and Var[Z] = E[Var[Z|Dc0 ]] + Var[E[Z|Dc0 ]] = E[ΓΓΓPTE] + Var[µµµPMTE], the AMSE

of θ̂θθPMTE takes the form E[ΓΓΓPTE] + E[µµµPMTEµµµ
′
PMTE], which can be obtained from Theo-

rem 3.2. To do so, define, for c ∈ Cmc0 ,

λc,τττ := P[φφφ =c0 c], λλλc,τττ := E[I[φφφ =c0 c]Dc0 ], and Λc,τττ := E[I[φφφ =c0 c]Dc0D
′
c0

]

(to keep the notation light, we do not stress the dependence of these quantities on c0),

where Dc0 is multinormal with mean vector µµµDc0
= GΩΩΩθθθτττ and covariance matrix ΣΣΣDc0

=

GΣΣΣθθθG
′ as above. We then have the following result.

Theorem 3.3. Let Assumptions (A) and (B) hold. Fix c0 ∈ Cm \ {1m} and θθθ ∈M(ΥΥΥc0).

Consider the sequence of local perturbations θθθn = θθθ+ νννnτττn, where (τττn) is a sequence in Rd
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converging to τττ . Then, the AMSE of θ̂θθPMTE under P
(n)
θθθn

is given by

AMSEθθθ,τττ (θ̂θθPMTE) =
∑
c∈Cmc0

(
λc,τττΥΥΥcBc,θθθΣΣΣ

1/2
θθθ

{
Ip −P(ΣΣΣ

1/2
θθθ G′)

}
ΣΣΣ

1/2
θθθ (ΥΥΥcBc,θθθ)

′ (3.14)

+λc,τττ (ΥΥΥcBc,θθθEθθθ,τττ − τττ)(ΥΥΥcBc,θθθEθθθ,τττ − τττ)′ + ΥΥΥcBc,θθθAθθθλλλc,τττ (ΥΥΥcBc,θθθEθθθ,τττ − τττ)′

+(ΥΥΥcBc,θθθEθθθ,τττ − τττ)(ΥΥΥcBc,θθθAθθθλλλc,τττ )
′ + ΥΥΥcBc,θθθAθθθΛc,τττA

′
θθθB
′
c,θθθΥΥΥ

′
c

)
,

where we let Aθθθ := ΣΣΣθθθG
′(GΣΣΣθθθG

′)− and Eθθθ,τττ := (Id −AθθθG)ΩΩΩθθθτττ .

Note that for τττ = 0, (3.14) reduces to

AMSEθθθ,0(θ̂θθPMTE) =
∑
c∈Cmc0

λc,0ΥΥΥcBc,θθθ

(
ΣΣΣ

1/2
θθθ

{
Ip −P(ΣΣΣ

1/2
θθθ G′)

}
ΣΣΣ

1/2
θθθ + AθθθΛΛΛc,0A

′
θθθ

)
(ΥΥΥcBc,θθθ)

′.

(3.15)

While the expressions (3.14)–(3.15) are quite complex, they allow one to compare theo-

retically the proposed PMTE with competing estimators, and in particular with single-

constraint PTEs. In the next section, we illustrate this in the k-sample covariance estima-

tion framework described in the introduction.

4 Multisample covariance estimation

4.1 PMTE based on scale and shape constraints

Consider k(≥ 2) mutually independent samples of random p-vectors X`1, . . . ,X`n`
, ` =

1, . . . , k, with respective sample sizes n1, . . . , nk, such that, for any `, the X`i’s form a

random sample from the p-variate normal distribution with mean vector 0 and non-singular

covariance matrix ΣΣΣ` (due to the block-diagonality of the Fisher information matrix for

location and scatter in elliptical models, all results below can easily be extended to the
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case where observations in the `th sample would have a common, unspecified, mean µµµ`, ` =

1, . . . , k; see, e.g., Hallin and Paindaveine, 2006, 2009). As explained in the introduction,

the covariance matrices can be reparametrized into ΣΣΣ` = σ2
`V`, where σ` := (detΣΣΣ`)

1/(2p)

is their “scale” and V` := ΣΣΣ`/(detΣΣΣ`)
1/p is their “shape”. Under the only assumption

that λ` := λ
(n)
` := n`/n := n`/(

∑k
r=1 nr) converges in (0, 1) for any ` (to make the notation

lighter, we will not stress the dependence in n in many quantities below), it follows from

Hallin and Paindaveine (2009) that the sequence of Gaussian models indexed by

θθθ :=
(
σ2

1, . . . , σ
2
k, (ve

◦
ch V1)′, . . . , (ve

◦
ch Vk)

′)′ , (4.16)

where vech V =: (V11, ve
◦
ch V)′)′ is the vector stacking the upper-triangular elements of V, is

ULAN; note that since det V = 1, the upper-left entry V11 of V can be obtained from ve
◦
ch V

(a vector with dimension bp := p(p + 1)/2 − 1), which explains that the upper-left entries

of the various shape matrices do not enter the parametrization in (4.16). The dimension

of θθθ is thus d := k(bp + 1).

To provide more details, we need the following notation: denoting as er the rth vector

of the canonical basis of Rp and by ⊗ the Kronecker product, we let Kp :=
∑p

r,s=1(ere
′
s)⊗

(ese
′
r) be the p2× p2 commutation matrix, Jp := (vec Ip)(vec Ip)

′, and define Mp(V) as the

bp × p2 matrix such that (Mp(V))′(ve
◦
ch v) = vec v for any symmetric p× p matrix v such

that tr[V−1v] = 0. We further put Hp(V) := 1
4
Mp(V) (Ip2 + Kp) (V ⊗V)−1 (Mp(V))′.

