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Abstract

The problem of testing the null hypothesis of angular symmetry about a spec-
ified location in R? is considered, with the focus being on a well-known test
based on halfspace depth. In the bivariate case d = 2, the exact null distribu-
tion of the corresponding test statistic is explicitly known and turns out not to
depend on the underlying angularly symmetric distribution, so that the test
is distribution-free under the null hypothesis. Distribution-freeness, which is
of course crucial to make this test applicable in practice, is further investi-
gated here. In dimension d = 2, the reason why distribution-freeness holds is
explained and it is shown through Monte Carlo exercises that distribution-
freeness does not hold in dimension d = 3. Through suitable concepts of
hyperplane arrangements, it is then investigated why the test behaves differ-
ently for d = 2 and d > 3. The results reveal why distribution-freeness fails,
and, for a particular sample size considered to ease the presentation, they
show that deviations with respect to distribution-freeness, still for d = 3,
will actually remain very small. That these deviations will remain very small
for other sample sizes is supported by a broader Monte Carlo exercise. Fi-
nally, a feasible conditional version of the test is proposed and asymptotic
distribution-freeness is briefly discussed.
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1. Introduction

A probability measure P on R is said to be symmetric about a real num-
ber 0 if and only if P[#+ B] = P[0— B] for any Borel set B; throughout, z+AC
will stand for {z + Ay : y € C'}. If P is absolutely continuous with respect to
the Lebesgue measure, with corresponding density f, then this holds if and
only if f(6 + z) = f(6 — x) for almost any real number x. For probability
measures on R? with d > 2, several symmetry concepts are available in the
literature; see, e.g., Serfling (2006). Arguably, the most natural extension is
the concept of centro-symmetry: a probability measure P on R? is said to
be centro-symmetric about a d-vector 6 if and only P[f + B] = P[0 — B] for
any d-dimensional Borel set B. If P is absolutely continuous with respect
to the Lebesgue measure on R?, still with corresponding density f, then P
is centro-symmetric about 6 if and only if f(0 + z) = f(6 — x) for almost
any x € R?. Other classical symmetry concepts on R¢ include the (stronger)
elliptical symmetry and spherical symmetry; see Serfling (2006).

Symmetry has played a key role in multivariate nonparametric statistics.
A prototypical example is robust location testing, that is, testing the null
hypothesis Hy : 8 = 6y against the alternative hypothesis H;, : 6 # 6,
where 6 is a suitable location parameter and 6, is a fixed d-vector; this of
course is to be tested on the basis of a random sample of size n from the
distribution P at hand. A classical parametric approach defines 6 as the mean
vector of P, but this has the disadvantage of requiring a priori finite first-
order moments. Many works in the literature therefore rather defined 6 as the
centro-symmetry center or elliptical symmetry center, which allows one to
avoid any moment assumption; see, among many others, Peters and Randles
(1990), Hettmansperger et al. (1994), Hettmansperger et al. (1997), Hallin
and Paindaveine (2002), Ollila et al. (2002), and Oja (2010). Obviously,
such a nonparametric approach can deal with arbitrarily heavy tails, hence
is robust to some extent, yet the price to pay to achieve this is not negligible
since centro-symmetry, and even more so elliptical symmetry, is a rather
stringent assumption.

This motivates considering a weaker multivariate symmetry concept, na-
mely the concept of angular symmetry (see Liu (1988, 1990)): a probability
measure P on RY is said to be angularly symmetric about a d-vector 6 if
and only if P[0 + C] = P[0 — C] for any d-dimensional cone C' with apex
at the origin of R%—that is, for any subset C' of R? such that if z € C,
then Az € C for any A > 0. Figure 1 shows some level sets of the bivariate



density (expressed in polar coordinates, with r € [0, 00) and ¢ € [0, 27))

2y/2 +siny

m2(1+r4(2 + siny))’

for which the corresponding probability measure is angularly symmetric about
the origin of R2. Clearly, angular symmetry is a much weaker concept than
centro-symmetry; in particular, any probability measure on R is angularly
symmetric about any of its medians (for d > 1, any probability measure
on R? may have at most one angular symmetry center). In the context of
multivariate location testing, it is thus advantageous to define the location
functional # as the possible angular symmetry center.

As a consequence, angular symmetry is often considered when comparing
various location functionals (Zuo and Serfling (2000b)) and is often assumed
when performing nonparametric hypothesis testing for multivariate location
(see, e.g., Oja and Randles (2004) for conditional testing, or Larocque (2003)
and Larocque et al. (2007) in the special case of cluster-correlated data).
Angular symmetry is also a natural assumption to tests for randomness based
on multivariate runs concepts (Van Bever (2016)), and it is relevant in the
context of shrinkage estimation (Perlman and Chaudhuri (2012)). Obviously,
due to its very tight connection with halfspace symmetry (Zuo and Serfling
(2000b)), angular symmetry has played an important role in the halfspace
depth literature; see, e.g., Liu et al. (1999) and Zuo and Serfling (2000a). In
the same vein, angular symmetry was also assumed, e.g., in Chen and Tyler
(2002) when deriving the influence function and maximum contamination
bias function of the Tukey median.

While the angular symmetry assumption is much weaker than its centro-
symmetry counterpart, it is still a non-trivial assumption for d > 2, which
makes it desirable to be able to test for angular symmetry in R%—for d > 2
only, since angular symmetry always holds over the real line. Few tests of
angular symmetry are available in the literature, and the present note focuses
on the test defined in Rousseeuw and Struyf (2002), which we now recall.

