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Abstract For two-sided hypothesis testing in location families, the classical
optimality criterion is the one leading to uniformly most powerful unbiased
(UMPU) tests. Such optimal tests, however, are constructed in exponential
models only. We argue that if the base distribution is symmetric, then it is
natural to consider uniformly most powerful symmetric (UMPS) tests, that is,
tests that are uniformly most powerful in the class of level-α tests whose power
function is symmetric. For single-observation models, we provide a condition
ensuring existence of UMPS tests and provide their explicit form. When this
condition is not met, UMPS tests may fail to exist and we provide a weaker
condition under which there exist UMP tests in the class of level-α tests whose
power function is symmetric and U-shaped. In the multi-observation case, we
obtain results in exponential models that also allow for non-location families.

Keywords Exponential families · Hypothesis testing · Statistical principle ·
UMP tests · UMPU tests

1 Introduction

Let (X ,A,P = {Pθ : θ ∈ Θ ⊂ R}) be a parametric statistical model indexed
by a scalar parameter θ. We consider the problem of testing the null hypoth-
esis H0 : θ = θ0 against the alternative hypothesis H1 : θ ̸= θ0 at level α,
where θ0 is a fixed parameter value. While the corresponding one-sided test-
ing problems allow for uniformly most powerful (UMP) tests under the mild
monotone likelihood ratio assumption (see, e.g., Section 3.4 in Lehmann and
Romano (2022) or Section 6.1.2 in Shao (2003)), no UMP tests do exist for two-
sided problems. Classically, the issue is solved by resorting to the unbiasedness
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principle, which consists in restricting to tests that are unbiased at level α,
that is, to level-α tests ϕ such that Eθ[ϕ] ≥ α for any θ ̸= θ0. Existence of
uniformly most powerful unbiased (UMPU) tests, however, is guaranteed only
in exponential families (see, e.g., Section 4.2 in Lehmann and Romano (2022)
or Section 6.2.2 in Shao (2003)).

In this work, we show that there are cases where the unbiasedness principle
may be replaced most naturally with a symmetry principle, that consists in
restricting to level-α tests whose power function is symmetric about θ0. A
prototypical example of this nature is the one where we observe a random
sample X = (X1, . . . , Xn) from the density

fθ(x) = f0(x− θ), x ∈ R,

where θ ∈ R is a location parameter and f0 is a symmetric density with
respect to the Lebesgue measure over the real line. Unless the resulting location
model is exponential, existence of UMPU tests remains unclear in such cases.
However, symmetry of the base density f0 makes it most natural to restrict to
level-α tests ϕ whose power function θ 7→ Eθ[ϕ] is symmetric about θ0. As we
will show, there are cases where uniformly most powerful symmetric (UMPS)
tests—that is, tests that are uniformly most powerful in this class of level-α
tests whose power function is symmetric about θ0—can be constructed while
the existence of UMPU tests remains an open question. The construction of
UMPS tests relies on an original way to apply the generalized Neyman–Pearson
fundamental lemma; see, e.g., Theorem 3.6.1 in Lehmann and Romano (2022).
We also show that when UMPS tests do not exist, it may still be possible to
construct UMP tests in the smaller class of level-α tests whose power function
is symmetric and U-shaped. While we focus on single-observation, location,
models for these results, we get rid of these restrictions when constructing
UMPS tests in exponential models.

The outline of the paper is as follows. In Section 2, we consider single-
observation location families and show that, under some structural condition
on symmetrized likelihood ratio (SLR) functions, UMPS tests do exist. We
provide examples that are not exponential, hence for which the existence of
UMPU tests remains an open problem. In Section 3, we tackle an example
where the aforementioned structural condition is not satisfied and prove that
UMPS tests may then fail to exist. However, we provide another, weaker,
structural condition on SLR functions under which uniformly most power-
ful symmetric U-shaped (UMPSU) tests do exist. In Section 4, we turn to
multi-observation models, where we show that UMPS tests can be built in
“symmetric exponential models”, that is, in exponential models for which it is
natural to impose symmetry of the power function. We tackle in particular an
example of this type outside the framework of location families. In Section 5,
we provide a wrap up and some final comments. Finally, an appendix collects
proofs of some auxiliary results.
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2 UMPS tests

Consider the model in which we observe a random variable X admitting a den-
sity of the form fθ(x) = f0(x− θ) with respect to the Lebesgue measure on R,
where θ is a real number and f0 is a fixed density satisfying f0(−x) = f0(x)
for any x. Thus, the location parameter θ ∈ R is identified as the symmetry
centre of the distribution of X. If this location model has monotone likelihood
ratios, then UMP tests are available for the one-sided testing problems where
one wants to test H0 : θ ≤ θ0 against H1 : θ > θ0, or to test H0 : θ ≥ θ0
against H1 : θ < θ0. For the corresponding two-sided problems, no UMP tests
do exist and one classically aims at UMPU tests. If the model is not expo-
nential, however, then no results guarantee the existence of UMPU tests. For
instance, in the logistic case obtained with f0(x) = e−x/(1+e−x)2, UMP tests
can be constructed for one-sided problems since the monotone likelihood prop-
erty is satisfied, but the existence of UMPU two-sided tests remains unclear.

Assume for simplicity that f0 is non-vanishing, in the sense that f0(x) > 0
for any x. In this framework, a key role will be played in the sequel by the
symmetrized likelihood ratio (SLR) functions

x 7→ hθ(x) :=
1

2

(
fθ(x)

f0(x)
+

f−θ(x)

f0(x)

)
, θ > 0.