Then, letting S` := n−1
`

∑n`

i=1 X`iX
′
`i be the empirical covariance matrix in the `th sample

(with respect to the fixed location µµµ` = 0), the central sequence is

∆∆∆θθθ :=
(

∆I,1
θθθ , . . . ,∆

I,k
θθθ , (∆∆∆II,1

θθθ )′, . . . , (∆∆∆II,k
θθθ )′

)′
,

where, for ` = 1, . . . , k,

∆I,`
θθθ :=

√
n`

2σ2
`

tr
[
σ−2
` V−1

` (S` − σ2
`V`)

]
and ∆∆∆II,`

θθθ :=

√
n`

2σ2
`

Mp(V`)(V` ⊗V`)
−1(vec S`),

16



whereas the non-singular information matrix takes the form ΓΓΓθθθ := diag(ΓΓΓI

θθθ,ΓΓΓ
II

θθθ ), with

ΓΓΓI

θθθ :=
p

2
diag(σ−4

1 , . . . , σ−4
k ) and ΓΓΓII

θθθ := diag(Hp(V1), . . . ,Hp(Vk))

(here, diag(A1, . . . ,Am) is the block-diagonal matrix with diagonal blocks A1, . . . ,Am).

The corresponding matrices νννn in Assumption (A) are then given by

νννn = n−1/2rn := n−1/2diag
(
λ
−1/2
1 , . . . , λ

−1/2
k , λ

−1/2
1 Ibp , . . . , λ

−1/2
k Ibp

)
.

We consider here the estimation of ΣΣΣ1, . . . ,ΣΣΣk or, equivalently, the estimation of θθθ

in (4.16). An advantage of the θθθ-parametrization is that it allows addressing situations

in which one would suspect scale homogeneity Hscale
0 : σ2

1 = . . . = σ2
k, shape homogeneity

Hshape
0 : V1 = . . . = Vk, or (the intersection between scale and shape homogeneity:)

covariance homogeneity Hcov
0 : σ2

1V1 = . . . = σ2
kVk, that is, Hcov

0 : ΣΣΣ1 = . . . = ΣΣΣk. In the

present Gaussian model, an asymptotically efficient unconstrained estimator of θθθ is

θ̂θθU :=

(
(det S1)1/p, . . . , (det Sk)

1/p,
(ve
◦
ch S1)′

(det S1)1/p
, . . . ,

(ve
◦
ch Sk)

′

(det Sk)1/p

)′
. (4.17)

Writing S := n−1
∑k

`=1

∑n`

i=1 X`iX
′
`i for the pooled covariance matrix estimator (with re-

spect to the fixed locations µµµ1 = . . . = µµµk = 0), asymptotically efficient constrained

estimators, for the three constraints Hscale
0 , Hshape

0 and Hcov
0 above, are

θ̂θθ
scale

C :=

(
(det S)1/p1′k,

(ve
◦
ch S1)′

(det S1)1/p
, . . . ,

(ve
◦
ch Sk)

′

(det Sk)1/p

)′
, (4.18)

θ̂θθ
shape

C :=

(
(det S1)1/p, . . . , (det Sk)

1/p,1′k ⊗
(ve
◦
ch S)′

(det S)1/p

)′
(4.19)

and

θ̂θθ
cov

C :=

(
(det S)1/p1′k,1

′
k ⊗

(ve
◦
ch S)′

(det S)1/p

)′
, (4.20)
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respectively. Note that the three hypotheses Hscale
0 , Hshape

0 and Hcov
0 impose linear restric-

tions on θθθ: they rewrite

Hscale
0 : θθθ ∈M(ΥΥΥscale), with ΥΥΥscale := diag(1k, Ikbp),

Hshape
0 : θθθ ∈M(ΥΥΥshape), with ΥΥΥshape := diag(Ik,1k ⊗ Ibp),

and

Hcov
0 : θθθ ∈M(ΥΥΥcov), with ΥΥΥcov := diag(1k,1k ⊗ Ibp).

Now, if the d × r matrix ΥΥΥ stands for either ΥΥΥscale, ΥΥΥshape or ΥΥΥcov (of course, each

constraint matrix has its own r), the locally asymptotically most stringent test φΥΥΥ for

H0 : θθθ ∈M(ΥΥΥ) rejects the null hypothesis at asymptotic level α when

QΥΥΥ := ∆∆∆′
θ̂θθ

(
ΓΓΓ−1

θ̂θθ
− r−1

n ΥΥΥ(ΥΥΥ′r−1
n ΓΓΓθ̂θθr

−1
n ΥΥΥ)−1ΥΥΥ′r−1

n

)
∆∆∆θ̂θθ > χ2

d−r,1−α, (4.21)

where θ̂θθ = θ̂θθΥΥΥ is a constrained estimator (for the three constraints considered, these are

the estimators in (4.18)–(4.20)). On the basis of these various tests, the PTEs involving a

single constraint are

θ̂θθ
scale

PTE := I[φΥΥΥscale
= 1]θ̂θθU + I[φΥΥΥscale

= 0]θ̂θθ
scale

C , (4.22)

θ̂θθ
shape

PTE := I[φΥΥΥshape
= 1]θ̂θθU + I[φΥΥΥshape

= 0]θ̂θθ
shape

C (4.23)

and

θ̂θθ
cov

PTE := I[φΥΥΥcov = 1]θ̂θθU + I[φΥΥΥcov = 0]θ̂θθ
cov

C , (4.24)

whereas the PMTE proposed in this work is given by

θ̂θθPMTE := I[φΥΥΥscale
= 1, φΥΥΥshape

= 1]θ̂θθU + I[φΥΥΥscale
= 1, φΥΥΥshape

= 0]θ̂θθ
shape

C (4.25)

+I[φΥΥΥscale
= 0, φΥΥΥshape

= 1]θ̂θθ
scale

C + I[φΥΥΥscale
= 0, φΥΥΥshape

= 0]θ̂θθ
cov

C .
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In the next section, we investigate how this PMTE compares with its single-constraint PTE

competitors in (4.22)–(4.24), both asymptotically and in finite samples.

4.2 Comparing PMTE vs single-constraint PTEs

In the vicinity of the scale homogeneity constraint and away from the shape homogene-

ity constraint, θ̂θθPMTE is asymptotically equivalent to θ̂θθ
scale

PTE (Theorem 3.1). Similarly, in

the vicinity of the shape homogeneity constraint and away from the scale homogeneity

constraint, θ̂θθPMTE is asymptotically equivalent to θ̂θθ
shape

PTE . In both cases, thus, the asymp-

totic properties of θ̂θθPMTE can be deduced from those of a single-constraint PTE, so that

the AMSEs of this estimator can then be obtained from Theorem 2 in Paindaveine et al.

