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SPATIAL QUANTILES ON THE HYPERSPHERE
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We propose a concept of quantiles for probability measures on the unit
hypersphere Sd−1 of Rd . The innermost quantile is the Fréchet median, that
is, the L1-analog of the Fréchet mean. The proposed quantiles μm

α,u are di-
rectional in nature: they are indexed by a scalar order α ∈ [0,1] and a unit
vector u in the tangent space TmSd−1 to Sd−1 at m. To ensure computability
in any dimension d, our quantiles are essentially obtained by considering the
Euclidean (Chaudhuri (J. Amer. Statist. Assoc. 91 (1996) 862–872)) spatial
quantiles in a suitable stereographic projection of Sd−1 onto TmSd−1. De-
spite this link with Euclidean spatial quantiles, studying the proposed spher-
ical quantiles requires understanding the nature of the (Chaudhuri (1996))
quantiles in a version of the projective space where all points at infinity are
identified. We thoroughly investigate the structural properties of our quan-
tiles and we further study the asymptotic behavior of their sample versions,
which requires controlling the impact of estimating m. Our spherical quantile
concept also allows for companion concepts of ranks and depth on the hy-
persphere. We illustrate the relevance of our construction by considering two
inferential applications, related to supervised classification and to testing for
rotational symmetry.

1. Introduction. For several decades, an intense research activity has been dedicated to
the definition of a suitable multivariate quantile concept, that is, of a quantile concept for
probability measures over Rd , with d > 1. It is of course the lack of a canonical ordering
in multivariate Euclidean spaces that makes this a challenging problem. We refer, for exam-
ple, to the review paper Serfling (2002) and to more recent approaches based on quantile
regression (Hallin, Paindaveine and Šiman (2010)) or optimal transport (Chernozhukov et al.
(2017), Hallin et al. (2021)). Clearly, the problem of defining multivariate quantiles is closely
linked to the problems of defining multivariate depths (i.e., centrality measures) or multivari-
ate ranks. The various proposals in the literature have found key applications in the context of
multidimensional growth charts (see, e.g., Wei (2008) or McKeague et al. (2011)), or, more
generally, in situations where multiple-output quantile regression methods are relevant.

Despite some recent contributions to the field, one of the most successful multivariate
quantile concepts remains the concept of spatial quantiles from Chaudhuri (1996), that is
defined as follows. For a probability measure P over Rd , the spatial quantile of order α in
direction u for P is defined as an arbitrary minimizer of

(1.1) OP
α,u(μ) :=

∫
Rd

{‖z − μ‖ − ‖z‖ − αu′μ
}
dP (z).

Here, α ∈ [0,1), u is a unit d-vector and ‖z‖ = √
z′z is the Euclidean norm of z ∈ R

d .
For α = 0 (and an arbitrary u), this provides the celebrated spatial median (see, e.g., Brown
(1983)). The other spatial quantiles are of a directional, center-outward, nature: the larger α,
the further away the corresponding (α,u)-quantile, essentially in direction u, from the spa-
tial median. We will use the terminology spatial quantiles in the rest of the paper, but

Received June 2022; revised July 2023.
MSC2020 subject classifications. Primary 62R30, 62G99; secondary 62E10, 62G20.
Key words and phrases. Centrality regions, directional statistics, Fréchet medians, multivariate quantiles, spa-

tial quantiles, statistical depth.

2221

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/23-AOS2332
http://www.imstat.org
mailto:Dimitri.Konen@ulb.be
mailto:Davy.Paindaveine@ulb.be
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2222 D. KONEN AND D. PAINDAVEINE

these quantiles are sometimes rather referred to as geometric quantiles; see, among others,
Cheng and De Gooijer (2007), Cardot, Cénac and Zitt (2013), Girard and Stupfler (2015), or
Cardot, Cénac and Godichon-Baggioni (2017). Like classical univariate quantiles (to which
they reduce in dimension d = 1), spatial quantiles characterize the underlying probability
measure P ; see Theorem 2.5 in Koltchinskii (1997). While several approaches also satisfy
this characterization property, spatial quantiles enjoy a number of distinctive advantages:
(i) through convex optimization, sample spatial quantiles are easy to compute even in high
dimensions; (ii) they allow for detailed asymptotic results, including Bahadur representa-
tion and asymptotic normality results (see, e.g., Koltchinskii (1997) and Chaudhuri (1996)),
whereas some recent competing approaches offer at best consistency results only; (iii) Sim-
ilarly, spatial ranks and spatial depth, namely the concepts of multivariate ranks and depth
associated with spatial quantiles, are available in explicit forms, which, unlike for most (if
not all) competing concepts, leads to trivial evaluation in the sample case; (iv) Finally, spatial
quantiles allow for direct extensions in infinite-dimensional Hilbert spaces, also in the regres-
sion framework; see, for example, Chakraborty and Chaudhuri (2014) and Chowdhury and
Chaudhuri (2019).

Now, more and more frequently, statistical applications involve data on manifolds. His-
torically, this has led researchers to extend to manifolds classical Euclidean functionals, the
prototypical example being the extension of the Euclidean concept of mean into the concept
of Fréchet mean (Fréchet (1948)). Nowadays, more involved statistical techniques, such as
functional data analysis, are also considered on manifolds, with the primary focus often being
on the unit hypersphere Sd−1 = {x ∈ R

d : ‖x‖ = 1} of Rd ; see, for example, Dai and Müller
(2018). The present work aims at defining a concept of quantiles on Sd−1. As such, it there-
fore belongs to directional statistics;1 we refer to the monographs Mardia and Jupp (2000)
and Ley and Verdebout (2017a). Several concepts of depth have been proposed on the unit
sphere (Liu and Singh (1992), Agostinelli and Romanazzi (2013), Pandolfo, Paindaveine and
Porzio (2018)), and, quite interestingly, also on general metric spaces (Dai and Lopez-Pintado
(2023)). We further refer to Jupp and Kume (2020) for a recent work where transformations
related to distribution functions, which are of course related to quantile functions, are con-
sidered on Riemannian manifolds; see also Wang et al. (2021). Yet the only quantile concept
that was explicitly proposed on the hypersphere and investigated as such is the one from Ley,
Sabbah and Verdebout (2014), that, however, lacks flexibility and, as we will explain in the
sequel, does not characterize the underlying distribution.

The concept of spherical quantiles we propose requires the choice of a reference point
that is expected to play the role of the innermost quantile. Since, in Euclidean cases, the
innermost quantile is a multivariate median, we take for reference point the Fréchet median,
that is, as the L1-analog of the Fréchet mean. Like Euclidean spatial quantiles, the resulting
quantiles μm

α,u will be directional in nature: they are indexed by a scalar order α and a unit
vector u that here belongs to the tangent space TmSd−1 to Sd−1 at m. Motivated by the
nice properties of spatial quantiles in the Euclidean case, we essentially define our quantiles
through a stereographic projection of Sd−1 from −m (the antipodal point to m) onto TmSd−1.
Since this stereographic projection sends −m “isotropically at infinity” in TmSd−1, studying
the proposed spherical quantiles requires understanding the nature of the Chaudhuri (1996)
spatial quantiles in a version of the projective space where all points at infinity are identified.
We thoroughly investigate the structural properties of our quantiles and we further study
the asymptotic behavior of their sample versions, which requires controlling the impact of
estimating m. Our spherical quantile concept also allows for companion concepts of ranks

1In order to avoid any confusion, we will rather speak of spherical statistics in the sequel and will use the term
“directional” only to refer to the directional (in u) nature of the various quantiles we consider.
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and depth on the hypersphere. We show the relevance of our construction on two inferential
applications, related to supervised classification and testing for rotational symmetry.

The outline of the paper is as follows. In Section 2, we first discuss the “univariate” case S1

and explain what makes the stereographic construction natural to define quantiles on Sd−1

for d > 2. Then, we carefully define our spherical quantiles and present a result that justi-
fies how this definition treats −m, the point that is left aside in the stereographic projection
we consider. In Section 3.1: (i) we show that our innermost spatial quantile actually agrees
with the Fréchet median chosen as reference point; (ii) we discuss existence and unique-
ness of the proposed quantiles, and (iii) we provide a result that characterizes the behavior
of extreme quantiles (i.e., the quantiles obtained as α → 1) in each direction u. This allows
us to formally define the spherical quantile function in Section 3.2. In Section 4, we intro-
duce a spherical rank function that, under mild conditions, is the inverse map of the quantile
function. This rank function, that is intimately related to the gradient condition defining our
quantiles, allows us to show in particular that the quantile function characterizes the under-
lying probability measure. In Section 5, we define a companion concept of depth and discuss
its main properties. In Section 6, we focus on the asymptotic properties of the sample ver-
sion of our quantiles, and establish strong consistency and Bahadur representation results. In
Section 7, we show the relevance of the proposed concepts on both aforementioned infer-
ential applications. In Section 8, we provide final comments. All proofs are deferred to the
Supplementary Material (Konen and Paindaveine (2023)).