Note that symmetry of f0 entails that, for any θ > 0 and x ∈ R,

fθ(−x)

f0(−x)
=

f−θ(x)

f0(x)
,

so that hθ is symmetric about zero for any θ > 0. We have the following result.

Theorem 1 Consider the location model above and assume that f0 is non-
vanishing and is such that, for any θ > 0, the SLR function hθ is strictly
increasing over [0,∞). Fix θ0 ∈ R and α ∈ (0, 1). Then, (i) there exists sα ≥ 0
such that the test defined by

ϕα(x) =

{
1 if |x− θ0| > sα

0 otherwise
(1)

satisfies Eθ0 [ϕα] = α; (ii) the power function θ 7→ Eθ[ϕα] is symmetric about θ0;
(iii) ϕα is UMPS at level α when testing H0 : θ = θ0 against H1 : θ ̸= θ0.

As mentioned in the introduction, the proof is based on an original appli-
cation of the generalized Neyman–Pearson fundamental lemma.

Proof of Theorem 1. Since (i)–(ii) result from trivial computations, we
focus on the proof of (iii). Fix θ1 ̸= θ0 arbitrarily. We will show that there
exist k1, k2 ≥ 0 such that the test ϕk1,k2

defined by

ϕk1,k2(x) =

{
1 if fθ1(x) > k1fθ0(x) + k2(fθ1(x)− f2θ0−θ1(x))

0 otherwise
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satisfies Eθ0 [ϕ] = α and Eθ1 [ϕ] − E2θ0−θ1 [ϕ] = 0 (note that 2θ0 − θ1 is the
reflection of θ1 with respect to θ0). To do so, note that, for k2 = 1/2, we have

g(x) :=
1

fθ0(x)

{
fθ1(x)− k1fθ0(x)− k2(fθ1(x)− f2θ0−θ1(x))

}
= (1− k2)

fθ1−θ0(x− θ0)

f0(x− θ0)
+ k2

fθ0−θ1(x− θ0)

f0(x− θ0)
− k1

= h|θ1−θ0|(x− θ0)− k1.

The function x 7→ h|θ1−θ0|(x − θ0) takes its values in R+ and is symmetric
about θ0. By assumption, it is strictly increasing on [θ0,∞). Thus, its re-
striction to [θ0,∞) is a one-to-one mapping from [θ0,∞) to h|θ1−θ0|([θ0,∞)).
It follows that there exists k1 ≥ 0 such that g(x) > 0 if and only if x /∈
[θ0 − sα, θ0 + sα]. For such a value of k1 and k2 = 1/2, the test ϕk1,k2

thus co-
incides with ϕα in (1), hence satisfies Eθ0 [ϕ] = α and Eθ1 [ϕ]−E2θ0−θ1 [ϕ] = 0. It
then follows from Theorem 3.6.1(iii) in Lehmann and Romano (2022) that ϕα

is most powerful when testing H0 : θ = θ0 against H1 : θ = θ1 in the class of
level-α tests such that E2θ0−θ1 [ϕ] ≤ Eθ1 [ϕ], hence also most powerful for the
same problem in the class of level-α tests such that E2θ0−θ1 [ϕ] = Eθ1 [ϕ].

Now, let Cs
α be the class of tests ϕ for H0 : θ = θ0 against H1 : θ ̸= θ0

that have level α and have a power function that is symmetric about θ0.
Obviously, Parts (i)–(ii) of the result ensure that ϕα ∈ Cs

α. Fix then ϕ ∈ Cs
α

and an arbitrary θ1 ̸= θ0. Since ϕ has level α when testing H0 : θ = θ0
against H1 : θ = θ1 and satisfies E2θ0−θ1 [ϕ] = Eθ1 [ϕ], we must have Eθ1 [ϕα] ≥
Eθ1 [ϕ]. Since θ1 ̸= θ0 was arbitrary, we conclude that Eθ1 [ϕα] ≥ Eθ1 [ϕ] for
any θ1 ̸= θ0, which establishes the result. □

As an example, consider the logistic case above. Direct computations show
that, for any θ > 0, the resulting SLR function

x 7→ hθ(x) =
e−θ

2

{(
ex + 1

ex + e−θ

)2

+

(
e−x + 1

e−x + e−θ

)2}
has a positive derivative over (0,∞), hence is strictly increasing over [0,∞);
see Figure 1. It thus follows from Theorem 1 that the test defined by

ϕα(x) =

{
1 if |x− θ0| > ln( 2−α

α )

0 otherwise

is UMPS at level α for H0 : θ = θ0 against H1 : θ ̸= θ0. A plot of the
corresponding power function, namely

θ 7→ Eθ[ϕα] =
∑

s∈{−1,1}

α

α+ (2− α) exp(s|θ − θ0|)
,

is provided for θ0 = 0 and α = 5% in the left panel of Figure 2. We stress that,
since this model is not exponential, it is unknown whether or not this test is
UMPU at level α for the same testing problem.
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Fig. 1 Plots of the SLR functions x 7→ hθ(x) over positive values of x for θ = .5, θ = 1
and θ = 2, when f0 is the logistic density and the power-exponential densities with p = 1
(Laplace density), p = 1.5, and p = 2 (Gaussian density).