(2020). Recall from Section 3.2, however, that it is only when #Jc0 = 1 that the asymp-

totic behaviour of the proposed PMTE can be obtained from the single-constraint theory.

In the general case #Jc0 ≥ 1, the asymptotic results from Section 3.2 are the only ones

that allow us to grasp the asymptotic behaviour of our PMTE.

In the present situation involving m = 2 constraints, a point that is not covered by

the single-constraint theory is the comparison between θ̂θθPMTE and θ̂θθ
cov

PTE in the vicinity of

covariance homogeneity, that is, close to the null hypothesis Hcov
0 . There, using θ̂θθPMTE

rather than θ̂θθ
cov

PTE should intuitively have a cost, as the test for Hcov
0 : θθθ ∈ M(ΥΥΥcov) is

not used when defining θ̂θθPMTE. We now evaluate this cost by comparing the asymptotic

performances of both estimators, measured by the corresponding AMSEs. Since these

AMSEs are matrix-valued, one needs to base this comparison on a scalar summary, such

as, e.g., the trace of the AMSEs. In the present setup where asymptotically efficient

estimators are used, the benchmark unconstrained estimator satisfies AMSEθθθ,τττ (θ̂θθU) = ΓΓΓ−1
θθθ ,
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which makes it natural to consider the scalar summary

AMSEscalar
θθθ,τττ (θ̂θθ) := tr

[
ΓΓΓ

1/2
θθθ AMSEθθθ,τττ (θ̂θθ)ΓΓΓ

1/2
θθθ

]
, (4.26)

which, irrespective of θθθ, yields AMSEscalar
θθθ,τττ (θ̂θθU) = d for the benchmark estimator. Under

the considered covariance homogeneity constraint, we then have the following result.

Proposition 4.1. For any θθθ ∈M(ΥΥΥcov)(=M(ΥΥΥscale) ∩M(ΥΥΥshape)),

AMSEscalar
θθθ,0 (θ̂θθPMTE) = d− (k − 1)

{
bpΨ(k−1)bp+2(χ2

(k−1)bp,1−α) + Ψk+1(χ2
k−1,1−α)

}
, (4.27)

where Ψ` stands for the cumulative distribution function of the χ2
` distribution.

It follows from Paindaveine et al. (2020) that, for any θθθ ∈M(ΥΥΥcov),

AMSEscalar
θθθ,0 (θ̂θθ

cov

PTE) = d− (k − 1)(bp + 1)Ψ(k−1)(bp+1)+2(χ2
(k−1)(bp+1),1−α), (4.28)

which allows for a direct comparison with the AMSE in (4.27). More precisely, Figure 1

plots the asymptotic relative efficiency

AREθθθ,0(θ̂θθPMTE/θ̂θθ
cov

PTE) :=
AMSEscalar

θθθ,0 (θ̂θθ
cov

PTE)

AMSEscalar
θθθ,0 (θ̂θθPMTE)

as a function of the dimension p and of the number k of populations (here, the nominal level

of all preliminary tests is fixed at α = 5%). Clearly, irrespective of p and k, the loss that

results from using θ̂θθPMTE rather than θ̂θθ
cov

PTE under covariance homogeneity is extremely small

(the minimal ARE, which is obtained for p = 2 and k = 13, is about .928). Remarkably,

this loss actually converges to zero as p or k diverges to infinity.

We turn to Monte Carlo exercises that aim at comparing the finite-sample performances

of the proposed PMTE with those of its single-constraint PTE competitors. Through-

out, these exercises focus on two populations (k = 2) that are two-dimensional (p = 2)
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Figure 1: Plots of AREθθθ,0(θ̂θθPMTE/θ̂θθ
cov

PTE) under covariance homogeneity, as a function of the

dimension p for various values of the number k of populations (left), or as a function of

the number k of populations for various values of the dimension p (right). All preliminary

tests are conducted at nominal level α = 5%.

and balanced (n1 = n2). We considered two scenarios. In the first one, we gener-

ated, for each ξ in {0, 1, . . . , 10} and for each value of the common sample size n1 = n2

in {100, 400, 1000}, a collection of M = 10 000 samples of mutually independent obser-

vations X11, . . . ,X1n1 ,X21,ξ, . . . ,X2n2,ξ, where the X1i’s are N (0,ΣΣΣ1) and the X2i,ξ’s are

N (0,ΣΣΣ2,ξ), with ΣΣΣ1 = I2 and ΣΣΣ2,ξ = σ2
2,ξV2,ξ based on

σ2
2,ξ = exp( ξ

2
√
n
), V2,ξ =

Nξ√
det Nξ

, and Nξ =

(
1 ξ

3
√
n

ξ
3
√
n

1

)
. (4.29)

The value ξ = 0 provides covariance homogeneity, hence also scale and shape homogeneity,

whereas ξ = 1, . . . , 10 provide both increasingly distinct scales and increasingly distinct

shapes. For any estimator θ̂θθ of the corresponding parameter value θθθ, the finite-sample
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performance of θ̂θθ can be measured through the scalar quantity

MSEscalar
θθθ,ΓΓΓ (θ̂θθ) :=tr[ΓΓΓ

1/2
θθθ MSEθθθ(θ̂θθ)ΓΓΓ

1/2
θθθ ], (4.30)

with

MSEθθθ(θ̂θθ) :=
1

M

M∑
m=1

{ννν−1
n (θ̂θθ

(m)
− θθθ)}{ννν−1

n (θ̂θθ
(m)
− θθθ)}′, (4.31)

where θ̂θθ
(m)

denotes the value of θ̂θθ in the mth replication. The left panels of Figure 2 then

plot MSEscalar
θθθ,ΓΓΓ (θ̂θθ) as a function of ξ, for the PTE θ̂θθ

shape

PTE in (4.23) based on the single shape

homogeneity constraint, for the PTE θ̂θθ
cov

PTE in (4.24) based on the single covariance homo-

geneity constraint, for the proposed PMTE θ̂θθPMTE in (4.25) based on the shape and scale

homogeneity constraints, and for their unconstrained antecedent θ̂θθU (all preliminary tests

were performed at asymptotic level α = 5%). In the present setup involving deviations from

covariance homogeneity, the estimator θ̂θθ
cov

PTE is an oracle one, that is expected to outperform

its competitors. Remarkably, the results show that the multiple-constraint estimator θ̂θθPMTE

show virtually the same performances as θ̂θθ
cov

PTE. Under covariance homogeneity (ξ = 0), this

is in line with our theoretical results above, as Figure 2 indeed confirms the very close

values AMSEscalar
θθθ,0 (θ̂θθPMTE) = 3.679 and AMSEscalar

θθθ,0 (θ̂θθ
cov

PTE) = 3.500 that result from (4.27)

and (4.28), respectively.