For the sake of convenience, we introduce here some notation that will be used throughout
the paper. First, X =d Y will mean that X and Y are equal in distribution. For μ ∈ Sd−1, we
will denote as Sd−1

μ := Sd−1 \ {μ} the unit sphere deprived of μ and as TμSd−1 the (d − 1)-
dimensional vector subspace of Rd that is parallel to the tangent hyperplane to Sd−1 at μ,
that is, TμSd−1 = {z ∈R

d : μ′z = 0}. We will write Pd−1 for the collection of all probability
measures on Sd−1. We will denote as I[A] the indicator function of the set or condition A.
Throughout, E[·] will refer to the usual expectation rather than to the Fréchet mean. The
d-dimensional identity matrix will be denoted as Id . By default, all vectors will be column
vectors; yet, to keep notation light, we will often omit transpose signs when writing vectors
in components—for instance, we will write (cos t, sin t) and (0,0,1) instead of (cos t, sin t)′
and (0,0,1)′, respectively.

2. Spherical spatial quantiles. In this section, we will define our concept of quantiles
on the unit hypersphere Sd−1 and justify the choices made in this definition. For these
purposes, we start by discussing the circular case d = 2, that is, the case of the unit cir-
cle S1 = {(cos t, sin t) : t ∈ [0,2π)}, and then turn to the general case d ≥ 2.

2.1. Circular quantiles. Fix P ∈ P1 and let the random variable T , with values
in [0,2π), be such that X := (cosT , sinT ) has distribution P . Since the circle is a one-
dimensional object, quantiles on the circle can in principle be defined from quantiles on the
real line, that is, quantiles of X can in principle be defined from quantiles of T . Yet, in-
terestingly, the circle already presents several key issues we will need to address in higher
dimensions. An important issue is the lack of a canonical reference point m = (cos tm, sin tm)

on the circle. For any such reference point, one could, for example, accumulate probability
mass above tm, leading to the circular quantiles μm

τ = (cosqm
τ , sinqm

τ ), τ ∈ [0,1], with qm
τ

the usual τ -quantile of Tm, where Tm is the random variable with values in [tm, tm +2π) such
that X =d (cosTm, sinTm). This, however, cannot be generalized to higher dimensions where
it is unclear what it means to accumulate probability mass “above” some reference point
on Sd−1 with d > 2. With this future extension to higher dimensions in mind, it is therefore
better to choose a reference point m that will play the role of the innermost quantile, namely
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the median. In this spirit, a natural candidate for a reference point of this type is a Fréchet
median m = (cos tm, sin tm), that minimizes the expected arc length between X and m; see
Definition 2.1 below. Parallel as above, one may then define the resulting circular quantiles
as μm

τ = (cosqm
τ , sinqm

τ ), τ ∈ [0,1], now with qm
τ the τ -quantile of the random variable T̃m,

with values in [tm −π, tm +π), such that X =d (cos T̃m, sin T̃m). Provided that P [{−m}] = 0,
the resulting circular median μm

1/2 then very naturally coincides with the Fréchet median m

that was used as reference point.
These circular quantiles using a Fréchet median as a reference point are clearly satisfactory

when (a) P admits a unique Fréchet median m and when (b) P [{−m}] = 0, that is, when T̃m

does not charge tm − π . The issue (a) is a structural one on the circle: for distributions on
the real line, the medians (i.e., the minimizers of expected absolute deviations) always form
a bounded interval, so that a unique median can always be identified (e.g., as the center
of this interval). In contrast, the topology of the circle allows for distributions with sets of
Fréchet medians that are disconnected (for instance, when X = (cosT , sinT ), where T is
uniform over

⋃3
k=1[(2k − 1)π/3 − π/6, (2k − 1)π/3 + π/6], the set of Fréchet medians

is
⋃3

k=1{(2k − 1)π/3}). In the sequel, we exclude (at least in the population case) these
exceptional distributions for which the Fréchet median is nonunique. To address issue (b), it
is natural to define μm

τ = (cosqm
τ , sinqm

τ ), where qm
τ is the τ -quantile of T̃m, and T̃m is still

such that X =d (cos T̃m, sin T̃m) but now takes values in [tm −π, tm +π ] and satisfies P [T̃m =
tm − π ] = P [T̃m = tm + π ] = P [{−m}]/2. Not only does this choice respect the symmetry
of the circle with respect to m, but it also guarantees that the resulting circular median μm

1/2
coincides with the Fréchet median m even when P [{−m}] > 0. The issue of such an atom
at −m will also need to be carefully dealt with in higher dimensions.

2.2. Hyperspherical quantiles. Parallel to the multivariate Euclidean case described in
the Introduction, our hyperspherical quantiles will be points of Sd−1 indexed by a scalar
magnitude α and a direction u. In the sequel, this direction u will be relative to a reference
point m, that is expected to play the role of the median (the innermost quantile). This is in
line with the Euclidean case, where spatial quantiles are thought to be in direction u from the
spatial median (although such localization is actually superfluous in R

d as, for fixed u, the
half-lines {μ + ru : r ≥ 0} “reach” the same point at infinity irrespective of their origin μ).
As a reference point on the sphere, we will use a Fréchet median.

DEFINITION 2.1. A Fréchet median of P(∈ Pd−1) is any point m ∈ Sd−1 that minimizes
the objective function

(2.1) μ �→ gP (μ) :=
∫
Sd−1

d(μ,x) dP (x)

over Sd−1, where d(x, y) = arccos(x′y) is the geodesic distance between x and y.

Lebesgue’s dominated convergence theorem ensures that gP is continuous over Sd−1, so
that, from compactness of Sd−1, any P ∈ Pd−1 admits at least one Fréchet median. As al-
ready mentioned when discussing the case d = 2, uniqueness is not guaranteed in general,
and we will assume (tacitly) that uniqueness holds. This assumption is standard in the pop-
ulation case and it is met almost surely in the sample case when observations are sampled
from a probability measure that admits a density with respect to the surface area measure
on Sd−1; see Theorem 4.15 from Yang (2011).2 On another note, we will show later that we

2In Definition 2.2, it is thus only to cover the exceptional cases where the Fréchet median would not be unique
in the sample case where we introduce a concept of spherical spatial quantiles that is explicitly relative to a given
Fréchet median m. While most results of the paper are stated under the assumption that the Fréchet median is
unique, we stress that, under nonuniqueness, they remain valid for an arbitrary Fréchet median.
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must have P [{m}] ≥ P [{−m}]. (This actually follows from the gradient condition associated
with the minimization problem defining m; see Lemma S.3.1.3)

The discussion at the beginning of this section suggests that spherical quantiles should be
defined in direction u from m, which motivates taking u as a unit vector in the “tangent” vec-
tor space TmSd−1 to Sd−1 at m. Consider then the stereographic projection of Sd−1 from −m

onto TmSd−1, namely the diffeomorphic transformation

(2.2) πm : Sd−1−m → TmSd−1 : x �→ πm(x) := x − (m′x)m

1 + m′x
,

and let P−m be the probability measure induced by P on Sd−1−m , that is, the probability mea-
sure defined by P−m[B] = P [B]/P [Sd−1−m ] for any Borel set B of Sd−1−m (note that P [Sd−1−m ] =
0 is excluded, as it would imply that −m is the only Fréchet median of P ). In a nutshell, our
spherical quantiles are defined by first considering the (Euclidean) spatial quantiles in R

d

of the push-forward image πm#P−m of P−m by the projection πm, and then by pulling the
resulting quantiles back onto Sd−1−m through π−1

m . More precisely, we adopt the following
definition, that also takes into account a possible atom at −m.

DEFINITION 2.2. Fix P ∈ Pd−1, with d ≥ 2, and let m be a Fréchet median of P . Fix α ∈
[0,1] and a unit vector u in TmSd−1. (i) For α ∈ [0,pm), with pm := 1 − P [{−m}], we say
that μm

α,u = μm
α,u(P ) is an m-spatial quantile of order α in direction u for P if and only if it

minimizes the objective function

μ �→ Mm,P
α,u (μ) := O

πm#P−m

α/pm,u

(
πm(μ)

)
=

∫
Sd−1−m

{∥∥πm(x) − πm(μ)
∥∥ − ∥∥πm(x)

∥∥ − αu′πm(μ)/pm

}
dP−m(x)

over Sd−1−m ; the m-spatial quantiles of P associated to an order α = 0 are called m-spatial
medians of P . (ii) For α ∈ [pm,1], we let μm

α,u = μm
α,u(P ) = −m.

Some comments are in order. Assume first that P does not charge −m, so that pm = 1.
Then Definition 2.2 implies that μm

α,u(∈ Sd−1−m ) is an m-spatial quantile of order α(< 1) in
direction u for P if and only if πm(μm

α,u) is a spatial quantile of order α in direction u

for the push-forward probability measure πm#P in R
d (formally, this will be a corollary of

Lemma S.1.1). Since πm is a one-to-one map from Sd−1−m to TmSd−1, the spherical quan-
tile μm

α,u is then the inverse image by πm of the corresponding quantile for πm#P . While
this makes Definition 2.2 natural when P does not charge −m, it may seem more opaque
when −m is an atom of P . This motivates the following result that will explain why our
concept is as natural in the latter case as in the former one. To state the result, we recall that
a probability measure P over Sd−1 is said to be rotationally symmetric about μ(∈ Sd−1) if
and only if O#P = P for any d × d orthogonal matrix such that Oμ = μ.