Other examples that are compatible with the result above are given by the
power-exponential densities f0(x) = cp exp(−|x|p), with p∈ (1, 2], where cp =
p/(2Γ ( 1p )) is a normalizing constant. For any θ > 0, the resulting SLR function

x 7→ hθ(x) =
1

2
(e|x|

p−|x−θ|p + e|x|
p−|x+θ|p) (2)

is strictly increasing over [0,∞); this is illustrated in Figure 1 and proved in
Section 6 (see Proposition 5). Therefore, Theorem 1 ensures that the two-
sided test ϕα is again UMPS at level α. Note that the case of the Laplace
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Fig. 2 Plots of the power function θ 7→ Eθ[ϕα] in the logistic case (left) and Laplace case
(right), both for θ0 = 0 and α = 5%.

distribution, that is obtained for p = 1, is of a different nature: since the
SLR function in (2) is not strictly increasing over [0,∞) for p = 1 (it is only
non-decreasing; see Figure 1), Theorem 1 does not apply. Interestingly, the
two-sided test ϕα is still UMPS at level α, as the following result shows.

Proposition 1 Consider the location model associated with the Laplace den-
sity f0(x) =

1
2 exp(−|x|). Fix θ0 ∈ R and α ∈ (0, 1). Then, (i) the test defined

by

ϕα(x) =

{
1 if |x− θ0| > ln( 1

α )

0 otherwise

satisfies Eθ0 [ϕα] = α and (ii) is UMPS at level α when testing H0 : θ = θ0
against H1 : θ ̸= θ0.

Proof of Proposition 1. Since Part (i) of the result is trivial, we focus on
the proof of Part (ii). Fix θ1 ̸= θ0 arbitrarily, and note that, for k2 = 1/2,

g(x) :=
1

fθ0(x)

{
fθ1(x)− k1fθ0(x)− k2(fθ1(x)− f2θ0−θ1(x))

}
= (1− k2)

fθ1−θ0(x− θ0)

f0(x− θ0)
+ k2

fθ0−θ1(x− θ0)

f0(x− θ0)
− k1

=

{ 1
2 (e

2|x−θ0|−|θ1−θ0| + e−|θ1−θ0|)− k1 if |x− θ0| ≤ |θ1 − θ0|
cosh(|θ1 − θ0|)− k1 otherwise,

where cosh is the hyperbolic cosine function. We consider two cases:
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(a) |θ1 − θ0| > ln( 1
α ). Then, with k1 = (e2 ln(1/α)−|θ1−θ0| + e−|θ1−θ0|)/2, the

test ϕα in the statement of the theorem is of the form

ϕk1,k2
(x) =

{
1 if fθ1(x) > k1fθ0(x) + k2(fθ1(x)− f2θ0−θ1(x))

0 otherwise

and satisfies Eθ0 [ϕ] = α and Eθ1 [ϕ] − E2θ0−θ1 [ϕ] = 0. Since k1, k2 ≥ 0, Theo-
rem 3.6.1(iii) in Lehmann and Romano (2022) entails that ϕα is most powerful
when testing H0 : θ = θ0 against H1 : θ = θ1 in the class of level-α tests such
that Eθ1 [ϕ]− E2θ0−θ1 [ϕ] ≤ 0.

(b) |θ1 − θ0| ≤ ln( 1
α ). Then, with k1 = cosh(θ1 − θ0)(> 0), the test

1

2
(e2|x−θ0|−|θ1−θ0| + e−|θ1−θ0|)− (e|θ1−θ0| + e−|θ1−θ0|)/2

=
1

2
(e2|x−θ0|−|θ1−θ0|)− e|θ1−θ0|/2

= (e2|x−θ0|−2|θ1−θ0|)− 1)e|θ1−θ0|/2

ϕk1,k2
(x) =


1 if g(x) > 0

αe|θ1−θ0| if g(x) = 0

0 if g(x) < 0

rewrites

ϕθ1(x) =

{
αe|θ1−θ0| if |x− θ0| ≥ |θ1 − θ0|
0 otherwise

and satisfies both Eθ0 [ϕ] = α and Eθ1 [ϕ] − E2θ0−θ1 [ϕ] = 0. As above, Theo-
rem 3.6.1(iii) in Lehmann and Romano (2022) then entails that ϕθ1 is most
powerful when testing H0 : θ = θ0 against H1 : θ = θ1 in the class of level-α
tests such that Eθ1 [ϕ]−E2θ0−θ1 [ϕ] ≤ 0. A direct computation, however, shows
that

Eθ1 [ϕα] = α cosh(θ1 − θ0) = Eθ1 [ϕθ1 ],

so that ϕα itself is most powerful when testing H0 : θ = θ0 against H1 : θ = θ1
in the class of level-α tests such that Eθ1 [ϕ]− E2θ0−θ1 [ϕ] ≤ 0.

Thus, we showed that, irrespective of θ1 ̸= θ0, the test ϕα, which does not
depend on θ1, is most powerful when testing H0 : θ = θ0 against H1 : θ = θ1
in the class of level-α tests such that Eθ1 [ϕ]−E2θ0−θ1 [ϕ] ≤ 0, hence also in the
smaller class of level-α tests such that Eθ1 [ϕ]−E2θ0−θ1 [ϕ] = 0. The argument
used to conclude the proof of Theorem 1 thus establishes that ϕα is uniformly
most powerful for H0 : θ = θ0 against H1 : θ ̸= θ0 in the class of level-α tests
whose power function is symmetric about θ0. □

It appears difficult to generalize Theorem 1 to show that the natural
two-sided test remains UMPS when SLR functions are only monotone non-
decreasing (rather than monotone strictly increasing) over [0,∞). Interest-
ingly, monotonicity cannot be dropped, though, as we will see in Section 3.1
below.



8 Davy Paindaveine

3 UMPSU tests

It might be tempting to conjecture that the natural two-sided test is always
UMPS. In Section 3.1, we treat an example, involving SLR functions that are
not monotone non-decreasing over [0,∞), in which the natural two-sided test
actually fails to be UMPS for some significance levels. In Section 3.2, we then
prove that, under a weaker condition than the one ensuring existence of UMPS
tests in Theorem 1, there exist uniformly most powerful symmetric U-shaped
(UMPSU) tests, that is, tests that are UMP in the class of level-α tests whose
power function is symmetric and U-shaped.