To this end, we need to define the Tukey (1975) halfspace depth concept :
if P is a probability measure on R%, then the halfspace depth of (€ R?) with
respect to P is

f(z) = f(rcost,rsiny) = (1)

HD(9,P) = inf P[Hy,],

uesd-1
where S41 = {z € R? : ||z||*> = 2’2 = 1} is the unit sphere in R?
and Hy, := {z € R? : /(2 — 0) > 0} is the closed halfspace with 6 on
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Figure 1: Some level sets of the density in (1). The corresponding probability measure is
angularly symmetric (but of course not centro-symmetric) about the origin of R%. Both
grey cones with apex at the origin have a probability equal to 1/15.



its boundary hyperplane and whose normal “direction” is u. This measure
of statistical depth (see, e.g., Zuo and Serfling (2000a)) indicates how cen-
tral the fixed location @ is with respect to the probability measure P. It is
known that, for any probability measure P on R?, there exists § € R? that
maximizes HD(6, P) (see Proposition 7 in Rousseeuw and Ruts (1999)), and
that the corresponding maximal depth satisfies

1 1 1
— < HD(9, P) < Pl{o
77 W HD0.P) < 5 + 5 max P{OY)
see Proposition 9 in Rousseeuw and Ruts (1999) (for the lower bound) and
Lemma 1 in Rousseeuw and Struyf (2004) (for the upper bound). Remark-
ably, the upper bound holds pointwise in 6 and allows one to characterize
angular symmetry; more precisely,

1 1
HD(6, P) < 5t §P[{9}] for any 0 € R (2)

and equality holds at some 6, € R? if and only if P is angularly sym-
metric about 6y (and HD(f0y, P) is the maximal depth achieved by P); see
Theorem 30.2.1 in Rousseeuw and Struyf (2002), as well as Theorems 1-
2 in Rousseeuw and Struyf (2004). In particular, restricting for the sake
of simplicity to absolutely continuous probability measures, P is angularly
symmetric about 6y if and only if HD(6y, P) = 1/2.

With the motivation provided earlier, consider then the problem of testing
the null hypothesis that the probability measure P at hand (which we will
throughout tacitly assume to be absolutely continuous) is angularly sym-
metric about 0y (a fixed d-vector), based on a random sample Xj,..., X,
from P. The previous paragraph suggests considering the test that rejects
the null hypothesis for small values of

T, := HD(y, P,),

where P, is the empirical probability measure associated with Xi,..., X,
so that T, is the sample halfspace depth of fy with respect to the sample
at hand. This test was proposed in Section 30.3 of Rousseeuw and Struyf
(2002). Implementation of this test of course requires distribution-freeness
of T,, under the null hypothesis. As mentioned in Rousseeuw and Struyf
(2002), a result from Daniels (1954) actually states that, for d = 2, the exact



null distribution of T;, is given by

0 if k<0
k n— k/(n—2k n . n—
P[T, < k] = 2 ZJL:/O( / (n7k+j(n72k)) if0<k<|[*] (3)
1 otherwise.

Clearly, this null distribution does not depend on the particular angularly
symmetric distribution at hand, so that, in the bivariate case d = 2, the
test statistic T;, is exactly distribution-free under the null hypothesis, which
allows one to perform the test proposed in Rousseeuw and Struyf (2002).

Daniels’ result establishes distribution-freeness in dimension d = 2, yet it
leaves open a number of natural key questions we intend to address in the
present paper. First and foremost, it would be nice to understand why T,
is distribution-free under the null hypothesis for d = 2. We argue that this
is actually even more fundamental than the explicit formula in (3) (would
one know that the test statistic is distribution-free under the null hypoth-
esis, then one could approximate arbitrarily well, for any given significance
level a, the required critical value by picking the corresponding sample quan-
tile in a large collection of simulated values of T,, computed within samples
generated from an arbitrary distribution that is angularly symmetric with
respect to 6y, such as, e.g., the multinormal distribution with mean vector 6,
and identity covariance matrix). Second, it is of interest to know whether or
not distribution-freeness under the null hypothesis extends to higher dimen-
sions d > 3 and, if not, to understand why distribution-freeness fails. We
aim at answering these questions in the present work.

The outline of the paper is as follows. In Section 2, we explain how
distribution-freeness in the bivariate case d = 2 actually results from suitable
invariance arguments. In Section 3, we explain why similar arguments cannot
be used to establish distribution-freeness in higher dimensions and we show
through simulations that distribution-freeness actually does not hold in gen-
eral for d = 3. In Section 4, we investigate distribution-freeness through an-
other approach that links the null distributional properties of T}, to a concept
of hyperplane arrangements. This allows us to establish in an alternative way
distribution-freeness for d = 2 and also identifies why distribution-freeness
fails in higher dimensions. For a particular sample size, we provide theoret-
ical support why deviations from distribution-freeness will actually remain
very small for d = 3. In Section 5, we perform a Monte Carlo study showing



that departures from distribution-freeness remain very small for larger sam-
ple sizes, too. We conclude by providing final comments in Section 6, where
we describe a feasible conditional version of the test considered in this work
and shortly discuss asymptotic distribution-freeness.

2. Distribution-freeness in the bivariate case

Throughout the paper, we will consider the problem of testing for angular
symmetry about the origin of R, that is, we restrict to 6, = 0. This is of
course without any loss of generality (to test for angular symmetry about a
fixed 6y # 0, one can apply a test for angular symmetry about the origin
to the centered observations X; — fp,..., X, — 6y). The following result
states that, in the bivariate case d = 2, the test statistic 7,, = HD(0, P,) is
distribution-free under the null hypothesis as soon as absolute continuity is
assumed.

Theorem 2.1. Let Py be the collection of probability measures on R? that are
angularly symmetric about the origin of R? and admit a density with respect
to the Lebesque measure. Let Xy,..., X, be a random sample from P € Ps.
Then, the distribution of T,, = T, (X1, ..., X,) does not depend on P.

Proor or THEOREM 2.1. We will prove the result by showing that, for
any real number ¢t and any P € Ps,

PIT,(X1,.... X0) < 1] = R[To(X1,..., X)) < 1],

where Py is the probability measure associated with the uniform distribution
over St. To this end, we consider the transformation g = g o g,, where

T Tn
ga(,flfl,...,.’L'n): m,...,m
n

projects observations radially onto S!, and where

g(T1,. .., xn) = (hp(x1),..., hp(zy,))

involves the transformation hp defined (with obvious notation, in polar co-
ordinates) through

hp(z) = hp(cost,siney) = (cos Fp(v),sin Fp()),
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with Fp(¢) = 2rPlarg(X,) < ¢]; here, arg(X;) denotes the random an-
gle Uy such that X;/||X;| = (cosW¥y,sin¥y). Since P € P, the random
variable arg(X;) admits a density with respect to the Lebesgue measure
over [0,2m), so that Fp(0) = 0. Angular symmetry of P about the origin
also implies that

Fp(f+7) = Fp() + 7 for any ¥ € [0, 7). (4)

From the usual probability integral transform, Fp(arg(X;)) is uniformly
distributed over [0, 27); thus, if (Xi,...,X,) is a random sample from P,
then g(Xy,...,X,) is a random sample from F.