THEOREM 2.1. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P

with P [{−m}] > 0. Fix α ∈ [0,1] and a unit vector u in TmSd−1. Assume that P is not con-
centrated on a great circle containing m (which ensures existence and uniqueness of μm

α,u(P );
see Theorem 3.1 below). Let (Q�) be a sequence in Pd−1 such that:

(i) Q� is rotationally symmetric about m,
(ii) there exists c > 0 such that Q�[{x : d(m,x) < c}] = 0 for any �,

3Cross-references of the form Lemma S.m.n or equation (S.m.n) refer to the Supplementary Material.
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(iii) Q�({−m}) = 0, and
(iv) Q� converges weakly to the Dirac probability measure at −m.

Then, letting P� := pmP−m + (1 − pm)Q�, still with pm = 1 − P [{−m}](< 1),

(2.3) μm
α,u(P�) → μm

α,u(P )

as � diverges to infinity.

As already mentioned, Definition 2.2 above is most natural for probability measures that
do not charge −m, so that the quantiles μm

α,u(P�) in this result are the natural ones. Since
the sequence of probability measures (P�) is defined in such a way that it converges weakly
to P (which on the contrary charges −m), the “continuity” result in (2.3) actually justifies
Definition 2.2 when P [{−m}] > 0 (equivalently, when pm < 1). Note that this legitimates this
definition for both α ∈ [0,pm) and α ∈ [pm,1], as all values of α are covered by Theorem 2.1.

No stereographic projection was used in the definition of the circular quantiles in Sec-
tion 2.1. Yet it is easy to check that the quantiles μm

α,u from Definition 2.2 reduce, for d = 2,
to the circular quantiles defined at the end of Section 2.1, provided of course that the latter are
reparametrized according to the center-outward indexing adopted in the present subsection.
To be more precise, denote as m = (cos tm, sin tm) the Fréchet median on the unit circle and
consider the random variable T̃m with values in [tm − π, tm + π ] such that (cos T̃m, sin T̃m)

has distribution P and such that P [T̃m = tm − π ] = P [T̃m = tm + π ] = P [{−m}]/2. Then,
for any α ∈ [0,1] and unit vector u in TmS1, the quantile μm

α,u from Definition 2.2 coincides

with (cosqm
τ , sinqm

τ ), where qm
τ is the τ = (αsu + 1)/2-quantile of T̃m; here, su = 1 (resp.,

su = −1) if u indicates the counterclockwise (resp., clockwise) direction on S1. In particular,
for both quantiles in Definition 2.2 and circular quantiles defined at the end of Section 2.1, the
quantiles associated with α ∈ [pm,1] in both directions u and −u—equivalently, the quantiles
associated with τ ∈ [0, (1 − pm)/2] ∪ [(1 + pm)/2,1]—are equal to −m. As a consequence,
when there is an atom in −m, Definition 2.2 is natural in dimension d = 2, too (note that
this case was not covered by Theorem 2.1). Since the case d = 2 only involves univariate
Euclidean quantiles, and hence is well understood, we will restrict to the case d ≥ 3 when
studying the proposed spherical quantiles in the next section.

Before proceeding, we close this section with the following important point: while our
construction could, in principle, have used any Euclidean multivariate quantile concept in
the tangent space TmSd−1 above, spatial quantiles show a number of distinctive properties
that make them the most promising option. First, Euclidean spatial quantiles are objects that
involve both a magnitude (α) and a directional component (u), hence provide richer infor-
mation than quantile/depth functionals that only involve a magnitude component, such as,
for example, the Tukey (1975) half-space depth or Liu (1990) simplicial depth. Second, as
a corollary of this richer information, spatial quantiles do characterize the underlying distri-
bution, as one would expect for a suitable quantile concept (note that while this has for long
been an open question, the half-space depth does not meet this characterization property; see
Nagy (2021)). Third, spatial quantiles, and its companion concepts of ranks and depth, can
be computed very efficiently in virtually any dimension d . As we will see in the sequel, these
nice properties transfer to the proposed spherical spatial quantiles. Even better, since affine
transformations make little sense on spheres, our spherical spatial quantiles will actually not
suffer from what is considered as the main drawback of (Euclidean) spatial quantiles, namely
their lack of affine equivariance.

3. Basic properties of spherical quantiles and the spherical quantile function. We
now provide some basic properties for the spherical quantiles introduced in the previous
section, which will allow us to define and study the corresponding spherical quantile function.
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3.1. Basic properties of spherical quantiles. We first answer the important questions of
existence and uniqueness. We have the following result.

THEOREM 3.1. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P . Fix
α ∈ [0,1] and a unit vector u in TmSd−1. Then (i) P admits an m-spatial quantile μm

α,u of
order α in direction u; (ii) if P is not concentrated on a great circle containing m, then μm

α,u

is unique; (iii) if P is concentrated on a great circle C containing m, then uniqueness of μm
α,u

may fail only if u belongs to the two-dimensional plane containing C and is tangent to C at m.

This result shows that existence always holds and that uniqueness may only fail when P is
concentrated on a great circle containing m. But if P is concentrated on a great circle of Sd−1

with d ≥ 3, then P , after a suitable rotation, is actually a probability measure over the unit
circle S1 × {0} ⊂ R

2 × R
d−2, which only requires circular quantiles. Thus, as soon as the

problem genuinely requires (hyper)spherical quantiles (because P is not concentrated on a
unit circle), we are allowed to speak of the m-quantile μm

α,u(P ) for any α ∈ [0,1] and any
unit vector u in TmSd−1.

As explained in the previous section, our spherical quantile concept uses the Fréchet me-
dian m as reference point, that is expected to be the innermost quantile. From Definition 2.2,
however, it is unclear that the resulting innermost quantile, namely the m-spatial median,
coincides with the Fréchet median m. The following result shows that this is indeed the case.

THEOREM 3.2. Fix P ∈ Pd−1 and denote as m the Fréchet median of P . Then m is an
m-spatial median of P .

This result is very general in the sense that it also covers the case where there may be sev-
eral m-spatial medians, which as explained below Theorem 3.1, is exceptional. In situations
where all quantiles are unique, this result naturally states that the Fréchet median m that is
used as reference point is the unique m-median, which confirms that this reference point is
then the innermost quantile for the proposed concept.

We now turn our attention to the high-order quantiles obtained as α → pm from below
(it is superfluous to consider quantiles with even higher orders since, for any α ≥ pm, one
has μm

α,u = −m irrespective of u). In the Euclidean case, where there cannot be mass at
infinity (so that high-order quantiles are obtained as α → 1): (i) high-order spatial quantiles
exit any compact subset of Rd and (ii) they eventually do so in direction u, in the sense that the
inner product between u and the unit vector proportional to these quantiles converges to one;
see Theorem 2.1 in Girard and Stupfler (2017) for nonatomic measures and Theorems 2–3 in
Paindaveine and Virta (2021) for general ones. In the spherical case, we have the following
result.

THEOREM 3.3. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P . Assume
that P is not concentrated on a great circle containing m. Let (αn) be a sequence in [0,pm)

that converges to pm and (un) a sequence of unit vectors in TmSd−1. Then (i) μm
αn,un

→ −m

and (ii) if (un) → u for some u, then the unit vector vn providing the direction in which μm
αn,un

is to be found from m (defined as the unit vector vn in TmSd−1 such that μm
αn,un

belongs to
the great half-circle {(cos t)m + (sin t)vn : t ∈ [0, π]}) converges to u.

In the Euclidean case, there is no guarantee that the distance between spatial quantiles of
order α → 1 in direction u and the half-line {m + ru : r ≥ 0} converges to zero, that is, it
may be so that these extreme quantiles are not eventually on the half-line with direction u

originating from the spatial median m; see Figure 1(a)–(b) in Paindaveine and Virta (2021)
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FIG. 1. Quantile curves α(∈ [0,1]) �→ μm
α,u in each of the eight directions u = (cos(kπ/4), sin(kπ/4),0),

k = 0,1, . . . ,7, for the rotationally symmetric probability measure (P1) and the nonrotationally symmetric
one (P2) described in the last paragraph of Section 3.1 (top and bottom row, respectively); in each case, the
second column offers a view from above the Fréchet median m, that is marked as a green dot.

for examples. Interestingly, the spherical result in Theorem 3.3(ii) is thus stronger than the
corresponding Euclidean result.