3.1 A negative example regarding UMPS testing

We consider the Cauchy model obtained with f0(x) = 1/(π(1+x2)), for which
it is easy to check that, for any θ > 0, there exists rθ > 0 such that the
corresponding SLR function hθ is monotone strictly increasing on [0, rθ], then
monotone strictly decreasing on [rθ,∞); see Figure 1. As the following result
shows, this violation of the monotonicity condition affects the UMPS nature
of the two-sided test at all usual significance levels α, whereas, for some other
significance levels, this test remains UMPS.

Proposition 2 Consider the location model associated with the Cauchy den-
sity f0(x) = 1/(π(1+x2)). Fix θ0 ∈ R and α ∈ (0, 1). Then, (i) the test defined
by

ϕα(x) =

{
1 if |x− θ0| > tan

(π(1−α)
2

)
0 otherwise

satisfies Eθ0 [ϕα] = α; (ii) for α ∈ [ 23 , 1), this test is UMPS at level α when
testing H0 : θ = θ0 against H1 : θ ̸= θ0. (iii) For α ∈ (0, 2

3 ), letting

tα :=

√
3 tan2

(π(1−α)
2

)
− 1, (3)

the test ϕα is UMPS at level α when testing H0 : θ = θ0 against H1 : θ /∈
(θ0 − tα, θ0 + tα); however, for any θ1 ∈ (θ0 − tα, θ0 + tα) \ {θ0}, there exists a
test ϕθ1 in the class of level-α tests whose power function is symmetric about θ0
that provides Eθ1 [ϕθ1 ] > Eθ1 [ϕα].

Proof of Proposition 2. Since Part (i) of the result follows from straight-
forward computations, we will only prove Parts (ii)–(iii). Before doing so, note
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that, with k2 = 1/2, we have, for any θ1 ̸= θ0,

g(x) :=
1

fθ0(x)

{
fθ1(x)− k1fθ0(x)− k2(fθ1(x)− f2θ0−θ1(x))

}
= (1− k2)

fθ1−θ0(x− θ0)

f0(x− θ0)
+ k2

fθ0−θ1(x− θ0)

f0(x− θ0)
− k1

=
1

2

(
1 + (x− θ0)

2

1 + (x− θ1)2
+

1 + (x− θ0)
2

1 + (x− 2θ0 + θ1)2

)
− k1

=: ℓθ1(x)− k1,

say (we do not stress dependence of ℓθ1 on θ0, that is fixed throughout). Since
the function ℓθ1 will play a key role in this proof, we list some of its properties
here: first, it is continuous and symmetric about θ0. Second, there exists x0

(depending on θ0 and θ1) such that ℓθ1 is strictly increasing on [θ0, x0] and
strictly decreasing on [x0,∞). We have ℓθ1(θ0) = 1/(1 + (θ1 − θ0)

2) ∈ (0, 1)
and, since ℓθ1(x) → 1 as x → ∞, we must have ℓθ1(x0) > 1. Since the only
solutions of ℓθ1(x) = 1 are

θ0 ± cθ1 , with cθ1 :=

√
1 + (θ1 − θ0)2

3
,

we then have that, for any t ∈ [0, cθ1 ], there exists k1 > 0 such that g(x) =
ℓθ1(x) − k1 > 0 (resp., = or <), if and only if x /∈ [θ0 − t, θ0 + t] (resp., x ∈
{θ0 − t, θ0 + t} or x ∈ (θ0 − t, θ0 + t)). We can now proceed with the proof of
(ii)–(iii).

(ii) Fix α ∈ [ 23 , 1) and an arbitrary θ1 ̸= θ0. Since we then have

tan
(π(1− α)

2

)
≤ tan

(π
6

)
=

1√
3
≤ cθ1 ,

there exist k1, k2 > 0 (actually, k2 = 1/2) such that the test ϕα in the state-
ment of the result coincides with the test defined by

ϕk1,k2(x) =

{
1 if g(x) > 0

0 otherwise,
(4)

which, as in the previous proofs, implies that ϕα is most powerful when test-
ing H0 : θ = θ0 against H1 : θ = θ1 in the class of level-α tests such
that Eθ1 [ϕ] = E2θ0−θ1 [ϕ]. Since this test does not depend on θ1, it is then
also most powerful when testing H0 : θ = θ0 against H1 : θ ̸= θ0 in the class of
level-α tests such that Eθ1 [ϕ] = E2θ0−θ1 [ϕ]. Part (ii) of the result thus follows
in the same way as in the proof of Theorem 1.

(iii) Fix α ∈ (0, 2
3 ) and an arbitrary θ1 /∈ (θ0 − tα, θ0 + tα). Then,

tan
(π(1− α)

2

)
=

√
1 + t2α

3
≤

√
1 + (θ1 − θ0)2

3
= cθ1 ,
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so that, as above, there exist k1, k2 > 0 (again, k2 = 1/2) such that the
test ϕα in the statement of the result coincides with the test in (4), hence is
most powerful when testing H0 : θ = θ0 against H1 : θ = θ1 in the class of
level-α tests such that Eθ1 [ϕ] = E2θ0−θ1 [ϕ], which, in turn, implies that ϕα is
uniformly most powerful for H0 : θ = θ0 against H1 : θ /∈ (θ0 − tα, θ0 + tα) in
the class of level-α tests whose power function is symmetric about θ0.