Now, would the test statistic 7;, be invariant under the transformation g,
in the sense that

To(g(x1, ... x0)) = Tp(xq,. .., 2p)

for any x1,...,x, € R?, then we would have
P[T,(X1,...,X,) <t] = P[T(g(X1,..., X)) <t] = B[T.(Xy,...,X,) <t

for any ¢, which would establish the result. It therefore only remains to prove
the aforementioned invariance of T;,. To do so, note that, for any x,...,z, €
R?, we have (with obvious notation)

To(ga(z1, ... 20)) = HD(0,go(z1,...,20))
= HD(0,(z1,...,2,))
= To(x1,...,2,). (5)
Now, consider arbitrary x,,...,z, € S, and note that

To(xy,...,xn) = HD(O, (21, ...,2,))

= min min (Zﬂ[wl € [, +m7ll,n— ZH[% € (wa¢+ﬂ>])7

peE(0,m)

=1

where [ is an indicator function. Since Fp(0) = 0 and Fp(m) = Fp(0)+7m =7
(this follows from (4)), continuity of Fp implies that Fp : [0,7) — [0,7) is



surjective, so that

To(gy(1, ... 20))

= min mm(ZHFP ;) € [V, + 7], Z]IFP ;) € w‘i‘ﬂ)])
=1

Pe[o,m)
= wxél[(i)% min <ZH[FP(¢2‘) € [Fp(vy), Fp(v) + 7], (6)

n

n— > IFp(vi) € (Fp(v), Fp(v) + >]>-

i=1
Using (4) then the monotonicity of Fp thus yields
To(gp(x1, ..., 20))

Ye0,m)

— min min (ZH [Fp () € [Fp), Fp(v + )], (7)

n

n— 3 s € (Fp(v), Fp<w+w>>]>

=1

= min mm(Zle ww—l—ﬂ]],n—zﬂ[%e(w?w‘*‘ﬂ)])

Ye0,m)
=T(x1,...,2,). (8)
Since invariance of T;, follows from (5) and (8), the proof is complete. O

It is worth noting that the key ingredient bringing distribution-freeness in
the proof of Theorem 2.1 is the probability integral transform used in g,. The
use of this, by nature univariate, transform is possible since the unit circle, or
equivalently its angle parametrization [0, 27), is a one-dimensional space; this
of course is not the case for higher-dimensional unit spheres S, with d > 3,
which would call for higher-dimensional integral probability transforms; see
below.

Inspection of the proof reveals that distribution-freeness extends to the
collection of probability measures P over R? such that P is angularly sym-
metric about the origin, does not charge the origin (i.e., P[{0}] = 0), and is
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such that if X has distribution P, then X/|| X || admits a density with respect
to the surface area measure on S' (the latter absolute continuity is indeed
sufficient to allow for the use of the probability integral transform in gp).
This is of course a wider class of distributions than the one considered in
Theorem 2.1 since it also contains, e.g., the uniform distribution on S!.

3. Towards higher dimensions

To the best of our knowledge, whether or not the distribution-freeness
result from Theorem 2.1 extends to higher dimensions remains an open ques-
tion. The proof of Theorem 2.1, that relies on invariance arguments, unfor-
tunately does not extend to higher dimensions d, as we now explain. For the
sake of simplicity, let us focus on d = 3. Of course, the halfspace depth of the
origin is still invariant when observations are projected radially through g,
onto the unit sphere §? of R3, that is, (5) still holds for d = 3. Now, the
transformation g needs to be generalized to a transformation from S? to S?
that maps an arbitrary angularly symmetric (equivalently, centro-symmetric)
absolutely continuous distribution on 82 onto the uniform distribution on S2.
This requires

e cither a bivariate probability integral transform such as, e.g., the usual
Rosenblatt transformation, that, in spherical coordinates (¢, (), with
longitude ¢ € [0,27) and colatitude ¢ € [0, 7], is of the form (¢, () —
(Fpy(¥),Gpyc(¥,C)), where Fpy, is still (27 times) the cumulative
distribution function of the longitude under P and where Gpy ¢ is (7
times) the cumulative distribution function of the colatitude condi-
tional on the value v of the longitude,

e or an empirical concept of bivariate center-outward distribution func-

tion, such as the one relying on measure transportation ideas proposed
in Hallin et al. (2021).

While both resulting transformations g, would indeed yield the uniform dis-
tribution on &2, it is not so that the halfspace depth of the origin will be
invariant under such transformations for any P (measure transportation,
however, would naturally lead to alternative distribution-free tests). The
proof therefore collapses in dimension d = 3 (and more generally in dimen-
sions d > 3), and distribution-freeness in such dimensions therefore remains
an open question.
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In order to explore distribution-freeness in dimension d = 3, we con-
ducted the following Monte Carlo exercise. We generated M = 107 mutu-
ally independent random samples of size n = 6 from both following prob-
ability measures on R3 : P;, the standard trivariate normal distribution,
and P, an equal-weight mixture with one mixture component being the
trivariate normal distribution with mean vector —5e; = (—5,0,0)" and iden-
tity covariance matrix, and the other mixture component being the trivari-
ate normal distribution with mean vector 5e; and still identity covariance
matrix. Note that P, and P, are centro-symmetric—hence also angularly
symmetric—about the origin of R?. We evaluated T}, in each sample through
the R package depth (Genest et al. (2019)), which uses the fast exact algo-
rithm from Rousseeuw and Struyf (1998). When generating random sam-
ples of size n = 6 from an absolutely continuous distribution (which will
almost surely provide observations in general position), only the values 0,
1/6 and 2/6 = 1/3 of T, may arise with positive probability (this easily
follows by applying (2) to the empirical distribution P, at hand). Table 1
then provides the resulting approximations of the probabilities P[T,, = 0],
P[T,, = 1/6], and P[T,, = 1/3] for both P, and P,. The results are compatible
with the fact that P[T,, = 0] actually does not depend on the underlying (ab-
solutely continuous) angularly symmetric distribution P (see Wendel (1962)),
yet they suggest that the distribution of 7}, is not the same under P, and un-
der P,. To investigate this, we performed a formal test for the null hypothesis
that T}, has the same distribution under both probability measures, that is,
we performed a chi-squared test of homogeneity for the vectors of probabili-
ties (P;[T,, = 0], Pj[T,, = ], P;[T, = 3]), j = 1,2. The resulting p-value, for
(3—1) x (2—1) = 2 degrees of freedom, is below 2.2 x 1071%; thus, although
differences are small in Table 1, we may conclude, at all usual significance
levels, that distribution-freeness does not hold in dimension d = 3.