We conclude this section with a graphical illustration for d = 3; see Figure 1. We consider
the von Mises–Fisher distribution with location θ = (0,0,1) and concentration κ = 1, that is,
the distribution, P1 say, of

X = Zθ +
√

1 − Z2
(
S

0

)
,

where Z and S are mutually independent, Z admits the density z �→ cκ exp(κz)I[−1 ≤ z ≤ 1]
with respect to the Lebesgue measure (cκ is a normalizing constant), and S is uniformly
distributed over S1. We also consider the probability measure P2 obtained when S rather
results from projecting radially onto S1 a bivariate normal random vector with mean zero
and covariance matrix � = diag(25,1) (in the terminology of Tyler (1987), S thus follows
an angular Gaussian distribution with a shape matrix proportional to �). Both for � = 1
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and � = 2, Figure 1 then draws the quantile curves α(∈ [0,1]) �→ μm
α,u(P�) in each of the

eight directions u = (cos(kπ/4), sin(kπ/4),0), k = 0,1, . . . ,7. In the rotationally symmetric
setup � = 1, these quantile curves are geodesics (great half-circles) from m to −m, which
actually illustrates Theorem 5.1 below. For � = 2, quantile curves are geodesics for k =
{0,2,4,6} only, and the four other quantile curves are not contained in a plane, which reflects
the nonrotational symmetry of this probability measure.

3.2. The spherical quantile function. The results of the previous section allow us to for-
mally define the spherical quantile function associated with our quantile concept and to study
some of its properties. For any μ ∈ Sd−1 and any r ∈ (0,1], let Bμ,r = {z ∈ TμSd−1 : ‖z‖ <

r} and B∞
μ,r := Bμ,r ∪ {u∞

μ,r}, where u∞
μ,r is a single element identifying all points in the

closed annulus Bμ,1 \ Bμ,r (here, Ā is the closure of A with respect to the usual topology).
We endow the space B∞

μ,r with the metric δμ,r defined by

δμ,r (z1, z2) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖z1 − z2‖ if z1, z2 ∈ Bμ,r

r − ‖z1‖ if z1 ∈ Bμ,r and z2 = u∞
μ,r

r − ‖z2‖ if z1 = u∞
μ,r and z2 ∈ Bμ,r

0 if z1 = z2 = u∞
μ,r

(it is easy to check that δμ,r is a proper metric on B∞
μ,r ). The corresponding norm on B∞

μ,r is
then defined through ‖z‖μ,r := δμ,r (0, z). Elements of B∞

μ,r that belong to Bμ,r will often be
written as z = αu, where α ∈ [0, r) and u is a unit vector of TμSd−1. The quantile function
is then formally defined as follows.

DEFINITION 3.1. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P . As-
sume that P is not concentrated on a great circle containing m. Then the m-quantile function
of P is the map

Q = Qm
P : B∞

m,pm
→ Sd−1

defined through Q(αu) = μm
α,u for αu ∈ Bm,pm and Q(u∞

m,pm
) = −m.

This definition is motivated by the fact that μm
α,u = −m for any α ∈ [pm,1] and any unit

vector u ∈ TmSd−1 (see Definition 2.2), so that identifying all points in the closed annu-
lus Bm,1 \ Bm,pm to u∞

m,pm
leads to the above definition. Observe that, in the important case

where −m is not an atom of P , u∞
m,pm

= u∞
m,1 simply identifies the points in the boundary

of Bm,1, that is, those belonging to the unit sphere in TmSd−1.
We turn to continuity of Q. We did not define the quantile function in the circular

case d = 2, as our assumption that guarantees uniqueness of quantiles is never satisfied on
the circle (for d = 2, the unit circle is itself a great circle through m that will always have
P -probability one). Yet, a circular quantile function could similarly be defined once a conven-
tion has been taken to identify a unique quantile, such as, for example, the classical infimum-
based one in the univariate Euclidean case. The resulting circular quantile function may of
course fail to be continuous (in particular, it will not be continuous for empirical probabil-
ity measures). In contrast, for d ≥ 3, the quantile function is continuous for any probability
measure P , even for an empirical probability measure P . We have the following result.

THEOREM 3.4. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P . Assume
that P is not concentrated on a great circle containing m. Then the quantile function Q =
Qm

P : B∞
m,pm

→ Sd−1 is continuous (here, B∞
m,pm

is equipped with the metric δm,pm).
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We will later show that, for any probability measure P on Sd−1, with d ≥ 3, that is not
concentrated on a great circle containing m, the quantile function Qm

P : B∞
m,pm

→ Sd−1 is
actually surjective and that it may fail to be injective for atomic probability measures only;
see Theorem 4.4. These further results, as well as the important result stating that the quantile
function characterizes the underlying probability measure, require the spherical rank concept
that will be introduced in the next section.

4. Gradient conditions and spherical ranks. The main goal of this section is to intro-
duce a spherical rank function, that under mild assumptions on the underlying probability
measure, will be the inverse map of the spherical quantile function considered above. As we
will see, this rank function is the right tool to obtain further results on the quantile function.
The rank function is intimately linked to the gradient condition associated with the spherical
quantiles μm

α,u(P ), a gradient condition that itself will follow from the directional derivatives
of the objective function Mm,P

α,u defining these quantiles; see Definition 2.2.

THEOREM 4.1. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P . Fix α ∈
[0,pm) (still with pm := 1 − P [{−m}]) and a unit vector u ∈ TmSd−1. Fix μ ∈ Sd−1−m and a
unit vector v in TμSd−1. Let ϕ : [0, π] → Sd−1 be a geodesic path such that ϕ(0) = μ and
ϕ̇(0) = v. Then the directional derivative

(4.1)
∂Mm,P

α,u

∂v
(μ) = lim

t
>→0

Mm,P
α,u (ϕ(t)) − Mm,P

α,u (μ)

t

exists and is given by

∂Mm,P
α,u

∂v
(μ) = 1

pm

(
dπm(μ)v

)′{
pmE

[
πm(μ) − πm(X)

‖πm(μ) − πm(X)‖ξX,μ

]
− αu

}

+ 1

pm

∥∥dπm(μ)v
∥∥P [{μ}],

where X is an Sd−1−m -valued random vector with distribution P−m and where we let ξx,y =
I[x = y]. Above, dπm(μ) : TμSd−1 → TmSd−1 is the differential of the map πm : Sd−1−m →
TmSd−1 in (2.2) (we refer to Lemma S.4.1 for an explicit expression).

For α ∈ [0,pm) and a unit vector u in TmSd−1, any m-quantile of order α in direction u

by definition belongs to Sd−1−m and minimizes the objective function Mm,P
α,u over Sd−1−m . As we

will show in Lemma S.4.2, μ(∈ Sd−1−m ) is an m-quantile of order α in direction u for P if
and only if the directional derivative in (4.1) is nonnegative for any unit vector v in TμSd−1.
Theorem 4.1 then allows us to obtain the gradient condition provided in the following result.

THEOREM 4.2. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P . Fix α ∈
[0,pm) and a unit vector u in TmSd−1. Then μ(∈ Sd−1−m ) is an m-quantile of order α in
direction u for P if and only if

(4.2)
∥∥∥∥pmE

[
πm(μ) − πm(X)

‖πm(μ) − πm(X)‖ξX,μ

]
− αu

∥∥∥∥ ≤ P
[{μ}],

where X is an Sd−1−m -valued random vector with distribution P−m.

Fix μ ∈ Sd−1−m , α ∈ [0,pm) and a unit vector u in TmSd−1, and assume that P is not con-
centrated on a great circle containing m, so that μm

α,u = Q(αu) is unique (Theorem 3.1). De-
noting for a moment the quantity inside the norm in (4.2) as R(μ) − αu, Theorem 4.2 shows
that R(μ) = αu implies μ = Q(αu). Thus, the resulting function R is a natural candidate to
be the inverse map of Q. We adopt the following definition.
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DEFINITION 4.1. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P .
Assume that P is not concentrated on a great circle containing m. Let X be an Sd−1−m -valued
random vector with distribution P−m. Then the rank function of P is the map R = Rm

P :
Sd−1 → B∞

m,pm
such that

(4.3) R(μ) = pmE
[

πm(μ) − πm(X)

‖πm(μ) − πm(X)‖ξX,μ

]

for μ ∈ Sd−1−m and R(−m) = u∞
m,pm

.

In the framework of this definition, Lemma S.1.3 and Corollary S.1.1 together entail that
the distribution of πm(X) is not concentrated on a line of R

d , so that the proof of Propo-
sition 2.1 in Girard and Stupfler (2017) ensures that ‖R(μ)‖ < pm for any μ ∈ Sd−1−m ; this
justifies that the rank function R indeed takes its values in B∞

m,pm
and, less importantly, this

also shows that −m is the only location on the sphere that is given rank u∞
m,pm

. Like the
quantile function defined in the previous section, the rank function is then always continuous
for d ≥ 3.

THEOREM 4.3. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P . Assume
that P is not concentrated on a great circle containing m. Then the rank function R = Rm

P :
Sd−1 → B∞

m,pm
is continuous (again, B∞

m,pm
is equipped with the metric δm,pm).