We repeated the exercise above in a second scenario, that is obtained from the first

one by replacing σ2
2,ξ in (4.29) with σ2

2,ξ = 2 for any ξ. Irrespective of ξ, thus, this new

scenario stays away from scale homogeneity (hence also from covariance homogeneity),

whereas ξ = 1, . . . , 10 provide increasingly severe departures from the shape homogene-

ity situation obtained for ξ = 0. The right panels of Figure 2 show the resulting values

of MSEscalar
θθθ,ΓΓΓ (θ̂θθ) for the same four estimators as above. The results clearly support The-

orem 3.1, that states that θ̂θθPMTE and θ̂θθ
shape

PTE are asymptotically equivalent, as one cannot

22



discriminate between the MSE curves of these estimators (further simulations revealed that

one needs to consider sample sizes as small as n1 = n2 = 100 to see a tiny difference in these

MSE curves). Overall, thus, θ̂θθPMTE dominates θ̂θθ
shape

PTE since the former was performing better

than the latter in the first scenario. Incidentally, note that, in this second scenario, θ̂θθ
cov

PTE

and θ̂θθU behave very similarly, which is reasonable since all values of ξ considered provide a

setup that is far from covariance homogeneity (Corollary 3.1).

4.3 CPC and homogeneity of eigenvalues: a real data example

Studies of microtus population biology have attracted a lot of attention in the past decades;

see, e.g., Wallace (2006) and Conroy and Gupta (2011), and the references therein. In this

real data illustration, we discuss the estimation of covariance matrices for two samples

(k = 2) of different species of voles: a sample of n1 = 43 Microtus multiplex and a sample

of n2 = 46 Microtus subterraneus. Eight measurements (p = 8) are made on each animal:

(i)–(iii) the width of upper left molar 1–3, (iv) the length of incisive foramen, (v) the length

of palatal bone, (vi) the Condylo incisive length or skull length, (vii) the skull height above

bullae, and (viii) the skull width across rostrum; see Airoldi et al. (1996). The dataset is

available in the R package Flury (data microtus).

We consider estimation of the underlying covariance matrices ΣΣΣ1 and ΣΣΣ2 using pre-

liminary tests of the following three constraints (m = 3): homogeneity of scales (Ha
0),

homogeneity of the shape matrices’ eigenvectors (Hb
0, described in the introduction as the

CPC hypothesis), and homogeneity of the shape matrices’ eigenvalues (Hc
0). We performed

the optimal Gaussian test for Ha
0 from Hallin and Paindaveine (2009), the optimal Gaus-

sian test for Hb
0 from Hallin et al. (2013), and the optimal Gaussian test for Hc

0 we derived

from the local asymptotic normality result in Hallin et al. (2013). The respective p-values
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Figure 2: Plots, as functions of ξ = 0, 1, . . . , 10, of MSEscalar
θθθ,ΓΓΓ (θ̂θθ) for the single-constraint

PTEs θ̂θθ
shape

PTE and θ̂θθ
cov

PTE, the PMTE θ̂θθPMTE based on the shape and scale homogeneity con-

straints, and their unconstrained antecedent θ̂θθU (all preliminary tests are performed at

asymptotic level α = 5%). In Scenario 1, larger values of ξ provide increasingly severe

deviations—both in terms of scale and shape—from the covariance homogeneity obtained

at ξ = 0, whereas, in Scenario 2, scale heterogeneity holds for any ξ and larger values of ξ

provide increasingly severe deviations from the shape homogeneity obtained at ξ = 0; see

Section 4.2 for details. The green and orange points in the left panels indicate the values

of AMSEscalar
θθθ,0 (θ̂θθPMTE) and AMSEscalar

θθθ,0 (θ̂θθ
cov

PTE), respectively.
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are .0121, .0010, and .2004, indicating that, for α = 5%, the PMTE based on the three

constraints above would be an estimator of (ΣΣΣ1,ΣΣΣ2) assuming common shape eigenvalues

only, whereas for α = 1%, it would be an estimator assuming both common scales and

common shape eigenvalues—that is, assuming that ΣΣΣ1 and ΣΣΣ2 share the same eigenvalues.

As explained in Airoldi et al. (1996), Microtus multiplex and Microtus subterraneus

are difficult to distinguish morphologically. Actually, it is only since Krapp (1982) and Ni-

ethammer (1982) that they are considered two distinct species—as a reaction to the vision

in Ellerman and Morrison-Scott (1951). One possible way to explore the practical relevance

of the PMTE above is thus to perform supervised classification. To do so, we randomly

sampled 30 observations in each group and trained various classifiers on the resulting train-

ing set of size 60. The misclassification rate of each classifier was then evaluated on the

basis of the test set made of the remaining 29 observations. To ensure that the results are

not specific to a particular partition of the dataset into a training set and a test set, this

was repeated M = 2000 times; Figure 3 provides, for each classifier, a boxplot of the result-

ing M misclassification rates. The considered classifiers all perform quadratic discriminant

analysis (QDA) using plain sample averages as estimates µ̂µµ`, ` = 1, 2, of the group-specific

mean vectors, hence only differ through the estimates Σ̂ΣΣ`, ` = 1, 2, of the corresponding

covariance matrices. The classical QDA procedure, that will be the benchmark, is based

on the unconstrained sample covariance matrices Σ̂ΣΣ`,U, ` = 1, 2. The other classifiers are

based on various preliminary (single or multiple) test estimators Σ̂ΣΣ`, ` = 1, 2, using the

same unconstrained estimators as in the benchmark and the constrained estimators ob-

tained from the following estimators: letting Σ̂ΣΣpool := (n1Σ̂ΣΣ1,U + n2Σ̂ΣΣ2,U)/(n1 + n2) be the

pooled covariance matrix, the common value of the scale parameter under Ha
0 is estimated

by (det Σ̂ΣΣpool)
1/p (recall that p = 8), the common eigenvectors matrix under Hb

0 is estimated
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using the eigenvectors matrix β̂ββpool of Σ̂ΣΣpool, whereas the common value of the eigenvalues

matrix under Hc
0 is estimated using Λ̂ΛΛpool/(det Σ̂ΣΣpool)

1/p, with Λ̂ΛΛpool := β̂ββ
′
poolΣ̂ΣΣpoolβ̂ββpool.