Still with α ∈ (0, 2
3 ), fix then an arbitrary θ1 ∈ (θ0 − tα, θ0 + tα) \ {θ0}.

Here, still with k2 = 1/2 throughout, any value of k1 ∈ [ℓθ1(θ0), 1] will provide
a test ϕk1,k2

in (4) that yields

Eθ0 [ϕk1,k2
] ≥ Pθ0 [|X − θ0| > cθ1 ] > Pθ0

[
|X − θ0| > tan

(π(1−α)
2

)]
= α,

so that ϕk1,k2 does not satisfy the constraint Eθ0 [ϕ] = α. Obviously, with k1 =
ℓθ1(x0), we have Eθ0 [ϕk1,k2

] = 0. Since Eθ0 [ϕk1,k2
] depends continuously on k1,

there exists k1 ∈ (1, ℓθ1(x0)) such that Eθ0 [ϕk1,k2
] = α. The properties of ℓθ1

actually imply that k1 is unique, and that the resulting test ϕk1,k2
rewrites

ϕk1,k2(x) =

{
1 if |x− θ0| ∈ (a−θ1 , a

+
θ1
)

0 otherwise,
(5)

where a±θ1 > 0 are such that

(a±θ1)
2 =

(k1 +
1
2 )(θ1 − θ0)

2 − k1 + 1

k1 − 1

±
|θ1 − θ0|

√
(2k1 +

1
4 )(θ1 − θ0)2 − 4k1(k1 − 1)

k1 − 1
(6)

involve the (unique) value k1 for which

Eθ0 [ϕk1,k2
] = 2Pθ0 [a

−
θ1

< |X − θ0| < a+θ1 ]

=
2

π
(arctan(a+θ1)− arctan(a−θ1))

= α. (7)

It follows from Theorem 3.6.1(iii) in Lehmann and Romano (2022) that the
test ϕθ1 := ϕk1,k2

in (5) is most powerful when testing H0 : θ = θ0 against H1 :
θ = θ1 in the class of level-α tests such that Eθ1 [ϕ] = E2θ0−θ1 [ϕ]. Since ϕα be-
longs to this class, we thus have Eθ1 [ϕθ1 ] ≥ Eθ1 [ϕα]. Now, assume that Eθ1 [ϕθ1 ] =
Eθ1 [ϕα]. According to Theorem 3.6.1(iv) from Lehmann and Romano (2022),
we must then have that

ϕα(x) =

{
1 if |x− θ0| ∈ (a−θ1 , a

+
θ1
)

0 otherwise

almost everywhere with respect to the Lebesgue measure. This is, however, not
the case since ϕα(x) = 1 ̸= 0 for any x in the set (max(a+θ1 , tan(π(1− α)/2)),∞).
Thus, we have Eθ1 [ϕθ1 ] > Eθ1 [ϕα], as was to be proved. □
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The proof of Proposition 2(iii) identifies, for any θ1 ∈ (θ0−tα, θ0+tα)\{θ0},
a test ϕθ1 that is most powerful for H0 : θ = θ0 against H1 : θ = θ1 in the
class of level-α tests whose power function is symmetric about θ0 (note that
the power function of each such ϕθ1 is indeed symmetric about θ0). The power
function of ϕθ1 is

θ 7→ Eθ[ϕθ1 ] =
1

π

∑
s∈{−1,1}

(
arctan(a+θ1 + s|θ − θ0|)− arctan(a−θ1 + s|θ − θ0|)

)
,

where the positive real numbers a±θ1 are defined through (6)–(7). This generates
the symmetric power envelope function

θ 7→ PE(θ) :=

{
Eθ[ϕθ] if |θ − θ0| ∈ (0, tα)

Eθ[ϕα] otherwise,
(8)

which is to be compared with the power function of ϕα, namely

θ 7→ Eθ[ϕα] = Pθ

[
|X − θ0| > tan

(π(1−α)
2

)]
= 1− 1

π

∑
s∈{−1,1}

arctan
(
tan

(π(1−α)
2

)
+ s|θ − θ0|

)
.

Figure 3 plots, in the Cauchy case, for θ0 = 0 and α = 5%, the power function
of the test ϕα, the symmetric power envelope function in (8), and the power
function of four of the tests ϕθ1 that are generating this envelope function. As
described by Proposition 2, the power function of ϕα achieves the symmetric
power envelope outside (−tα, tα), but the figure reveals that the power deficit
of ϕα with respect to this envelope is quite severe in (−tα, tα).

3.2 UMPSU tests

In the Cauchy example considered above, the tests ϕθ1 for 0 < |θ1 − θ0| < tα
prevent the existence of a UMPS test at level α. While they have a symmetric
power function, these tests ϕθ1 are not reasonable decision rules since their
power function is not monotone non-decreasing in |θ1 − θ0|. This suggests
restricting to the class of level-α tests whose power function is symmetric in θ
and monotone non-decreasing in |θ−θ0|, or, equivalently, to the class of level-α
tests whose power function is symmetric and U-shaped in θ. In the sequel, a
test that is uniformly most powerful in this class will be said to be a uniformly
most powerful symmetric U-shaped (UMPSU) test.

Of course, the power function of the natural two-sided test ϕα is always
symmetric about θ0. The next result shows that, at least when f0 is unimodal,
this power function is also U-shaped.
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Fig. 3 Plots, in the Cauchy case, for θ0 = 0 and α = 5%, of the power function θ 7→ Eθ[ϕα]
of the UMPSU test (green), of the power envelope function in (8) (blue), and of the power
functions θ 7→ Eθ[ϕθ1 ] associated with θ1 = 1, 4, 7, 10 (grey). The vertical orange lines
indicate the values of ±tα in (3) and the horizontal grey line corresponds to the nominal
level α.