By using this rank function, we can show that the quantile function Q = Qm
P is always

a surjective map from B∞
m,pm

to Sd−1 and that, under the further assumption that P is
nonatomic, Q is a one-to-one map, whose inverse map is the corresponding rank function R.
More precisely, we have the following result.

THEOREM 4.4. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P . Assume
that P is not concentrated on a great circle containing m. Then: (i) Qm

P : B∞
m,pm

→ Sd−1 is a

surjective map; (ii) If P is also nonatomic, then Qm
P : B∞

m,pm
→ Sd−1 is a homeomorphism,

with inverse given by Rm
P : Sd−1 → B∞

m,pm
.

A corollary of Theorem 4.4(i) is that, under the extremely mild assumptions of this result,
the Euclidean spatial quantiles in TmSd−1, that are pulled back to generate our spherical
spatial quantiles μm

α,u, for any α ∈ [0,pm) and any unit vector u ∈ TmSd−1, do fill the whole
tangent space TmSd−1. A direct consequence is that, while there was some flexibility on
the choice of the projection πm when defining our spherical quantiles in Section 2.2, this
projection had to be a one-to-one map from Sd−1−m to TmSd−1. Arguably, the stereographic
projection is the most classical projection meeting this key requirement, a requirement that
in particular excludes the Riemannian log map at m since this map is a one-to-one map
from Sd−1−m to a bounded open disk in TmSd−1.

As the following result shows, the rank function R = Rm
P actually characterizes the prob-

ability measure P , so that, under the assumptions that guarantee that the quantile and rank
functions are inverse maps of one another, the quantile function also characterizes the under-
lying probability measure.

THEOREM 4.5. (i) Assume that P1,P2 ∈ Pd−1 share the same Fréchet median m and
are not concentrated on a great circle containing m. Then Rm

P1
= Rm

P2
if and only if P1 = P2.

(ii) Assume further that P1 and P2 are nonatomic. Then Qm
P1

= Qm
P2

if and only if P1 = P2.
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FIG. 2. Ranks Rm
P�

(μ) associated with 15 locations μ on each of the 8 geodesics
{(cosϕ)θ + (sinϕ)u : ϕ ∈ [0,π ]} associated with u = (cos(kπ/4), sin(kπ/4),0), k = 0,1, . . . ,7. Ranks,
that are of the form αu = α(u1, u2,0), here are drawn as arrows with length α and direction u located at
the 15 × 8 points μ = (cosϕ)θ + (sinϕ)u considered in S2 (left panels) or as arrows with length α and
direction (u1, u2) located at the corresponding points ϕ(u1, u2) in R

2 (right panels); the top and bottom rows
correspond to the rotationally symmetric probability measure (P1) and the nonrotationally symmetric one (P2)
already considered in Figure 1, respectively.

Inspection of the proof of Theorem 4.5(i) reveals that the result actually does not require
the assumption that distributions are not concentrated on any great circle containing m (in
such a case, rank functions are still defined as in Definition 4.1, but they are no longer guar-
anteed to take their values in B∞

m,pm
). This assumption, however, cannot be dropped in Theo-

rem 4.5(ii) since quantile functions are not properly defined when this assumption is violated.
Figure 2 provides a graphical illustration of the proposed spherical ranks for the probability

measures P1 and P2 already considered in Figure 1. More precisely, the figure represents the
spherical ranks Rm

P�
(μ) associated with 15 locations μ on each of the 8 geodesics {(cosϕ)θ +

(sinϕ)u : ϕ ∈ [0, π]} associated with u = (cos(kπ/4), sin(kπ/4),0), k = 0,1, . . . ,7. For eas-
ier visualization, these ranks that take values of the form αu = α(u1, u2,0) in B∞

m,1 (recall
that m = θ = (0,0,1)) are both drawn as arrows with length α and direction u located at
the 15 × 8 points μ = (cosϕ)θ + (sinϕ)u considered in S2 (left panels) or as arrows with
length α and direction (u1, u2) located at the corresponding points ϕ(u1, u2) in R

2 (right
panels). These ranks are to be thought of as the duals of the quantiles in Figure 1: they give,
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along each of the corresponding geodesics, the order α and direction u for which the pro-
posed spherical quantile is the given point on the geodesic. As expected, the norm of Rm

P�
(μ)

converges to one as μ converges to −m. Clearly, ranks have the same direction as the corre-
sponding geodesic for the rotationally symmetric distribution P1, but this is the case only for
half of the geodesics considered for P2.

5. Spherical depth. If a location μ on the unit sphere is an m-quantile of order α in
direction u for the probability measure P at hand, then the larger α is, the more outlying μ

is with respect to P . In other words, α = ‖R(μ)‖m,pm measures the outlyingness of μ with
respect to P (here, ‖ · ‖m,pm is the norm defined in Section 3.2). Thus, 1 − ‖R(μ)‖m,pm is a
measure of centrality of μ with respect to P , which leads to the following definition.

DEFINITION 5.1. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P .
Assume that P is not concentrated on a great circle containing m. Then the depth function
of P is the map D = Dm

P : Sd−1 → [1 − pm,1] such that D(μ) = 1 − ‖R(μ)‖m,pm for
any μ ∈ Sd−1 (recall that, by definition, ‖R(−m)‖m,pm = ‖u∞

m,pm
‖m,pm = pm).

For any d ≥ 3, the depth function Dm
P is continuous over Sd−1 as soon as P is not con-

centrated on a great circle containing m (this is a direct corollary of Theorem 4.3). Thus,
if μ diverges to “infinity” (with respect to m), that is, if it converges to −m, then Dm

P (μ)

converges to 1 − pm. This is somewhat in contrast to depth functions in Euclidean spaces,
for which a classical requirement is that the depth of μ converges to zero as ‖μ‖ diverges to
infinity; see Property P4 in Zuo and Serfling (2000). This “vanishing at infinity” property is a
natural requirement indeed in Euclidean spaces since such spaces cannot contain probability
mass at infinity. We argue that since, in contrast, spheres may have an atom at −m, it is also
natural that the depth does not vanish at −m in such cases. We stress, however, that in the
important case pm = 1 where there is no atom at −m, then the proposed spherical depth is in-
deed vanishing at infinity, which is quite natural—interestingly, recent proposals for depth on
general metric spaces actually rather impose this vanishing at infinity for unbounded spaces
only; see, for example, Dai and Lopez-Pintado (2023).

In the same line of thought, note that the proposed spherical depth could in principle be
equal to zero, that is, in the case pm = 1 (when there is not atom at −m). Nevertheless, the
properties of the rank function entail that zero depth will be achieved at −m only. In other
words, irrespective of the probability measure P at hand, our depth has the “nonvanishing
property” in the sense that it is strictly positive over Sd−1−m . This is a very desirable property
in some inferential applications; we refer to Section 7.1 for an example.

Now, for any depth function, be it in a Euclidean space or a non-Euclidean one, it is natural
to consider the corresponding depth regions, that collect the locations μ with a depth that is
larger than or equal to a given order α. In other words, the α-depth region is

Rm
P (α) := {

μ ∈ Sd−1 : Dm
P (μ) ≥ α

}
,

and the corresponding depth contour is then the boundary, Cm
P (α) := ∂Rm

P := {μ ∈ Sd−1 :
Dm

P (μ) = α} of this depth region. Obviously, depth regions form a collection of nested subsets
of the unit sphere Sd−1, the innermost, Rm

P (1), being {m}, and the outermost, Rm
P (1 − pm),

being the sphere itself. The shape of depth contours reflects the “structure” of the underlying
probability measure. In particular, we have the following result.

THEOREM 5.1. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P . Assume
that P is rotationally symmetric about m. Then: (i) for α = 0 and any unit vector u ∈ TmSd−1,
the unique m-quantile μm

α,u is m; (ii) for any α ∈ [0,1] and any unit vector u ∈ TmSd−1, the
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unique m-spatial quantile μm
α,u belongs to the meridian {(cos t)m + (sin t)u : t ∈ [0, π]};

(iii) for any unit vector u ∈ TmSd−1, the map α �→ d(μm
α,u,m) is monotone nondecreasing

over [0,1]; (iv) when P is not concentrated on {−m,m}, each depth contour Cm
P (α) is of the

form {μ ∈ Sd−1 : μ′m = cα}, and the map α �→ cα is monotone nondecreasing.

A key ingredient in the proof of Theorem 5.1 is the following rotation-equivariance result
for spherical quantiles, which is of independent interest.

THEOREM 5.2. Fix P ∈Pd−1, with d ≥ 3, and let m be the Fréchet median of P . Let O

be a d × d orthogonal matrix such that Om = m and denote as PO the distribution of OX

when X has distribution P . Fix α ∈ [0,1] and a unit vector u in TmSd−1. Then μ is an m-
quantile of order α in direction u for P if and only if Oμ is an m-quantile of order α in
direction Ou for PO .