Figure 3 provides the boxplots of the misclassification rates (and reports the average

misclassification rates) for the resulting five QDA classifiers, namely the ones based (i) on

unconstrained estimators (that is, the classical QDA classifier), (ii)–(iv) on PTE estima-

tors associated with the single constraint of homogeneity of scales (Ha
0), homogeneity of

the shape matrices’ eigenvectors (Hb
0), and homogeneity of the shape matrices’ eigenval-

ues (Hc
0), and (v) on the PMTE involving these three constraints. Each of the classifiers (ii)–

(v) was considered in four versions, according to the nominal level α used for preliminary

tests: α = 0.1%, 1%, 5%, and a value of α obtained from 6-fold cross-validation. Clearly,

the results indicate that the best classifiers are the ones based on the PMTEs and that

those based on PTEs only marginally improve over the benchmark unconstrained classifier.

Moreover, it is seen that cross-validation provides an effective way to choose the tuning

parameter α. Figure 4 also provides the boxplots of the p-values of the tests for Ha
0, Hb

0,

and Hc
0, obtained in the collection of M = 2000 training samples above. These boxplots

reveal that it is not uncommon that the null hypotheses Ha
0 and Hc

0 both fail to be rejected,

which explains that our PMTE has an edge in the present classification exercise.

5 Final comments

When demonstrating the practical relevance of our PMTE in Section 4, we focused (i) on

multisample covariance estimation and (ii) on constrained and unconstrained estimators

that are of a Gaussian nature (more precisely, the estimators there were all Gaussian max-

imum likelihood estimators). As explained in Section 3, however, our methodology is very

widely applicable as it merely only requires that the considered model is locally asymptoti-
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Figure 3: (Top:) Boxplots of the misclassification rates obtained by applying different QDA

classifiers in M = 2000 random partitions of the microtus dataset into training and test

sets. The QDA classifiers use different estimators of the group-specific covariance matrices,

namely the usual unconstrained estimators, the PMTE involving the constraints Ha
0, Hb

0

and Hc
0 from Section 4.3, and the three classical PTEs involving one of these constraints

only. Each PMTE/PTE comes in four versions, according to the nominal level α used in

preliminary tests, the last version being based on 6-fold cross-validation. Percentages above

the boxplots report the average misclassification rate of the corresponding classifiers; see

Section 4.3. (Bottom:) Boxplots of the p-values of the tests for the constraints Ha
0, Hb

0,

and Hc
0, obtained in the same collection of 2000 training samples.
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cally normal and that unconstrained estimators of the corresponding parameters admitting

Bahadur representation results are available. To showcase practical use of PMTEs in an-

other situation and based on estimators of another nature, we consider robust one-sample

covariance matrix estimation.

Testing for linear constraints on a covariance matrix ΣΣΣ has been much considered in the

literature; see, e.g., Zhang et al. (1991) and the references therein (see also Dryden et al.,

2009 for testing constraints with observed covariance matrices). Commonly considered

constraints on ΣΣΣ are associated, e.g., with the assumptions of sphericity (Hsph
0 : ΣΣΣ = λIp for

some λ > 0) or multivariate independence (Hind
0 : ΣΣΣ = diag(ΣΣΣ1,ΣΣΣ2), where ΣΣΣ1 and ΣΣΣ2 are q×

q and (p−q)×(p−q) covariance matrices, respectively). When aiming at robust estimation

based on preliminary testing, it is natural to consider robust tests for these constraints, such

as the Hallin and Paindaveine (2006) sign test for Hsph
0 and the Taskinen et al. (2003) rank

test for Hind
0 . Obviously, one then also needs to rely on a robust unconstrained estimator

of ΣΣΣ, such as the celebrated Minimum Covariance Determinant (MCD) estimator from

Rousseeuw (1985) (which, as required, satisfies a Bahadur representation result of the

form (3.7); see Cator and Lopuhaa, 2010). To explore the performance of a corresponding

robust PMTE, we generated, for each ξ in {0, 1, . . . , 5} and for each n ∈ {100, 400, 1000},

M = 10 000 independent random samples X1,ξ, . . . ,Xn,ξ of size n from the four-dimensional

(p = 4) multinormal distribution with mean vector zero and covariance matrix

ΣΣΣξ =
1

p

((
1− 2ξ

3
√
n

)
Ip +

2ξ

3
√
n

1p1
′
p

)
,

with 1p = (1, . . . , 1)′ ∈ Rp. In each replication, we evaluated the MCD and a robust PMTE

based on the constraints Hsph
0 and Hind

0 , with q = 2. For this PMTE, the preliminary tests

(performed at asymptotic level α = 5%) are the robust ones mentioned above, and the MCD

was used to obtain the needed unconstrained and constrained estimators of ΣΣΣ (for instance,
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the constrained estimator of ΣΣΣ under Hind
0 is diag(Σ̂ΣΣ1, Σ̂ΣΣ2), where Σ̂ΣΣ1 and Σ̂ΣΣ2 stand for the

MCD estimators obtained from the first q marginals and last p−q marginals, respectively).