4. Distribution-freeness and hyperplane arrangements

In this section, we investigate why the cases d = 2 and d > 3 behave
differently, by making use of hyperplane arrangements. Unless it coincides
with the origin of R?, each observation X; defines the hyperplane hy, := {x €
R? : 2'X; = 0} that contains the origin of R? and is orthogonal to uy, :=
Xi/IIX:||. The set of hyperplanes hx, . x, :={hx,,...,hx,} is what we will
call a hyperplane arrangement. It cuts R? into n X,....x, connected open sets,
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Py %
P[T,, =0] 0.49995 [0.49964 0.50026] 0.50012 [0.49981 0.50043]
] 0.49416 [0.49385 0.49447] 0.49364 [0.49333 0.49395]
] 0.00589 [0.00584 0.00594] 0.00624 [0.00619 0.00629]

1
6
=1
3

Table 1: Empirical probabilities of T, for n = 6 (together with the corresponding 95%
confidence intervals) under both probability measures P; and P considered in Section 2;
for each probability measure, estimation is based on M = 107 mutually independent
samples. When performing a chi-squared test for the null hypothesis of distribution-
freeness, the p-value is below 2.2 x 10716,

in the sense that
Rd\th,...,Xn — Al U oo U A”Xl

where the A;’s are connected (pairwise disjoint) open cones (note that these
cones are defined up to a permutation only, which will need to be handled
in the sequel). A two-dimensional hyperplane arrangement resulting from
a random sample of size n = 4 is shown in Figure 2. There, the plane R?
is cut into 8 cones. If all observations are different from the origin and no
pair {4,i'} with 7 # i’ provides ux, = ux, or ux, = —uy, (which will be the
case almost surely if X;,..., X, form a random sample from an absolutely
continuous distribution), then the plane is cut into nyx, _x, = 2n cones.

Surprisingly, it is also the case in dimension d that, if observations are
randomly sampled from an absolutely continuous distribution, then nx, _ x,
is almost surely equal to a constant that only depends on n and d. This
readily follows from the following result, in which, by definition, we say
that n hyperplanes are in general position if and only if the intersection of
every selection of k(< d) hyperplanes has dimension d — k.

Proposition 4.1 (Winder (1966)). If n hyperplanes of R¢ go through a com-
mon point and are in general position, then these hyperplanes divide R? into

a1
Npd = 22 ( ; )
i=0

T€gIONS.
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~ Al A2
A3

— — A8
o p—
T' ]

A7
N A

I I

-2 -1 0 1 2

Figure 2: The hyperplane arrangement associated with n = 4 observations randomly
sampled from the bivariate normal distribution. The coloured dots represent the observa-
tions X;, ¢ = 1,2, 3,4, whereas the solid lines are the corresponding hyperplanes hx,. The
hyperplane arrangement determines 2n = 8 open cones Ay, ..., Ag.
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Under absolute continuity, there are thus almost surely n, 4 cones Aj;,
j=1,...,n,4. Toeach A;, we associate its halfspace sign

]I[AJ - H)—El] — H[A] - H)_(l]
55, X1, Xn = : ; 9)
]I[AJ C H;(r—n] — H[AJ C H;(n]

where H)i(i = {z € R? : £2/X; > 0} are the open halfspaces “above”
and “below” the hyperplane Hy,, respectively (we refer to Mozharovskyi
(2016) for a related concept of hyperplane arrangements and similar encod-
ing). Writing 1 := (1,...,1)’ € R? and [jo], := 3%, |ui| for v € R, and
assuming that the observations Xi,..., X, form a random sample from an
absolutely continuous distribution, we almost surely have

n

1
T, = HD(0, P,) = Ej:lmi% dZ]I[Aj C HY]
g
R o N
B %j:%?{%n!d Six1,...x, + 1|1,

which shows that T}, can be obtained from the collection of halfspace signs.
The next result decomposes an angularly symmetric random vector into three
components, which will give further insight into the distribution of halfspace
signs (see the appendix for a proof).

Lemma 4.1. Let the random d-vector X admit a density with respect to
the Lebesque measure. Denote as eq = (0,...,0,1) the last vector of the
canonical basis of RY. Then, X is angularly symmetric about the origin
of R if and only if X can be decomposed into

X =0 xS x M :=Sign(e,X) x (Sign(e&X)Hﬁ—”> x || X||,

where O satisfies PO = 1] = PO = —1] = 5 and is independent of S.

1
2

If X is angularly symmetric about the origin of R%, then we will refer to O,
S and M as the orientation, the sign and the magnitude of X, respectively.
Note that the distribution of O is completely specified, whereas those of S

and M depend on the angularly symmetric distribution at hand. Under the
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null hypothesis of angular symmetry about the origin of R%, any distribution-
free test statistic can then in principle depend on X1, ..., X, only through the
corresponding orientations Oy, ...,0,. Note that the signs Si,...,.S, fully

determine the halfspace arrangement associated with Xy, ..., X,,, hence also
the halfspace signs s; x, . x, € {—1,1}" that could be obtained when con-
sidering all possible orientations. The orientations Oy, ..., O, flip randomly
signs, whereas the magnitudes M, ..., M, have no influence on halfspace
signs at all. This will play a key role in our analysis.
Now, we associate with the sample X,..., X, at hand the sign matrix
(817517"'75'” te Snd,n7slu"'7s’n)7 (1]‘>
where Sy, ..., S, are the signs of X1,..., X,, from the decomposition given in
Proposition 4.1. Since labelling of the regions A;, j = 1,...,n,4, is arbitrary,

this matrix, however, is properly defined up to permutations of its columns
only. Also, the test statistic T,, = HD(0, P,) is invariant under permutations

of the observations Xi,..., X, which corresponds to permuting the rows
of the sign matrix in (11). Consequently, rather than this matrix, we will
consider the corresponding halfspace arrangement sign set of Xi,...,X,,
defined as

HASS(Xl, ce ,Xn) = UKEMn ULEMnmd {K(Sl,sl

where My is the collection of k X k permutation matrices (that is, the collec-
tion of matrices obtained by permuting arbitrarily the columns of the k x k
identity matrix). By definition, the HASS of a sample only depends on the
signs S1,...,.5, but not on the orientations Oq,...,O,, which will provide
the following result.