Proposition 3 Consider the location model with a base symmetric density f0
that is Riemann-integrable and fix θ0 ∈ R. (i) If f0 is unimodal, then, for
any α ∈ (0, 1), the test ϕα defined in Theorem 1 has a power function that is
symmetric about θ0 and U-shaped. (ii) Assuming further that f0 is continuous,
we have that if f0 is not unimodal, then there exists α ∈ (0, 1) such that the
power function of ϕα fails to be U-shaped.

It follows from this result that, when f0 is unimodal (as, e.g., in the Cauchy
case), ϕα is a possible candidate to be a UMPSU test at level α. We now provide
a sufficient condition under which ϕα indeed enjoys this optimality property.

Theorem 2 Fix θ0 ∈ R and α ∈ (0, 1). Consider the location model and as-
sume that the base symmetric density f0 is non-vanishing, Riemann-integrable,
and satisfies the following assumption: there exists M > 0 such that, for
any θ ≥ M ,

{x ∈ R+ : hθ(x) ≤ hθ(sα)} = [0, sα], (9)

where sα is as in Theorem 1. Then, the test ϕα defined in that result is UMPSU
at level α when testing H0 : θ = θ0 against H1 : θ ̸= θ0.
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Proof of Theorem 2. It follows from Theorem 1(i) and Proposition 3(i)
that ϕα is a level-α test whose power function is symmetric about θ0 and
U-shaped. Fix then θ1 ̸= θ0 arbitrarily. Take c > 1 large enough to let θ1,c :=
θ0 + c(θ1 − θ0) be such that |θ1,c − θ0| ≥ M . Define then rθ1,c := Eθ1,c [ϕα] −
Eθ1 [ϕα]; since the power function of ϕα is symmetric about θ0 and U-shaped,
we have that rθ1,c ≥ 0. We will show that there exist k1, k2, k3, k4 ≥ 0 such
that the test ϕk = ϕk1,k2,k3,k4 defined by

ϕk(x) =

{
1 if g(x) > 0

0 otherwise,
(10)

with

g(x) :=
1

fθ0(x)

{
fθ1(x)− k1fθ0(x)− k2(fθ1(x)− f2θ0−θ1(x))

−k3(fθ1,c(x)− f2θ0−θ1,c(x))− k4(fθ1(x)− fθ1,c(x))
}
,

satisfies

Eθ0 [ϕk] =

ˆ
ϕk(x)fθ0(x) dx = α, (11)

Eθ1 [ϕk]− E2θ0−θ1 [ϕk] =

ˆ
ϕk(x)(fθ1(x)− f2θ0−θ1(x)) dx = 0, (12)

Eθ1,c [ϕk]− E2θ0−θ1,c [ϕk] =

ˆ
ϕk(x)(fθ1,c(x)− f2θ0−θ1,c(x)) dx = 0 (13)

and

Eθ1 [ϕk]− Eθ1,c [ϕk] =

ˆ
ϕk(x)(fθ1(x)− fθ1,c(x)) dx = rθ1,c. (14)

Letting k1 = h|θ1,c−θ0|(sα), k2 = 0, k3 = 1
2 and k4 = 1, we have

g(x) =
1

2

(fθ1,c(x)
fθ0(x)

+
f2θ0−θ1,c(x)

fθ0(x)

)
− h|θ1,c−θ0|(sα)

=
1

2

(fθ1,c−θ0(x− θ0)

f0(x− θ0)
+

fθ0−θ1,c(x− θ0)

f0(x− θ0)

)
− h|θ1,c−θ0|(sα)

= h|θ1,c−θ0|(x− θ0)− h|θ1,c−θ0|(sα),

so that, in view of the assumption in (9), ϕk = ϕα. It follows that ϕk satis-
fies (11)–(14) (since this is indeed the case for ϕα) and, from Theorem 3.6.1(iii)
in Lehmann and Romano (2022), that ϕα is UMP when testing θ0 against θ1
in the class of tests satisfying

Eθ0 [ϕ] =

ˆ
ϕ(x)fθ0(x) dx ≤ α,

Eθ1 [ϕ]− E2θ0−θ1 [ϕ] =

ˆ
ϕ(x)(fθ1(x)− f2θ0−θ1(x)) dx = 0,
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Eθ1,c [ϕ]− E2θ0−θ1,c [ϕ] =

ˆ
ϕ(x)(fθ1,c(x)− f2θ0−θ1,c(x)) dx = 0

and

Eθ1 [ϕ]− Eθ1,c [ϕ] =

ˆ
ϕ(x)(fθ1(x)− fθ1,c(x)) dx ≤ rθ1,c,

hence also in the (smaller) class of level-α tests whose power function is sym-
metric about θ0 and U-shaped. Since ϕα belongs to this class and does not
depend on the arbitrary value θ1, the result follows. □

Figure 4 provides the plots of SLR functions associated with various densi-
ties that do not satisfy the monotonicity condition from Theorem 1 yet satisfy
the much weaker condition (9) from Theorem 2. In each case, it is seen that,
for θ large enough, the SLR functions hθ are strictly increasing in an inter-
val [0, cθ] with hθ(cθ) = 1 and that hθ(x) then is strictly larger than one for
any x > cθ. Since cθ diverges to infinity as θ does, the condition (9) is satisfied
with M = inf{θ > 0 : cθ ≥ sα}. Of course, it should be shown formally that
SLR functions indeed behave in this way, but this was already shown for the
Cauchy case in the proof of Proposition 2. As a corollary, the natural two-sided
test ϕα from this proposition is UMPSU at level α when testing H0 : θ = θ0
against H1 : θ ̸= θ0.