Denoting as Σ̂ΣΣ
(m)

the value of a given estimator in the mth replication, Figure 4 provides,

both for the MCD and for this robust PMTE, the MSE quantities

MSEΣΣΣ(Σ̂ΣΣ) :=
1

M

M∑
m=1

tr[{
√
n(Σ̂ΣΣ

(m)
−ΣΣΣ)}2], (5.32)

with respect to the value of ΣΣΣ = ΣΣΣξ at hand. As Figure 4 clearly shows, this robust

PMTE shows the same dominance over its unconstrained antecedent in the vicinity of the

constraints (note that the constraints are met at ξ = 0) as the Gaussian ones considered

in the multisample framework of Section 4.
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Figure 4: Bar plots, as functions of ξ = 0, 1, . . . , 5, of the MSE quantities MSEΣΣΣ(Σ̂ΣΣ)

in (5.32) for (in red:) the MCD estimator of ΣΣΣ and (in green:) the MCD-based PMTE

associated with the sphericity and multivariate independence constraints (with preliminary

tests performed at asymptotic level α = 5%). Here, the larger the value of ξ, the more

severe the departure from the sphericity and multivariate independence constraints (that

are both met at ξ = 0); see Section 5 for details.
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We conclude the paper with a brief discussion of possible research perspectives. First,

implementing the PMTE proposed in this work requires selecting the nominal level α at

which to perform the preliminary tests, and it would be natural to develop methods for this

choice. One way to tackle this problem is to try to adapt the “minimax regret” strategy

proposed in Giles et al. (1992) using the general value of the AMSE measure in (3.14). In

some specific contexts, though, a suitable value of α may simply be chosen through cross-

validation, as we showed in the supervised classification exercise conducted in Section 4.3.

Second, while we focused on asymptotic scenarios where the dimension d of the parameter

remains fixed as the sample size n diverges to infinity, it would be interesting to tackle the

high-dimensional case where the dimension d = dn diverges to infinity with n. This is of

course quite challenging, particularly so for covariance estimation since it is well-known that

covariance matrices cannot always be estimated consistently in high dimensions. Finally,

another interesting venue for future research on PMTEs, that would be especially relevant

in high dimensions, would be to consider asymptotics as the number of constraints m = mn

increases with n. The need to resort to multiple testing corrections would then maybe be

more imperious than in the fixed-m framework we considered. These research perspectives

all are quite ambitious and are left for future work.
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SUPPLEMENTARY MATERIAL

In Section A of this supplement, we provide a comparison of our method with a BIC

model selection-based estimator. In Section B, we then provide the proofs of the various

results obtained in the paper.

A Comparison with BIC-based model selection

Both in its classical single-constraint version and in the multiple one proposed in this

paper, preliminary test estimation de facto realizes model selection. Another common

model selection procedure is the one based on the Bayesian information criterion (BIC).

Using the generic notation from Section 2 and denoting as L
(n)
θθθ the likelihood function of the

parametric model at hand, this criterion measures suitability of the submodel associated

with the constraint θθθ ∈ ∩j∈JcM(ΥΥΥj), with c ∈ Cm, through

BICc := max
θθθ

logL
(n)
θθθ − n log dc,

where, as in Section 2, the full-rank d× dc matrix ΥΥΥc is such that M(ΥΥΥc) = ∩j∈JcM(ΥΥΥj)

(so that dc is the number of functionally independent parameters indexing the constrained

model associated with c). The estimator resulting from this criterion,

θ̂θθBIC :=
∑
c∈Cm

I[argmaxd∈CmBICd = c]θ̂θθc, (A.33)

then simply is the constrained estimator associated with the submodel showing the largest

BIC value among all possible submodels. It is natural to wonder how such an estimator

compares with the preliminary multiple test estimator (2.4) proposed in this work.
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To investigate this, we performed the following simulation, still in the bivariate two-

sample covariance estimation framework considered above. More specifically, for each ξ

in {0, 1, . . . , 5} and for each value of the common sample size n1 = n2 in {100, 400, 1000},

we generated a collection of M = 10 000 samples of mutually independent observations

X11, . . . ,X1n1 ,X21,ξ, . . . ,X2n2,ξ, where the X1i’s areN (0,ΣΣΣ1) and the X2i,ξ’s areN (0,ΣΣΣ2,ξ),

with ΣΣΣ1 = I2 and ΣΣΣ2,ξ = σ2
2,ξV2,ξ based on

σ2
2,ξ = 2, V2,ξ =

Nξ√
det Nξ

, and Nξ =

(
1 2ξ√

n

2ξ√
n

1

)
.

The value ξ = 0 corresponds to shape homogeneity, whereas ξ = 1, . . . , 5 provide in-

creasingly distinct shapes. In each replication, we evaluated the PMTE estimator θ̂θθPMTE

in (4.25) (still with preliminary tests performed at asymptotic level α = 5%) and the BIC

estimator θ̂θθBIC in (A.33), both based on the shape and scale homogeneity constraints (so

that both estimators need to select the right submodel in a collection of 2m = 22 = 4

possible models). The parametric likelihood L
(n)
θθθ used in the computation of the BIC is the

multisample Gaussian likelihood; the model used in the BIC is therefore correctly speci-

fied. Here, the finite-sample performance of an estimator θ̂θθ was assessed by the scalar MSE

quantity

MSEscalar
θθθ (θ̂θθ) :=tr[MSEθθθ(θ̂θθ)], (A.34)

where MSEθθθ(θ̂θθ) is the matrix-valued MSE in (4.31) based on the values θ̂θθ
(1)
, . . . , θ̂θθ

(M)
of θ̂θθ

obtained in the M replications. Figure 5, which provides bar plots of the scalar MSEs

in (A.34) for θ̂θθPMTE and θ̂θθBIC, clearly shows that the proposed PMTE estimator compares

favourably with its BIC competitor, especially far from the (shape homogeneity) constraint.

While we do not report the results here, we checked that replacing the scalar MSE in (A.34)

with the model-dependent one in (4.30)—that was adopted in Section 4.2 only to show the

2



agreement of finite-sample performances with our asymptotic results—has no qualitative

impact on the results of Figure 5.
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Figure 5: Bar plots, as functions of ξ = 0, 1, . . . , 5, of the scalar MSE quantity MSEscalar
θθθ (θ̂θθ)

in (A.34) for the PMTE θ̂θθPMTE and its BIC competitor θ̂θθBIC, both based on the shape and

scale homogeneity constraints (with preliminary tests performed at asymptotic level α =

5%). Here, scale heterogeneity holds for any ξ and larger values of ξ provide increasingly

severe deviations from the shape homogeneity obtained at ξ = 0; see Section A for details.