Theorem 4.1. Let the random d-vector X be angularly symmetric about the
origin of RY and admit a density with respect to the Lebesque measure, and let
Xy, ..., X, be mutually independent copies of X. Let g : R"*"md — R : C +—
g(C) be a function that is invariant under permutations of the rows/columns
of its matrix argument C'. Then, conditional on the HASS of X1,...,X,, the
statistic

R = R(Xh e 7Xn) = g((SI,Xl,...,Xn e Snnyd,Xl,...,Xn))

is distribution-free. In particular, conditional on the HASS of X1,...,X,,
the statistic T,, = HD(0, P,,) is distribution-free.
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PrROOF OF THEOREM 4.1. By definition of halfspace signs, we have

O1(8),51,....5)1 O, 0
85, X1, Xn : - . 84,51,...,5n >
0 O,
On(sj,Sl ..... Sn)n
for 7 =1,...,n,4, which rewrites
O, 0
(81 X1,..Xn Snp.ar X1, Xn) = (81 S1,..,5n Snn.dyS1,ees Sn)
0 O,
(12)
For any K, L as in the definition of HASS, we then have
K(Sl X1, Xn Snp.ar X1, Xn)L
O, 0
- K K(Slvsl 7777 Sn Snn ST, S’n)L
0 O,
Oﬂ'(l) 0
= . K(s1,1,...5, Sy arStynnSn ) L
0 Orn)
for some permutation 7 of {1,...,n} (that depends on K). By assumption,
it follows that, for any such K, L,
R = g(($1,X10. X0 - SnpaXiXa)) (13)
Oﬂ'(l) 0
=9 K (s1,81,...5, Sy aS10sSn ) L
0 Or(n)

Now, conditional on (51, ...,S,), the distribution of (O, ...,0,) is uniform
over {—1,1}", hence so is the distribution of (Orn), ..., Ox(n)). Since the fact
that (13) holds for any K, L implies that the distribution of R conditional
on the HASS of Xj,..., X, coincides with the distribution of R conditional
on (S1,...,Sy), the result follows. O

Theorem 4.1 shows that 7T;, is distribution-free under the null hypothesis
conditional on the HASS of Xi,..., X, but this does not entail that 7T, is
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(unconditionally) distribution-free under the null hypothesis, as the distri-
bution of the HASS of Xi,...,X,, might not be distribution-free itself. In
dimension d = 2, however, distribution-freeness of 7, now readily follows
from the next result.

Theorem 4.2. Assume that the bivariate observations X1, ..., X, are ran-
domly sampled from an absolutely continuous distribution. Then, with prob-
ability one, the HASS of X4,..., X, is {KJL KeM,Le Mzn}, with

1 -1 -1 ... —1 1 1 ... 1

1 1 -1 ... =1 -1 1 ... 1

1 1 1 ... -1 -1 -1 ... 1
J =

1 1 1 ... -1 -1 -1 ... 1

1 1 1 ... -1 -1 -1 ... —1

In particular, the HASS of X1, ..., X, is almost surely unique.

PROOF OF THEOREM 4.2. By definition, the signs S, ..., S, belong to the
upper half-circle {x € S' : e,z > 0}, and, from absolute continuity, they
belong almost surely to {x € S' : ejz > 0}. Incidentally, note that this
implies that, with probability one,

e € HE N...N HY . (14)

From absolute continuity again, the signs are pairwise different with prob-
ability one. Now, the concept of HASS being invariant under permutation
of the observations, we may assume without any loss of generality that the
signs Sy, ..., S, are ordered clockwise (equivalently, that their first coordi-
nates are in ascending order). Similarly, since the concept of HASS does
not depend on the labelling of the open cones A;, we will define A; as the
cone containing es (note that (14) states that e belongs to an open cone
with probability one) and we define A, ..., Ay, as the next cones that are
found when turning in the clockwise direction (this cone labelling is actually
the one that was adopted in Figure 2). Note that (14) implies that, with
probability one,
51,51,...,8, = (17 1, ceey 1)/

When going from one region A; to the next region A;.,, exactly one entry
of the corresponding halfspace sign will change (from —1 to 1, or from 1 to
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—1). Since A, +; = —A; for any j =1,...,n, we must in particular have

/
Sn+1,51,....,8, — —951,51,....,8, = (_17 _17 R _1) .

Consequently, the n successive entry changes in the halfspace signs incurred
when going from A; to A, 1 must all be a 1 becoming a —1. It also follows
that the n successive entry changes in the halfspace signs incurred when
going from A, 1 to Ay, must all be a —1 becoming a 1. It remains to figure
out which entry changes in which step in the corresponding halfspace signs.
Let us start by going from s;s, g, to s2s, . g,. Since A; and Ay as well
as S1,...,5, are ordered clockwise and since all signs are on the upper half-
circle, it must be H;rl that does not overlap A, so that s1.4,..s, and sa5,..s,
differ in their first entry only. Repeating this argument, we obtain that, for

any j = 1,...,n, the halfspace signs s, g, s, and s;j11g,,., differ in their
jth entry only. This fully determines s;g, . s,., 7 =1,...,n, and we have
(51,810,850 -+ S2n,81,..80) = (15)

where J is the matrix defined in the statement of the theorem (the last n half-
space signs in (15) were obtained from the relation s;ji,. s, s, = —S;.51...5.,
j=1,...,n, that results from A;,,, = —A;). This establishes the result. [