We stress that, in Theorem 5.1(ii), m may be an m-spatial quantile of order α > 0 in
direction u, provided that m is an atom of P . Actually, it is easy to prove that the largest α for
which m is an m-spatial quantile of order α in (any) direction u is P [{m}]. More importantly,
Theorem 5.1(iv) shows that a probability measure P that is rotationally symmetric about m

provides depth contours that are themselves invariant under rotations fixing m; of course, this
is also the case for the corresponding depth regions, that are spherical caps centered at m.
Departures from rotational symmetry will result into depth regions that exhibit other shapes,
which is an advantage over the depth regions from Ley, Sabbah and Verdebout (2014) that are
“concentric” spherical caps even for probability measures that are not rotationally symmetric.
This is illustrated in Figure 3 that draws the depth contours Cm

P (α), α = 0,0.2,0.4,0.6,0.8,
for both probability measures that were considered in Figures 1–2.

6. Asymptotics. In the sample case, evaluation of our spherical quantiles requires es-
timating the population Fréchet median, and we therefore start this section by providing
results that describe the asymptotic behavior of sample Fréchet medians. When a random
sample X1, . . . ,Xn from P is available, a sample Fréchet median is defined as a Fréchet
median of the corresponding empirical probability measure Pn, that is, as a minimizer of

μ �→ 1

n

n∑
i=1

d(μ,Xi) = 1

n

n∑
i=1

arccos
(
μ′Xi

)

over Sd−1. If P admits a density with respect to the surface area measure on Sd−1, then such
a sample Fréchet median is almost surely unique; see Theorem 4.15 from Yang (2011). We
then have the following almost sure consistency and Bahadur representation results.

THEOREM 6.1. Fix P ∈ Pd−1, with d ≥ 3, and let m be the Fréchet median of P .
Let X1,X2, . . . be mutually independent random vectors with distribution P , and let m̂n be
an arbitrary sample Fréchet median associated with X1, . . . ,Xn. Then:

(i) m̂n → m almost surely

as n diverges to infinity. (ii) Assuming further that P admits a bounded density with respect
to the surface area measure on Sd−1 and that

K := E
[

m′X1

‖(Id − mm′)X1‖
(
Id − (Id − mm′)X1X

′
1(Id − mm′)

‖(Id − mm′)X1‖2

)
ξX1,±m

]



SPATIAL QUANTILES ON THE HYPERSPHERE 2235

FIG. 3. Depth contours Cm
P (α), α = 0,0.2,0.4,0.6,0.8, computed from the first probability measure (top row)

and second one (bottom row) in Figure 1; in each case, the second column offers a view from above the Fréchet
median, that is marked as a green dot. In the bottom row, the quantile contours from Ley, Sabbah and Verdebout
(2014) containing the same probability mass as the proposed contours are plotted in red (these are not plotted in
the top row since, in the rotationally symmetric setup considered there, those contours coincide with the proposed
ones).

exists, is finite, and is invertible, where we let ξx,±y := I[x /∈ {±y}], we have

(6.1)
√

n(m̂n − m) = K−1 1√
n

n∑
i=1

(Id − mm′)Xi

‖(Id − mm′)Xi‖ξXi,±m + oP(1)

as n diverges to infinity.

Because it concerns the Fréchet median, this asymptotic result of course intersects with re-
sults already available in the literature. In particular, the consistency result in Theorem 6.1(i)
is essentially the one obtained in Theorem 2.3 from Bhattacharya and Patrangenaru (2003),
where a much more general metric space was considered (for the sake of completeness, we
still provide in Section S.6 a simple proof, that exploits compactness and separability of the
sample space we consider). The Bahadur representation result in Theorem 6.1(ii) readily
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yields an asymptotic normality result that was obtained, under slightly more stringent as-
sumptions, in Bhattacharya and Lin (2017); see also Kendall and Le (2011) and Eltzner and
Huckemann (2019). While the proofs of asymptotic normality in some of these papers are
based on Bahadur representation results, the result in (6.1) has the advantage to involve pop-
ulation and sample quantities on the sphere rather than their coordinates in a flat space, which
will be useful to deduce, from Theorem 6.2(ii) below, an explicit asymptotic normality result
for higher-order sample spherical quantiles.

More importantly, we now turn indeed to higher-order sample spherical quantiles, which
for the problem of estimating μm

α,u, with given α ∈ (0,1] and u ∈ TmSd−1, are defined as
follows. Assuming again that a random sample X1, . . . ,Xn from a probability measure P

is available, we first estimate m by the sample Fréchet median m̂n of X1, . . . ,Xn. Since
quantiles with respect to m̂n should involve a direction that is a unit vector in Tm̂n

Sd−1, we
then consider an arbitrary (possibly random) sequence (un), with un ∈ Tm̂n

Sd−1 for any n,
such that (un) → u almost surely as n → ∞; practical choices for such a sequence (un) will
be discussed below. For α ∈ (0,1), this naturally leads to the sample quantile μ̂

m̂n
α,un defined

as the minimizer of the function

μ �→ 1

n

n∑
i=1

{∥∥πm̂n
(Xi) − πm̂n

(μ)
∥∥ − ∥∥πm̂n

(Xi)
∥∥ − αu′

nπm̂n
(μ)

}

over Sd−1
−m̂n

. According to Theorem 3.1(ii), uniqueness is guaranteed as soon as the Xi ’s do
not belong to a common great circle containing m̂n, hence in particular holds almost surely in
the framework of Theorem 6.2(ii) below. Of course, for α = 1, we simply put μ̂

m̂n
α,un := −m̂n.

We then have the following almost sure consistency and Bahadur representation results.

THEOREM 6.2. Fix P ∈ Pd−1, with d ≥ 3, let m be the Fréchet median of P . As-
sume that P[{−m,m}] = 0 and that P is not concentrated on a great circle containing m.
Let X1,X2, . . . be mutually independent random vectors with distribution P , and let m̂n be
an arbitrary sample Fréchet median associated with X1, . . . ,Xn. Fix α ∈ (0,1), u ∈ TmSd−1,
and an arbitrary (possibly random) sequence (un), with un ∈ Tm̂n

Sd−1 for any n, such that

(un) → u almost surely as n diverges to infinity. Then letting, for any n, μ̂m̂n
α,un be an arbitrary

m̂n-spatial quantile of order α in direction un,

μ̂m̂n
α,un

→ μm
α,u almost surely

as n diverges to infinity. (ii) Assuming further that the assumptions of Theorem 6.1(ii) hold,
we have

√
n
(
μ̂m̂n

α,un
− μm

α,u

) = (
m′μm

α,u

)√
n(m̂n − m)

(6.2)

− Jq

(
π−1

m

)
V −1 1√

n

n∑
i=1

(
πm(Xi) − q

‖πm(Xi) − q‖ξπm(Xi),q + αu

)
+ oP(1)

as n diverges to infinity, where we let

V := E
[

1

‖πm(X) − q‖
(
Id − (πm(X) − q)(πm(X) − q)′

‖πm(X) − q‖2

)
ξπm(X),q

]

and where Jq(π
−1
m ) stands for the Jacobian matrix of π−1

m at q := πm(μm
α,u).

Some comments are in order. First, note that we do not consider the particular cases α =
0 and α = 1 in Theorem 6.2, as the corresponding sample quantiles are then equal to m̂n

(by Theorem 3.2) and −m̂n (by definition), hence have an asymptotic behavior that directly
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results from Theorem 6.1. Second, in the Bahadur representation (6.2), the first term of the
right-hand side is associated with the estimation of the Fréchet median m, whereas the second
term corresponds to spherical quantile estimation.4 Third, Ley, Sabbah and Verdebout (2014)
also obtained a two-term Bahadur representation of this form for their spherical cap quantiles,
and they actually showed that the first term vanishes under rotational symmetry (see their
Proposition 3.2). In contrast, rotational symmetry will not put to zero the first term in the
right-hand side of (6.2), which is due to the fact that the directional (in u) nature of our
quantiles breaks the underlying symmetry. Fourth and last, an asymptotic normality result
for

√
n(μ̂

m̂n
α,un − μm

α,u), with an explicit asymptotic covariance matrix, can of course readily
be obtained from Theorems 6.1(ii) and 6.2(ii).

We end this section by discussing how to choose in practice the direction sequence (un).
One possible choice is obtained by fixing a given target location μ ∈ Sd−1 and by consider-
ing, for any n, the direction un pointing to μ from m̂n, that is, the unit vector un = Uμ(m̂n) ∈
Tm̂n

Sd−1 such that the geodesic from m̂n to μ is {(cos t)m̂n + (sin t)un : t ∈ [0, d(m̂n,μ)]}.
This scheme, that identifies a unique direction un as soon as m̂n ∈ Sd−1 \ {±μ}, provides a
sequence (un) converging to u = Uμ(m) ∈ TmSd−1. While targeting a fixed location indeed
bears a clear directional meaning in practice, another appealing way to match directions as-
sociated with different tangent spaces is to use parallel transport. In the present context, this
consists in picking some uN ∈ Tm̂N

Sd−1 for some given sample size N , and then in obtain-
ing uN+k , k = 1,2, . . . by iteratively transporting in a parallel way uN+k−1 from the tangent
space at m̂N+k−1 to the tangent space at m̂N+k . While this may seem natural at first sight, the
resulting sequence (un) does not converge almost surely to a limiting direction u ∈ TmSd−1,
since the pathwise limit of (un(ω)) will depend on the path of (m̂n(ω)) and not only on its
path-independent limit m.