B Technical details

In this section, we provide the proofs of all results stated in the paper.

Proof of Theorem 3.1. Fix θθθ as in the statement of the theorem. In this proof, all

stochastic convergences are then as n→∞ under P
(n)
θθθ . First note that since∑

c∈Cm
I[φφφ = c] = 1 and

∑
c∈Cmc0

I[φφφ =c0 c] = 1

3



almost surely, we need to show that

ννν−1
n (θ̂θθPMTE − θθθ)− ννν−1

n (θ̂θθPMTE,c0 − θθθ)

=
∑
c∈Cm

I[φφφ = c]ννν−1
n (θ̂θθc − θθθ)−

∑
c∈Cmc0

I[φφφ =c0 c]ννν−1
n (θ̂θθc − θθθ)

=
∑

c∈Cm\Cmc0

I[φφφ = c]ννν−1
n (θ̂θθc − θθθ) +

∑
c∈Cmc0

{
I[φφφ = c]− I[φφφ =c0 c]

}
ννν−1
n (θ̂θθc − θθθ)

is oP(1). Fix first c ∈ Cm \ Cmc0 . It is thus possible to pick j /∈ Jc0 such that cj = 0. Since,

by assumption, θθθ /∈M(ΥΥΥj), we then have that, for any ε > 0,

P
(n)
θθθ

[
I[φφφ = c]‖ννν−1

n (θ̂θθc − θθθ)‖ > ε
]
≤ P

(n)
θθθ [φφφ = c] ≤ P

(n)
θθθ [φj = 0] = P

(n)
θθθ [Q

(n)
j ≤ χ2

d−rj ,1−α]→ 0.

This shows that I[φφφ = c]ννν−1
n (θ̂θθc − θθθ) is oP(1) for any c ∈ Cm \ Cmc0 . Fix now c ∈ Cmc0 , so

that cj = 1 for any j /∈ Jc0 . Then, for any ε > 0,

P
(n)
θθθ

[
‖{I[φφφ = c]− I[φφφ =c0 c]}ννν−1

n (θ̂θθc − θθθ)‖ > ε
]

= P
(n)
θθθ

[
[φφφ 6= c] ∩ [φj = cj ∀j ∈ Jc0 ]

]
≤ P

(n)
θθθ

[
φj 6= cj(= 1) for at least one j /∈ Jc0

]
=
∑
j /∈Jc0

P
(n)
θθθ

[
φj 6= 1

]
=
∑
j /∈Jc0

P
(n)
θθθ [Q

(n)
j ≤ χ2

d−rj ,1−α]→ 0,

since, by assumption, θθθ /∈M(ΥΥΥj) for any j /∈ Jc0 . The result follows. �

Proof of Theorem 3.2. Proceeding exactly along the same lines as in the proof of

Theorem 3.1, we obtain that ννν−1
n (θ̂θθPMTE − θθθn) = ννν−1

n (θ̂θθPMTE,c0 − θθθn) + oP(1) as n → ∞

under P
(n)
θθθ , hence (from contiguity) also under P

(n)
θθθn

. With the notation introduced above

4



the statement of the theorem, this rewrites

ννν−1
n (θ̂θθPMTE − θθθn) =

∑
c∈Cmc0

I[φφφ =c0 c]ννν−1
n (θ̂θθc − θθθn) + oP(1)

=
2s∑
r=1

I[φφφ =c0 cr]ννν
−1
n (θ̂θθcr − θθθn) + oP(1)

= W′
nRn + oP(1) (B.35)

as n → ∞ under P
(n)
θθθn

, where Wn := W(D
(n)
c0 ) is based on D(n) := (D

(n)′
j1
, . . . ,D

(n)′
js

)′ (see

Assumption (B)) and where we let

Rn :=


ννν−1
n (θ̂θθc1 − θθθn)

...

ννν−1
n (θ̂θθc2s − θθθn)

 .

Since ννν−1
n (θ̂θθc−θθθn) = ννν−1

n (θ̂θθc−θθθ)−τττn for any c, it directly follows from Assumption (B)

that (
Rn

D
(n)
c0

)
=

 FS
(n)
θθθ − (12s ⊗ τττn)

GS
(n)
θθθ

+ oP(1) =: Un + oP(1) (B.36)

as n → ∞ under P
(n)
θθθ , hence (still from contiguity) also under P

(n)
θθθn

. Denoting (as in

Assumption (A)) as Λn the log-likelihood ratio of P
(n)
θθθn+νννnτττn

with respect to P
(n)
θθθn

, it directly

follows from (B.36) and Assumptions (A) and (B) that, under P
(n)
θθθ ,(

Un

Λn

)
D→ N (µµµθθθ,τττ ,Vθθθ,τττ )

with

µµµθθθ,τττ :=


−(12s ⊗ τττ)

0

−1
2
τττ ′ΓΓΓθθθτττ

 and Vθθθ,τττ =


FΣΣΣθθθF

′ FΣΣΣθθθG
′ FΩΩΩθθθτττ

GΣΣΣθθθF
′ GΣΣΣθθθG

′ GΩΩΩθθθτττ

τττ ′ΩΩΩθθθF
′ τττ ′ΩΩΩθθθG

′ τττ ′ΓΓΓθθθτττ

 .
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Thus, the Le Cam third Lemma directly yields that, under P
(n)
θθθn

,

Un
D→ N

 FΩΩΩθθθτττ − (12s ⊗ τττ)

GΩΩΩθθθτττ

 ,

 FΣΣΣθθθF
′ FΣΣΣθθθG

′

GΣΣΣθθθF
′ GΣΣΣθθθG

′

 ,

which is the desired result. Obviously, (B.36) implies that this is also the asymptotic

distribution of (R′n,D
(n)′
c0 )′ under P

(n)
θθθn

. The result then directly follows from (B.35) and

from the continuous mapping theorem. �

Proof of Theorem 3.3. Since

W′F =
∑
c∈Cmc0

I[φφφ =c0 c]ΥΥΥcBc,θθθ,

the quantities µµµPMTE and ΓΓΓPMTE in (3.11)–(3.12) are respectively given by

µµµPMTE =
∑
c∈Cmc0

I[φφφ =c0 c](ΥΥΥcBc,θθθΩΩΩθθθτττ − τττ + ΥΥΥcBc,θθθΣΣΣθθθG
′(GΣΣΣθθθG

′)−(D−GΩΩΩθθθτττ))