4 UMPS tests in exponential models

Turning to the multi-observation case, we now assume that the model is ex-
ponential, in the sense that there exists a σ-finite dominating measure ν such
that the corresponding densities take the form

fθ(x) =
dPθ

dν
(x) = C(θ)h(x) exp(η(θ)T (x)). (15)

Constructing UMPS tests does only make sense when the underlying model
enjoys some symmetry itself. In the present context, we assume that the ex-
ponential family at hand is symmetric about θ0 in the following sense.

Definition 1 Let the parameter value θ0 be such that 2θ0−θ ∈ Θ for any θ ∈
Θ. Then, we will say that the model described by the densities in (15) is
symmetric about θ0 if and only if the distribution of T − Eθ0 [T ] under P2θ0−θ

is the same as the distribution of −(T − Eθ0 [T ]) under Pθ.

Note that this symmetry property implies in particular that the distri-
bution of T under Pθ0 is symmetric with respect to its mean Eθ0 [T ]. The
following result provides a necessary and sufficient condition for symmetry of
exponential models, that will play a role in the proof of Theorem 3 below.
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Fig. 4 Plots of the SLR functions x 7→ hθ(x) over positive values of x for θ = .5, θ = 1,
θ = 2 and θ = 2.5, when f0 is the Cauchy density, the density of the t distribution with
three degrees of freedom, and the power-exponential densities with p = 1/2 and p = 4.

Proposition 4 Let θ0 be such that 2θ0 − θ ∈ Θ for any θ ∈ Θ. Then, the
model described by the densities in (15) is symmetric about θ0 if and only if
(i) the distribution of T under Pθ0 is symmetric about its mean Eθ0 [T ] and
(ii) η(2θ0 − θ)− η(θ0) = −(η(θ)− η(θ0)) for any θ.

Our main result in this section is then the following.

Theorem 3 Consider an exponential model that is symmetric about θ0 and
fix α ∈ (0, 1). Then, (i) there exist γα ∈ [0, 1] and sα ≥ 0 such that the test
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defined by

ϕα(x) =


1 if |T (x)− Eθ0 [T ]| > sα

γα if |T (x)− Eθ0 [T ]| = sα

0 otherwise

(16)

satisfies Eθ0 [ϕα] = α; (ii) the power function θ 7→ Eθ[ϕα] is symmetric about θ0;
(iii) ϕα is UMPS at level α when testing H0 : θ = θ0 against H1 : θ ̸= θ0.

Proof of Theorem 3. (i) Letting t 7→ FS
θ0
(t) := PS

θ0
[(−∞, t]] be the cumu-

lative distribution function of S := T − Eθ0 [T ] when X has distribution Pθ0 ,
define

sα := inf{s ∈ R : FS
θ0(s) ≥ 1− (α/2)}

and

γα :=

{
(FS

θ0
(sα)− (1− (α/2)))/PS

θ0
[{sα}] if PS

θ0
[{sα}] > 0

0 otherwise.

Since PS
θ0

is symmetric, the test in (16) then satisfies

Eθ0 [ϕα] = PS
θ0 [(−∞,−sα)] + PS

θ0 [(sα,∞)] + γαP
S
θ0 [{−sα, sα}]

= 2PS
θ0 [(sα,∞)] + 2γαP

S
θ0 [{sα}]

= 2
(
1− FS

θ0(sα) + γαP
S
θ0 [{sα}]

)
= α,

which shows the result. (ii) Since ϕα = gα(S) for some function gα satisfy-
ing gα(−s) = gα(s) for any s, the symmetry assumption on the model entails
that, for any θ, we have that ϕα has the same distribution under P2θ−θ0 as
under Pθ. This implies in particular that E2θ0−θ[ϕ] = Eθ[ϕ] for any θ. (iii)
Fix θ1 ∈ Θ \ {θ0} arbitrarily. Let us show that there exist k1, k2 ≥ 0 such that
the test ϕk1,k2 defined by

ϕk1,k2(x) =


1 if g(x) > 0

γα if g(x) = 0

0 if g(x) < 0,

with

g(x) :=
1

fθ0(x)

{
fθ1(x)− k1fθ0(x)− k2(fθ1(x)− f2θ0−θ1(x))

}
,

coincides with ϕα. Using the expression of the densities in (15), symmetry of
the exponential model about θ0, and Proposition 4, we have

g(x) =
(1− k2)C(θ1)

C(θ0)
e(η(θ1)−η(θ0))T (x) +

k2C(2θ0 − θ1)

C(θ0)
e(η(2θ0−θ1)−η(θ0))T (x) − k1

=
r(1− k2)C(θ1)

C(θ0)
ea(T (x)−Eθ0

[T ]) +
k2C(2θ0 − θ1)

rC(θ0)
e−a(T (x)−Eθ0

[T ]) − k1,
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where we let a := η(θ1)− η(θ0) and r := e(η(θ1)−η(θ0))Eθ0
[T ]. For

k2 =
r2C(θ1)

C(2θ0 − θ1) + r2C(θ1)
,

we thus have

g(x) =
rC(θ1)C(2θ0 − θ1)

C(θ0)(C(2θ0 − θ1) + r2C(θ1))

(
ea(T (x)−Eθ0

[T ]) + e−a(T (x)−Eθ0
[T ])

)
− k1

=: λ
(
ea(T (x)−Eθ0

[T ]) + e−a(T (x)−Eθ0
[T ])