7. Two applications. In this section, we illustrate the practical relevance of the proposed
hyperspherical concepts by considering two inferential applications, namely supervised clas-
sification (Section 7.1) and testing for rotational symmetry (Section 7.2).

7.1. Supervised classification. One of the most successful applications of statistical
depth in the last two decades is supervised classification, based on the “max-depth” ap-
proach; see, among many others, Ghosh and Chaudhuri (2005) and Li, Cuesta-Albertos and
Liu (2012). This approach classifies an observed location μ = x as generated from a prob-
ability measure P1 rather than P2 if the depth of x with respect to P1 is larger than the
depth of x with respect to P2. More precisely, assuming that random samples X11, . . . ,X1n1

and X21, . . . ,X2n2 from P1 and P2, respectively, are available, and denoting as P�n, � = 1,2
the corresponding empirical probability measures, x is classified into P1 if D(x,P1n) >

D(x,P2n) and into P2 if D(x,P1n) < D(x,P2n) (classification is performed randomly if
both depths are equal). A common issue in the field results from the vanishing property
of many depths: in the Euclidean case, supervised classification based on, for example, the
Tukey (1975) half-space depth or the Liu (1990) simplicial depth, will always classify ran-
domly an observed location x that would be outside the convex hull of both samples; we
refer to Francisci, Nieto-Reyes and Agostinelli (2020) for an interesting discussion. Since the
same problem may materialize on the sphere, the nonvanishing nature of our spherical depth
is an asset for supervised classification and makes it an appealing alternative to the angular
half-space depth from Liu and Singh (1992) that suffers from this vanishing property.

4If one forgets the Jacobian matrix π−1
m , then this second term provides exactly the asymptotics in the Euclidean

case for the pushed forward probability measure πm#P−m for a fixed m.
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To compare the performances of max-depth classifiers associated with various depths, we
conducted the following Monte Carlo exercise. For each dimension d ∈ {3,6,12,18}, we
generated a training sample of n = 400 mutually independent observations, n1 = 200 ran-
domly sampled from P1 and n2 = 200 randomly sampled from P2, for two probability mea-
sures P1, P2 on Sd−1. In each case, we further generated a test sample of � = 400 mutually
independent observations, again �1 = 200 from P1 and �2 = 200 from P2. Each observation
from the test sample was then classified into P1 or P2 according to four max-depth classi-
fiers using the training sample, namely the max-depth classifiers based on the Mahalanobis
depth from Ley, Sabbah and Verdebout (2014), on our hyperspherical spatial depth, on the arc
length depth from Liu and Singh (1992) and Pandolfo, Paindaveine and Porzio (2018), and
on the angular half-space depth from Liu and Singh (1992). We then recorded the misclassifi-
cation error rate of each classifier, that is, the proportion of observations from the test sample
that were wrongly classified. This was repeated 2500 times, and Figure 4 then provides the
resulting boxplots of misclassification error rates for the following pairs (P1,P2):

(i) von Mises–Fisher: P1 is the distribution of a random vector X that is von Mises–
Fisher with location m1 = (0, . . . ,0,1)′ ∈ R

d and concentration κ = d , whereas P2 is the
distribution of OX, where O is a rotation matrix fixing the first d − 2 canonical basis vectors
of Rd and mapping m1 to m2 = (0, . . . ,0, sin(π/9), cos(π/9));

(ii) Tangent von Mises–Fisher: for the same m1 and κ as in (i), the distribution P1 is the
one of

X = Zm1 +
√

1 − Z2
(
S

0

)
,

where Z admits the density z �→ cd,κ(1 − z2)(d−3)/2 exp(κz)I[−1 ≤ z ≤ 1] (cd,κ is a normal-
izing constant), S follows a von Mises–Fisher distribution with location (1,0, . . . ,0)′ ∈R

d−1

and concentration η = 5, and Z and S are mutually independent; P2 is still the distribution
of OX, with the same matrix O as in (i);

(iii) Tangent elliptical: the distributions P1,P2 are the same as in (ii), but for the fact that S

rather results from projecting radially onto Sd−2 a (d −1)-variate normal random vector with
mean zero and covariance matrix � = diag(100,1, . . . ,1);

(iv) Dependence in longitude–latitude: here, P1 is the distribution of

X = (
U1(sinW), . . . ,Ud−1(sinW), cosW

)′
,

where U = (U1,U2, . . . ,Ud−1)
′ is uniformly distributed on Sd−2, and W , conditional

on [T = t], is uniform over [0, π{t (2π − t)/π2}3/2], with T defined as the random variable

with values in [0,2π) such that (U1,U2) =
√

U2
1 + U2

2 (cosT , sinT ); P2 is still the distribu-
tion of OX, with the same rotation matrix O as in the previous cases.

Inspection of Figure 4 reveals that the classifiers based on our hyperspherical spatial depth
perform very well overall. In particular, they outperform their Mahalanobis depth and arc
length depth competitors in the setup (iii), and they also strongly dominate the arc length
depth classifier in setup (iv). While the proposed classifier also slightly dominates the angular
half-space depth in the setups (i), (ii), and (iv), the opposite happens in the setup (iii); a crucial
drawback of angular half-space depth, however, is that computational issues strictly restrict
its use to dimension d = 3 (even in dimension 3, computation in the present simulation was
only made possible by a recent implementation kindly provided to us by Professor Stanislav
Nagy, based on Dyckerhoff and Nagy (2023)).
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FIG. 4. Boxplots of misclassification error rates for the max-depth classifiers based on the Mahalanobis depth,
our spatial depth, the arc length depth, and the angular half-space depth; results are based on 2500 replications,
and on balanced training and test samples of size 400. We refer to Section 7.1 for details on the distributional
setups (i)–(iv).

7.2. Testing for rotational symmetry. As a second application, we consider the problem
of testing the null hypothesis that a probability measure P ∈ Pd−1 is rotationally symmet-
ric with respect to the specified median location m (for the sake of simplicity, we assume
throughout that P admits a density with respect to the surface area measure on Sd−1). It fol-
lows from Theorem 5.1 that, under the null hypothesis, Qm

P (αu) = (cosϕα)m + (sinϕα)u =:
zm
ϕα,u for some ϕα ∈ [0, π]. Since, under the assumptions adopted here, Rm

P and Qm
P are in-

verse maps of one another, and this implies that

Rm
P

(
zm
ϕ,u

) = λϕu with λϕ :=
∫
Um

∥∥Rm
P

(
zm
ϕ,u

)∥∥dσm(u),

where Um denotes the collection of unit vectors in TmSd−1 and σm is the surface area measure
on Um, it is then expected that

T m
P :=

∫ π

0

∫
Um

∥∥∥∥Rm
P

(
zm
ϕ,u

) −
(∫

Um

∥∥RP

(
zm
ϕ,v

)∥∥dσm(v)

)
u

∥∥∥∥2
dσm(u)dϕ

measures deviations from rotational symmetry about m. We have the following result.

THEOREM 7.1. Let P ∈Pd−1 admit a density on Sd−1. Then T m
P = 0 if and only if P is

rotationally symmetric with respect to m.
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Assume now that a random sample X1, . . . ,Xn from P is available and denote the cor-
responding empirical measure by Pn. Theorem 7.1 suggests that the test rejecting the null
hypothesis of rotational symmetry about m for large values of

(7.1) T m
Pn

:=
∫ π

0

∫
Um

∥∥∥∥Rm
Pn

(
zm
ϕ,u

) −
(∫

Um

∥∥RPn

(
zm
ϕ,v

)∥∥dσm(v)

)
u

∥∥∥∥2
dσm(u)dϕ

is an omnibus test (i.e., is consistent against any alternative). Deriving the asymptotic null
distribution of this test statistic would obviously require a stochastic process version of the
asymptotic result in Theorem 6.2(ii). Not only is such a result beyond the scope of the present
work, but it would also provide an asymptotic distribution that depends on the particular null
distribution P at hand. Here, we favor a more efficient approach relying on exact distribution-
freeness. Let Rn = (Rn1, . . . ,Rnn) and Un = (Un1, . . . ,Unn), where Rni is the rank of X′

im

among X′
1m, . . . ,X′

nm and Uni := (Id − mm′)Xi/‖(Id − mm′)Xi‖, i = 1, . . . , n. Under the
null hypothesis of rotational symmetry about m, Rn is uniformly distributed over all permu-
tations of {1, . . . , n}, the Uni ’s form a random sample from the uniform distribution over Um,
and Rn and Un are mutually independent. As a corollary, denoting as P̃n the empirical prob-
ability measure associated with the transformed sample