Theorem 4.2 does not extend to higher dimensions (indeed, would it hold
in dimension d = 3, then 7T,, would be distribution-free under the null hy-
pothesis for d = 3, which, as we showed at the end of Section 2, is not
the case). In other words, HASS are not unique for d > 3, at least not
for any sample n. Actually, for n = 6, there exist four different HASS in
dimension d = 3; see pages 164-165 in Miles (1971) or pages 394-395 in
Griinbaum, 2003 (for n < 5, HASS are unique in dimensions d = 3 as long
as hyperplanes are in general position, so that n = 6 is the simplest case
where different HASS occur, hence where distribution-freeness may fail in
the absolutely continuous case). The top panels of Figure 3 offer a graph
representation of two of these four HASS. Graph representations are ob-
tained as follows: each vertex stands for a region A; and is labelled with
its halfspace sign s;g, g, € {—1,1}" (according to Proposition 4.1, each
graph contains n, 4 = ng 3 = 32 vertices), whereas an edge between two ver-
tices/regions is drawn for neighbouring regions only, i.e., for pairs of regions
that are separated by a two-dimensional cone (this happens if and only if
the corresponding halfspace signs differ in exactly one entry). The HASS in
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Figure 3(a;), HASS, say, involves six regions A; having exactly five neigh-
bouring regions (these six regions are marked in red), whereas the HASS
in Figure 3(a,), HASS, say, shows no region with exactly five neighbouring
regions, but offers two regions with six neighbouring regions (which is the
maximum possible).

As we will show, both these HASS yield different conditional null distri-
butions of T},. To this end, it will be useful to also consider the bottom panels
of Figure 3, which, for both HASS, and HASS,., show the 32 halfspace signs
that are missing in the respective HASS; each HASS was involving n,, 4 = 32
halfspace signs out of the full collection of 2" = 64 possible halfspace signs,
so that also 32 halfspace signs were missing in each case (in the present
case (n,d) = (6, 3), the top and bottom panels in Figures 3 thus show a sim-
ilar structure, but, for n large, the proportion of all possible signs showing
in a HASS—namely, n, 4/2"—would of course be much smaller, so that the
graph representations associated with the top panels of Figure 3 would then
be much sparser than those associated with its bottom panels).

Let us start with HASS,. Consider first P[T,, = 0|HASS = HASS,|. In
view of (10), T,, = 0 is zero if and only if at least one of the halfspace signs

S5, X1, Xn — ) J = 17"'7327 (16)
On(sj,Sl ..... Sn)n

is equal to —1 := (—1,...,—1) € RS Conditional on HASS = HASS,, ran-
domness is only associated with the uniform distribution of the combination
vector (Oy, . ..,0,) over its 64 possible values in {—1,1}°. From Figure 3(ay),
it is then clear that 32 out of these 64 equally likely values of (Oy,...,0,)
will make one of the resulting halfspace signs s; x, . x, equal to —1, hence
will provide T,, = 0. Consequently,

77777

32 1
P|T,, = 0|JHASS = HASS/| = 1= 3
Let us then turn to P[T,, = 1/6|HASS = HASS,|. From (10) again, 7,, = 1/6
if and only if none of the halfspace signs in (16) is equal to —1 but at least one
contains exactly one entry equal to 1. We have just seen that among the 64
possible combination vectors, 32 would make at least one of the halfspace
signs in (16) equal to —1, so that the remaining 32 possible ones will provide
no halfspace signs equal to —1. Among the latter 32 possible combination
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Figure 3: (Top:) Two different HASS for d = 3 and n = 6 plotted as graphs where each
vertex represents a region A; and is labelled with its halfspace sign s; g, . s, € {—1,1}".
An edge between two regions A; and Aj is drawn for neighbouring regions, i.e., for pairs
of regions that are separated by a two-dimensional cone (this happens if and only if the
corresponding halfspace signs differ in exactly one entry). Vertices are coloured according
to their number of neighbours. (Bottom:) The corresponding missing halfspace signs in the
respective HASS. An edge is drawn between two vertices if and only if the corresponding
halfspace signs differ by exactly one entry. Vertices are still coloured according to their
number of neighbours.
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vectors, how many will provide at least one halfspace sign in (16) with exactly
one entry equal to 17 Figure 3(by) allows us to answer this question. The 32
considered combination vectors are such that —1 is missing. If we fix one of
these combination vectors, then —1 will be part of the halfspace signs

O1(t),51,...8. )1
S5 X100 X0y = ) .] = 17 <. 7327 (17>
On(tj,Sl,...,Sn)n

associated with the halfspace signs ¢;g, . g, from Figure 3(b,) (we thus use
the notation ¢, g, g, for halfspace signs that are missing in the considered
HASS). Now, none of the vertices of Figure 3(by) has six neighbours, so that
at least one of the six neighbours of —1 must not be missing among the
halfspace signs in (16). Therefore, each of the 32 combination vectors that
make no halfspace signs in (16) equal to —1 provides at least one halfspace
sign in (16) containing exactly one entry equal to 1. This entails that

32 1
P[T, = {|HASS = HA _ 2t _ =
[T, 6] SS SSe| 1= 2
and we conclude that
1 ifrefo,i
PIT, — 1|HASS — HAss,| = { 2 Toeile) (18)
0 otherwise.

The situation is actually different for HASS,. In the present paragraph,
when we refer to the halfspace signs in (16) (resp., to those in (17)), this
will of course be relative to the s; g, g, ’s that are in Figure 3(a,) (resp., to
the s;5, s,’s that are missing in Figure 3(a, ), equivalently, to the ¢;5, . g.’s
that are present in Figure 3(b,.)). Now, the exact same argument as for HASS,
shows that

P[T, = 0[HASS — HASS,] = 2> — L.

" T4 2
indeed, it is still so that among the 64 possible combination vectors, 32
will make at least one of the halfspace signs in (16) equal to —1 and the
remaining 32 possible ones will provide none of these halfspace signs equal
to —1. As above, T, = 1/6 if and only if none of the halfspace signs in (16)
is equal to —1 but at least one contains exactly one entry equal to 1. Here,
however, among the 32 combination vectors that are such that —1 is missing
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among the halfspace signs in (16), equivalently, that are such that —1 is
among the halfspace signs in (17), only 30 out of the 32 have strictly less
than six neighbours, which ensures that the combinations make at least one
halfspace sign in (16) contain exactly one entry equal to 1. Thus,
0 30 15

P[T, = |HASS = HASS,| = 61- 32
Both the remaining 2 combination vectors not only are such that the halfs-
pace signs in (16) do not contain —1 but they are also such that no halfspace
sign in (16) contains exactly one entry equal to 1; this corresponds to both
cases where one of the halfspace signs in (17) is equal to —1 and is a yellow
vertex in Figure 3(b,). Because, in this panel, none of the green vertices that
are at distance one from a yellow vertex has six neighbours, there must be
among the halfspace signs in (16) a vector that contains exactly two entries
equal to 1, which then provides 7, = 2/6 = 1/3. Thus,

2 1
P[T, = L|HASS = HASS, | = — = —
[ 5 [HASS SS, | 61 = 3%’
and we finally conclude that
% ifxr=0
Bofgp=1
P[T, = z|[HASS = HASS,] = ¢ % 6 (19)
35 if x = 3
0 otherwise.