=
∑
c∈Cmc0

I[φφφ =c0 c](ΥΥΥcBc,θθθΩΩΩθθθτττ − τττ + ΥΥΥcBc,θθθAθθθ(D−GΩΩΩθθθτττ))

=
∑
c∈Cmc0

I[φφφ =c0 c]
{

(ΥΥΥcBc,θθθEθθθ,τττ − τττ) + ΥΥΥcBc,θθθAθθθD
}

and

ΓΓΓPMTE =
∑

c,c′∈Cmc0

I[φφφ =c0 c]I[φφφ =c0 c′]ΥΥΥcBc,θθθΣΣΣ
1/2
θθθ

{
Ip −P(ΣΣΣ

1/2
θθθ G′)

}
ΣΣΣ

1/2
θθθ (ΥΥΥc′Bc′,θθθ)

′

=
∑
c∈Cmc0

I[φφφ =c0 c]ΥΥΥcBc,θθθΣΣΣ
1/2
θθθ (Ip −P(ΣΣΣ

1/2
θθθ G′))ΣΣΣ

1/2
θθθ (ΥΥΥcBc,θθθ)

′,

where we used the fact that I[φφφ =c0 c]I[φφφ =c0 c′] = 0 for c 6= c′. We therefore have that

E[ΓΓΓPMTE] =
∑
c∈Cmc0

λc,τττΥΥΥcBc,θθθΣΣΣ
1/2
θθθ

{
Ip −P(ΣΣΣ

1/2
θθθ G′)

}
ΣΣΣ

1/2
θθθ (ΥΥΥcBc,θθθ)

′
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and that

E[µµµPMTEµµµ
′
PMTE] =

∑
c∈Cmc0

λc,τττ (ΥΥΥcBc,θθθEθθθ,τττ − τττ)(ΥΥΥcBc,θθθEθθθ,τττ − τττ)′

+ΥΥΥcBc,θθθAθθθλλλc,τττ (ΥΥΥcBc,θθθEθθθ,τττ − τττ)′ + (ΥΥΥcBc,θθθEθθθ,τττ − τττ)(ΥΥΥcBc,θθθAθθθλλλc,τττ )
′

+ΥΥΥcBc,θθθAθθθΛc,τττA
′
θθθB
′
c,θθθΥΥΥ

′
c,

so that the result follows from the identity AMSEθθθ,τττ (θ̂θθPMTE) = E[ΓΓΓPTE] + E[µµµPMTEµµµ
′
PMTE].

�

We now turn to the proof of Proposition 4.1, which requires the following preliminary

result (see page 32 in Saleh, 2006).

Lemma B.1. Let Z be a Gaussian random p-vector with mean vector µµµ and covariance

matrix Ip. Then, for any real-valued measurable function ϕ,

(i) E[ϕ(‖Z‖2)Z] = E[ϕ(V )]µµµ

and

(ii) E[ϕ(‖Z‖2)ZZ′] = E[ϕ(V ))]Ip + E[ϕ(W )]µµµµµµ′,

where V ∼ χ2
p+2(‖µµµ‖2) and W ∼ χ2

p+4(‖µµµ‖2).

Proof of Proposition 4.1. Since the constrained and unconstrained estimators in Sec-

tion 4 are asymptotically efficient (in the corresponding constrained and unconstrained

Gaussian models, respectively), ΥΥΥcBc,θθθ is given by ΓΓΓ−1
θθθ , ΓΓΓ

−1/2
θθθ PΥΥΥscale

ΓΓΓ
−1/2
θθθ , ΓΓΓ

−1/2
θθθ PΥΥΥshape

ΓΓΓ
−1/2
θθθ ,

and ΓΓΓ
−1/2
θθθ PΥΥΥcovΓΓΓ

−1/2
θθθ , for c = (1, 1), c = (0, 1), c = (1, 0), and c = (0, 0), respectively. Easy

computations yield

Id −P(ΓΓΓ
1/2
θθθ G′) = Id −P⊥ΥΥΥshape

−P⊥ΥΥΥscale
,
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where we let P⊥ΥΥΥ := Id−P(ΓΓΓ
1/2
θθθ r−1

n ΥΥΥ). Moreover, the matrices ΛΛΛc,0 can be easily computed

from Lemma B.1 (these matrices are block-diagonal with each diagonal block proportional

to the identity matrix). Straightforward computations then show that (3.15) reduces to

AMSEθθθ,0(θ̂θθPMTE) = ΓΓΓ
−1/2
θθθ

{
α2Id + PΥΥΥscale

(α(1− α)PΥΥΥshape
+ γshape,(0,1)P

⊥
ΥΥΥshape

)PΥΥΥscale

+(γshape,(1,1) − α2)P⊥ΥΥΥshape
+ PΥΥΥshape

(α(1− α)PΥΥΥscale
+ γscale,(1,0)P

⊥
ΥΥΥscale

)PΥΥΥshape

+(1− α)2PΥΥΥcov + (γscale,(1,1) − α2)P⊥ΥΥΥscale

}
ΓΓΓ
−1/2
θθθ ,

with γscale,(1,1) = α(1 − Ψk−1+2(χ2
k−1,1−α)), γshape,(1,1) = α(1 − Ψ(k−1)bp+2(χ2

(k−1)bp,1−α)),

γshape,(0,1)

= (1 − α)(1 − Ψ(k−1)bp+2(χ2
(k−1)bp,1−α)) and γscale,(1,0) = (1 − α)(1 − Ψk−1+2(χ2

k−1,1−α)).

It then follows from (4.26) that

AMSEscalar
θθθ,0 (θ̂θθPMTE) = α2(bp + 1) + (1− α2)(bp + 1) + γscale,(1,1)(k − 1) + γshape,(1,1)(k − 1)bp

+γshape,(0,1)(k − 1)bp + γscale,(1,0)(k − 1)

= d− (k − 1)bpΨ(k−1)bp+2(χ2
(k−1)bp,1−α)− (k − 1)Ψk−1+2(χ2

k−1,1−α),

which is the desired result. �
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