X̃i = Rni

n + 1
m +

√
1 −

(
Rni

n + 1

)2
Uni, i = 1, . . . , n,

the test statistic T m

P̃n
is distribution-free under the null hypothesis (note that the X̃i ’s form

a random sample from a distribution that is rotationally symmetric about m if and only if
the Xi’s do). Thanks to distribution-freeness, critical values can of course be arbitrarily well
approximated through simulations; more precisely, at level α ∈ (0,1), the corresponding test
will reject the null hypothesis if and only if

(7.2) T m

P̃n
> cα(G),

where cα(G) is the sample (1 −α)-quantile in a collection of G mutually independent values
of T m

P̃n
under the null hypothesis (from distribution-freeness, these G values can be obtained

by simulating from an arbitrary distribution that is rotationally symmetric about m).
We explored the finite-sample performances of this test in dimensions d = 3 and d = 4

through the following Monte Carlo exercise. We generated M = 2500 independent random
samples of size n = 200 for the null hypothesis and some alternatives associated with three
different distributions on Sd−1. The three distributions are as follows (in each case, � = 0
will correspond to the null hypothesis of rotational symmetry about m = (0, . . . ,0,1)′ ∈ R

d ,
whereas � = 1,2,3,4 will provide increasingly severe alternatives):

(i) Tangent von Mises–Fisher: for κ = 1, the first distribution is the one of

Zm +
√

1 − Z2
(
S

0

)
,

where Z admits the density z �→ cd,κ(1 − z2)(d−3)/2 exp(κz)I[−1 ≤ z ≤ 1] (cd,κ is a normal-
izing constant), S follows a von Mises–Fisher distribution with location (1,0, . . . ,0)′ ∈R

d−1

and concentration η� = �d/30, and Z and S are mutually independent;
(ii) Tangent elliptical: this distribution is the same as in (i), but for the fact that S rather

results from projecting radially onto Sd−2 a (d −1)-variate normal random vector with mean
zero and covariance matrix �� = diag((1 + �d2/20)2,1, . . . ,1);
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(iii) Dependence in longitude–latitude: this last distribution is the one of(
U1(sinW), . . . ,Ud−1(sinW), cosW

)′
,

where U = (U1,U2, . . . ,Ud−1)
′ is uniformly distributed on Sd−2, and W , conditional

on [T = t], is uniform over [0, π{t (2π − t)/π2}�d/6], with T defined as the random vari-

able with value in [0,2π) such that (U1,U2) =
√

U2
1 + U2

2 (cosT , sinT ).

In each sample, we performed the following five tests at nominal level α = 5%: (1) the pro-
posed distribution-free spatial test above, where the critical value was obtained from G =
50,000 independent random samples generated from the von Mises–Fisher distribution with
location m = (0, . . . ,0,1)′ ∈R

d and concentration κ = 1 (both to obtain its critical value then
to perform the test, evaluation of the integrals in (7.1) was done along regular grids of size 30
for both ϕ and u in dimension 3, and along regular grids of size 30 for ϕ and of size 30 × 15
for u—30 values for the longitude of u and 15 values for its latitude—in dimension 4); (2) the
semiparametric (LV) test from Ley and Verdebout (2017b); (3)–(4) The “location” and “scat-
ter” tests from García-Portugués, Paindaveine and Verdebout (2020), that are optimal against
tangent von Mises–Fisher alternatives and tangent elliptical alternatives, respectively; (5) the
test of rotational symmetry based on Kuiper’s celebrated test of uniformity over Sd−2 = S1,
so that this test of rotational symmetry can be used in dimension d = 3 only; see page 99 in
Mardia and Jupp (2000).

The resulting rejection frequencies are plotted against � in Figure 5. In line with
distribution-freeness, the proposed test shows the target size under the null hypothesis in
all setups (i)–(iii). Clearly, the test exhibits power against the three types of alternatives con-
sidered (which was expected in view of Theorem 7.1), but these simulations reveal that it
is the only test that does so among the five tests considered here: the scatter test is blind to
alternatives in setup (i), the LV test and location test are blind to alternatives in setup (ii)
(both for d = 3 and d = 4, the blue curve is mostly hidden behind the orange curve), and
the Kuiper test is blind to alternatives in setup (iii). The proposed test performs in particular
very well against alternatives in setup (i) since it competes almost equally with the optimal
location test for such alternatives.

We conclude this section by quickly applying the various tests to the real data set from
astronomy considered in García-Portugués, Paindaveine and Verdebout (2020). The data set
contains observations of sunspots locations. Sunspots are darker regions on the photosphere
of the sun that correspond to solar magnetic field concentrations. Since visual inspection of
the data on S2 may suggest that rotational symmetry holds with respect to m = (0,0,1), it is
of interest, in order to model sunspots locations, to investigate whether these are compatible
with a rotationally symmetric distribution. For the 23rd solar cycle (August 1996–December
2008), which contains n = 5373 sunspot locations, the p-values of the spatial test,5 LV test,
location test, scatter test, and Kuiper test are 0.184, 0.431, 0.457, 0.166 and 0.366, respec-
tively, so that, at the usual significance levels, none of the tests rejects the null hypothesis
of rotational symmetry about m. For the 22nd cycle (September 1986–July 1996), which
includes n = 4551 sunspots locations, the corresponding p-values are rather 0.039, 0.012,
0.013, 0.108 and 0.007, respectively, so that all tests, except the scatter test, reject the null
hypothesis at level 5%. While one should of course refrain from drawing conclusions based
on two data sets only, the p-values of the proposed test that are smaller than the most conser-
vative test in each case, are compatible with its omnibus nature.

5Just like the critical value of our test at level α is the (1−α)-quantile in a collection of G mutually independent
values of the test statistic obtained under the null hypothesis, the corresponding p-value can be evaluated as the
proportion of these G values exceeding the value taken by the test statistic on the sample at hand.
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FIG. 5. Rejection frequencies of five tests of rotational symmetry about m = (0, . . . ,0,1)′ ∈ R
d (each test is

performed at nominal level α = 5%) based on M = 2500 mutually independent random samples of size n = 200
drawn from three different models (i)–(iii); in each case, � = 0 corresponds to the null hypothesis and � = 1,2,3,4
provide increasingly severe alternatives. We refer to Section 7.2 for details on the five tests and the three models
used here.

8. Final comments. The present work introduced a concept of spatial quantiles for prob-
ability measures on unit spheres in arbitrary dimension d . We showed in the paper that the
proposed objects inherit many of the nice properties of their Euclidean spatial antecedents.
In particular, spherical spatial quantiles characterize the underlying distribution, and they are
equivariant under orthogonal transformations (recall that affine transformations are not prop-
erly defined on spheres). Just as their Euclidean antecedents, the proposed spherical quantiles
also naturally provide companion concepts of ranks and depth. Like in R

d , the resulting depth
does not suffer from the vanishing property, which makes it a natural candidate to perform
supervised classification on spheres. As we showed, the sample version of our spherical quan-
tiles also allow for explicit asymptotic results. We now close this paper by commenting on
further nice properties that are inherited from Euclidean spatial quantiles.

As mentioned at the end of Section 2, Euclidean spatial quantiles can be computed effi-
ciently in virtually any dimension d . Clearly, this extends to the proposed spherical quantiles.
Computation of these spherical quantiles indeed only requires three ingredients: (1) perform-
ing the direct (resp., inverse) stereographic projections, which is trivial since these are avail-
able in closed forms; see (2.2) (resp., (S.6.3)). (2) Computing the sample Fréchet median of n

data points in Sd−1, which can be achieved very efficiently through the function frechet-
Median in the recent R package manifold; see Dai and Lin (2022). (3) Evaluating Euclidean
spatial quantiles, which as just recalled, does not raise any challenge even in high dimensions
(since such quantiles are minimizers of a simple convex objective function). This explains
why spherical spatial quantiles can be easily computed in high dimensions, too. We stress
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that, on the contrary, even the most recent methods to compute angular half-space depth are
limited to d = 3 and happen to be extremely slow compared to those providing spatial quan-
tiles, and even more so compared to those evaluating spherical spatial depth, since the latter
depth is available in closed form.

Finally, we point out that the proposed spherical quantiles also inherit the good robustness
properties of their Euclidean antecedents (it is easy to show that Euclidean spatial quantiles of
order α have a breakdown point of at least (1 −α)/2). Robustness of Euclidean spatial quan-
tiles is actually an important asset in our construction, since, as pointed out by an anonymous
referee, the stereographic projection will send possible data points in a small neighborhood
of −m̂n far from the origin of Tm̂n

Sd−1 and in possibly very different directions. For low to
intermediate orders α, the good robustness properties of Euclidean spatial quantiles will en-
sure that this does not affect too severely the corresponding spherical quantiles. For extreme
quantile orders (α large), the robustness of Euclidean spatial quantiles is poorer, but these
quantiles will anyway be far from the origin of Tm̂n

Sd−1, so that the inverse stereographic
projection will map these Euclidean quantiles back close to −m̂n (as it should be), irrespec-
tive of the directions in which these quantiles are to be found in the tangent space. In this
sense, the natural robustness properties of Euclidean spatial quantiles controls the instability
that might have resulted from using the stereographic projection.
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