We have thus shown that the null distribution of 7}, conditional on HASS =
HASS;, is different from the null distribution of 7,, conditional on HASS =
HASS,. Since it can be checked similarly that the remaining two HASS
for d = 3 and n = 6 provide the conditional distribution in (18), the small
difference between the conditional distributions in (18)—(19) now explains
why departures from distribution-freeness in Table 1 was so modest. In the
case d = 3 and n = 6, we have thus provided theoretical support for the fact
that deviations from distribution-freeness will remain very small.

Table 2 reports the frequencies according to which the conditional dis-
tributions in (18) and (19) showed up, under both probability measures Py
and P,, when conducting the Monte Carlo exercise that led to Table 1. It
is seen that the conditional distribution in (18) was more frequent under Py
than under P,, which explains the lack of distribution-freeness in Table 1.
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Py P,

P[T,, = x|HASS = HASS,| 0.8102 [0.8099,0.8104] 0.8006 [0.8004,0.8009]
P|T,, = x|HASS = HASS,] 0.1898 [0.1896,0.1901] 0.1994 [0.1991,0.1996]

Table 2: Empirical probabilities (together with the corresponding 95% confidence inter-
vals) that the conditional empirical distributions in (18) and (19) showed up, under both
probability measures P; and P», when conducting the Monte Carlo exercise that led to Ta-
ble 1; recall that, for each probability measure, estimation is based on M = 107 mutually
independent samples.

5. A Monte Carlo study

In this section, we conduct a broader Monte Carlo study, involving 10
different probability measures and various sample sizes, to show that depar-
tures from distribution-freeness remain small in general, using the R package
ddalpha (Pokotylo et al., 2019) to evaluate T,,. Beyond the probability mea-
sures P, and P, already considered above, we considered the following eight
(angularly symmetric) ones:

e P : the uniform distribution over the cube with vertices at (£1,4+1, £1)’;
e P, : the distribution of (7, Z,, Z3)', where the Z;’s are i.i.d. Cauchy;

e Ps : the distribution of S(Z1, Zs, Z3)', where S, Zy, Zy, Z3 are indepen-
dent, S is Rademacher and the Z;’s are exponential with mean one;

e Py : the distribution of

sin(U)v1 —V?2
W cos(U)y1-V2 |,
V

where U, V,W are independent, U ~ N(0, %), V is uniformly dis-
tributed over [—1,1], and W ~ N(0, 1);

e P; : the distribution of SX, where S is Rademacher and X is a mixture
distribution with equal mixture weights and mixture components

2 100 3 1 7.7
Xx;~N([=2),l0o10]]), Xo~N|[[0),[7 1 7)),
—2) \0 0 1 o) \.7 7 1
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and

3\ /100
Xs~N|{[0],[{0 5 0]];
0/ \0 0 1

Py : the distribution of SX, where S is Rademacher and X is a mixture
distribution with equal mixture weights and (four) mixture components
being trivariate normal distributions with mean

() () () (2)

and common covariance matrix

10 9 9
9 10 9 |;
9 9 10

Py : the distribution of SX, where S is Rademacher and X is a mix-
ture distribution with equal mixture weights and (thirteen) mixture
components being trivariate normal distributions with mean

(£)6)-0)-0)-6)6)
()(8)-(3)-6) () () 3

and common covariance matrix diag(.1,.1,.1);

Pyg : the distribution of SX, where S is Rademacher and X is a mixture
distribution with equal mixture weights and mixture components

0\ /10 0 0 0\ /2 0 0
X;~N([3), [0 1 0 and Xo~N([[3],[{0 1 0]].
0 0 0 .2 0/ \o 0 10

Visualizing these distributions is difficult due to their three-dimensional
nature. Since the test statistic 7, is invariant when observations are pro-
jected radially onto the unit sphere, we rather show density estimates of the
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Figure 4: Density estimates of the radial projections of Py, ..., Pig onto the unit sphere.
The first row shows Py, ... Ps (from left to right), whereas the second row shows Ps, ..., P
(still from left to right).

projected distributions. Figure 4 plots such density estimates, based in each
case on a random sample of size n = 10°; this was done by using the R
function sm.spherical from the R-package sm (Bowman and Azzalini, 2021)
with smoothing parameter x = 100.

To assess how small departures from distribution-freeness are, we choose P,
as a reference distribution, which is natural since its projection onto the
unit sphere is uniformly distributed. For each combination of a sample
size n € {6,12,24,48,96,192,384,768} and of a probability measure P,

among P, ..., Pjg, we then evaluated the estimated Kolmogorov—Smirnov
distance R o R
dn(Piy P1) = sup [F0(2) = F{V(2)], (20)
xG[O,%]

where £ is the empirical distribution function of 7}, obtained from m = 107
mutually independent random samples of size n from P,. Table 3, which
provides these distances multiplied by 10? for better readability, reveals that
distances remain very small. Note that the critical value for a two-sided
Kolmogorov—Smirnov two-sample test using a significance level of 5% and
a sample size of 107 is 0.6 x 1073. While distances indeed remain small in
Table 3, most of them are thus significant, which supports again the lack of
distribution-freeness. Notably d,,(Ps, P;) remains small and non-significant
for all sample sizes. It turns out that the projected density of Py in Figure 4
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can be transformed to the uniform distribution on the sphere by applying a
monotone transformation on the longitude (and no transformation at all on
the latitude) of the spherical coordinates. Since T, is invariant under such a
transformation, the distributions of 7,, under P, and Py do coincide, which
explains that the corresponding distances in Table 3 are small.

n Py Ps Py Ps Ps Py Py Py Py
6 028 0.13 030 081 0.24 0.20 0.44 0.25 091
12 053 0.16 040 1.30 0.33 0.38 0.75 0.43 1.30
24 1.08 050 046 207 035 049 1.51 085 1.46
48 1.10 0.51 0.92 1.99 0.29 0.75 1.88 0.87 1.66
96 1.26 041 0.75 224 054 0.79 1.88 1.32 1.94
192 1.33 047 0.97 231 0.55 0.67 1.98 1.30 2.06
384 1.23 096 1.24 229 050 1.20 1.78 1.42 2.09
768 1.10 0.31 094 2.10 024 0.74 1.83 1.27 1.91

Table 3: For each combination of a sample size n € {6,12,24,48,96,192, 384, 768} and
of a probability measure P; among P, ..., Po, this provides the estimated Kolmogorov—
Smirnov distance d,,(P;, P1) in (20), multiplied by 1000 for better readability.

6. Final comments

Since the test statistic T, is not distribution-free under the null hypoth-
esis in dimension d > 3, it is not possible to estimate critical values through
simulations. However, one may still apply the test conditionally. More pre-
cisely, when testing for angular symmetry about the origin of R? based on
the sample X1, ..., X, this consists in evaluating the 2" test statistic values

T2 =T,(0151,...,0,5,), o= (o1,...,0,) € {—1,1}",

and in rejecting the null hypothesis at level o if T,, = T,,(Xy,...,X,) is
below the sample a-quantile in {T° : 0 = (o4, ...,0,) € {—1,1}"} (as usual,
for most values of «, achieving exactly significance level o will require a
suitable randomization). This test, which is thus conditional on the sign
vector (S1,...,S,), is a perfectly valid procedure in any dimension d > 2,
including dimensions for which 7T, is not distribution-free under the null.
The conditional test just described requires evaluating 2" values of the
test statistic, hence can be applied for small to moderate sample sizes n
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only. For large sample sizes, one would typically want to obtain a critical
value from the asymptotic null distribution of 7,. In dimension d = 2,
Daniels (1954) actually also provided a large-n approximation of the exact
distribution in (3), namely

4(n = 2k) o= (95t 12 (n2k)2 /(2m
P[Tn < E] ~ W ‘ o~ (25 +1)%(n=2k)2/(2n) _. Fapprox,n(k?) (21)

7=0
(no explanation on how to obtain this approximation is given in Daniels
(1954), but a proof, relying on an alternative expression for (3), can be
found in Joffe and Klotz (1962)). The maximal absolute error

k:o,.ﬂ(finm ’P[Tn < 5] = Fapproxa(k) (22)
is shown in Figure 5 as a function of the sample size n and indicates that the
approximation works reliably even for relatively moderate values of n. Ob-
viously, exact distribution-freeness for d = 2 entails asymptotic distribution-
freeness (under the null hypothesis in both cases), and the approximation
in (22) indeed does not involve the underlying angular symmetric distri-
bution. Given the finite-sample analysis conducted in the present work, a
natural question is whether or not the test statistic T, is asymptotically
distribution-free under the null hypothesis. In view of the very small de-
partures from distribution-freeness we encountered in this work, it is not
easy to explore through Monte Carlo exercises whether or not asymptotic
distribution-freeness holds, yet results from Table 3 seem to indicate that
asymptotic distribution-freeness does not hold in dimension 3.

The testing problem considered in the paper is the problem of testing
the null hypothesis of angular symmetry about a given location 6, of R?, so
that location shifts, that will induce angular symmetry about 6(# 6), are
part of the alternative hypothesis. While we focused in the present work on
Type I risks, hence did not touch such issues, we stress here that tests of
multivariate symmetry may be biased as particular combinations of location
shifts and structural asymmetry may lead to cancel each other, hence lead
to alternatives that cannot be detected; we refer to Babi¢ et al. (2022) for a
precise description of this in the context of testing for elliptical symmetry.

Appendix A.

It only remains to prove Lemma 4.1.
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Figure 5: The maximal absolute error in (22) with respect to sample size n (in log scales).

PROOF OF LEMMA 4.1. (=) Letting H; := {x € R? : ¢)x > 0}, angular

symmetry of X about the origin of R? (and absolute continuity) entails that
1
3= P[X € Hy] = P[OSM € Hy| = P[OS € H;NnS*'| = P[0 = 1], (A.1)

where we used the fact that S € Hy; N 8% ! with probability one. Since
the absolute continuity assumption ensures that P[O = 0] = 0, this implies
that P[O = —1] = 1— P[O = 1] = 1/2. It remains to show that O and S are
mutually independent. To this end, let B be an arbitrary Borel set on S¢!
and Ap := {x € R?: x/||z|| € B} be the corresponding cone with apex at
the origin of R¢. Then,

P[X € AgnNHy) = PIOSM € AgN Hy| = P[SM € AgN Hy, O = 1]
=P[Se BNH;;,0=1]=P[S € B,0 =1]

and, similarly,

P[X € —(AgN Hy)] = P[OSM € —(Ap N Hy)]

=P[SM € AgNHy,O=—-1=P[Se BNH;,0=—-1]=P[Se€B,0=-1].

From angular symmetry, we thus have P[S € B,O = 1| = P[S € B,0 = —1],
so that

P[S e B,O=1]=P[S € B]-P[S € B|O =—-1] = P[S € B]-P[S € B|O =1],
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which yields
1
P[Se B,O=1]= 5P[S € B| = P[S € B]P[O =1].

Since the same argument shows that P[S € B,0 = —1] = P[S € B|P[O = 1]
and since B is arbitrary, we conclude that O and S are mutually independent.

(<) Let A be an arbitrary cone whose apex is at the origin of R%. Then,
P[X € A] = P[OSM € A] = P[OS € AnS*!,

where S?~! denotes the unit sphere of R?. The law of total probability then
provides
P[X € A] = P[OSe€ ANSHO =1]P[O = 1]
+P[0S € ANS“HO = —1]P[O = —1]
= (P[Se ANS* '+ P[-Se AnS*])/2
= (P[Se AnS™ '+ P[Se-AnS"])/2,

where we used the fact that O satisfies P[O = 1] = P[0 = —1] =  and
is independent of S. Since the last expression is unchanged when substitut-
ing —A for A, we have that P[X € —A] = P[X € A], which establishes

that X is angularly symmetric about the origin of R 0
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