)
− k1,

where λ is a fixed positive real number. Since a ̸= 0 (having a = 0 would
violate injectivity of the parametrization), there exists a (unique) nonnega-
tive real number k1 such that the test ϕk1,k2

coincides with ϕα, hence satis-
fies Eθ0 [ϕk1,k2

] = α and Eθ1 [ϕk1,k2
] − E2θ0−θ1 [ϕk1,k2

] = 0. Since k1, k2 ≥ 0,
Theorem 3.6.1(iii) in Lehmann and Romano (2022) entails that ϕα = ϕk1,k2

is most powerful when testing H0 : θ = θ0 against H1 : θ = θ1 in the class of
tests satisfying

Eθ0 [ϕ] =

ˆ
ϕ(x)fθ0(x) dµ(x) ≤ α (17)

and

Eθ1 [ϕ]− E2θ0−θ1 [ϕ] =

ˆ
ϕ(x)(fθ1(x)− f2θ0−θ1(x)) dµ(x) ≤ 0, (18)

hence also in the smaller class of level-α tests whose power function is sym-
metric about θ0. Since ϕα does not depend on θ1, the result follows. □

Let us consider two examples that enter the exponential framework con-
sidered here. If X = (X1, . . . , Xn) collects mutually independent random vari-
ables from the Bernoulli distribution with parameter p, then X admits the
density, with respect to the counting measure on {0, 1}n,

fp(x) = p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi = C(p) exp(η(p)T (x)),

with C(p) = (1 − p)n, η(p) = log(p/(1 − p)) and T (x) =
∑n

i=1 xi. Using
Proposition 4, this exponential family is seen to be symmetric with respect
to p0 = 1/2. For the problem of testing H0 : p = 1/2 against H1 : p ̸= 1/2,
Theorem 3 thus implies that the two-sided test defined by

ϕα(x) =


1 if |(

∑n
i=1 xi)− n

2 | > sα

γα if |(
∑n

i=1 xi)− n
2 | = sα

0 if |(
∑n

i=1 xi)− n
2 | < sα,

where sα ≥ 0 and γα ∈ [0, 1] are chosen such that Ep0 [ϕα] = α (based on
the fact that T ∼ Bin(n, 1/2) under p = p0), is UMPS at level α. Now,
if X = (X1, . . . , Xn) rather collects mutually independent random variables
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from the Gaussian distribution with mean µ and fixed variance σ2
0 , then the

density of X with respect to the Lebesgue measure on Rn is

fµ(x) =

(
1

2πσ2
0

)n
2

exp

(
− 1

2σ2
0

n∑
i=1

(xi − µ)2
)

= C(µ)h(x) exp(η(µ)T (x)),

with

C(µ) =

(
1

2πσ2
0

)n
2

exp

(
− nµ2

2σ2
0

)
, h(x) = exp

(
− 1

2σ2
0

n∑
i=1

x2
i

)
, η(µ) =

µ

σ2
0

,

and with the same statistic T as in the previous example. Still from Proposi-
tion 4, this exponential model is symmetric with respect to any µ0 ∈ R, and,
denoting as Φ the cumulative distribution function of the standard normal,
Theorem 3 entails that the usual two-sided test ϕα rejecting H0 : µ = µ0 in
favour of H1 : µ ̸= µ0 when |( 1n

∑n
i=1 xi)− µ0| > σ0Φ

−1(1− α
2 )/

√
n is UMPS

at level α.

5 Wrap up and final comments

Hypothesis testing problems allowing for UMP tests at a given significance
level are exceptions rather than the rule. When such UMP tests are indeed
unavailable, the way out consists in adopting a statistical principle, that re-
stricts the class of competing tests to a collection of tests meeting a natural,
desirable, property. Maybe the most common statistical principle in hypothe-
sis testing is the unbiasedness principle, which leads to restricting to the class
of unbiased tests. In this work, we introduced a symmetry principle, that is
at least as natural as the unbiasedness principle when the statistical model at
hand is itself symmetric, as it is the case for the location model with a base
symmetric density. We exhibited numerous specific hypothesis testing prob-
lems in which existence of a test that is UMP among unbiased tests remains
an open problem yet in which we could show that the natural symmetric test
is UMP among tests having a symmetric power function. When we could not
build such a UMP symmetric test, we showed that a UMP test may exist in the
smaller class of tests whose power function is symmetric and U-shaped, which
is another original statistical principle, the symmetry U-shaped principle, say.

Another, less common, yet classical, statistical principle is the invariance
principle, which leads to restricting to tests that invariant under groups of
transformations leaving both the null hypothesis and alternative hypothesis
invariant; see, e.g., Section 6.1 in Lehmann and Romano (2022). The symme-
try principle we introduced is much closer in spirit to the invariance principle
than to the unbiasedness principle, yet there are key differences between these
principles. Classically, one of the main motivations to adopt the invariance
principle is that, as soon as the group of transformations is large enough to
generate the null hypothesis at hand, invariant tests are distribution-free under
the null hypothesis, which makes designing a critical value as straightforward
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as if the original problem would have involved a simple null hypothesis. In the
testing problems we considered in this work, however, this is obviously irrele-
vant since the original null hypothesis H0 : θ = θ0 was already simple, hence
does not need any reduction through invariance. Now, standard invariance
arguments imply that invariant tests are distribution-free along the orbits of
the induced group of transformations, which, for the problems we considered,
leads to tests with symmetric power functions. To be more specific, let us
focus on the last example we tackled in this work, namely the problem of test-
ing H0 : µ = µ0 against H0 : µ ̸= µ0 based on observations X1, . . . , Xn that
are i.i.d. normal with mean µ and given variance σ2

0 . The null and alternative
hypotheses are invariant under the group of transformations made of the iden-
tity mapping and of the mapping reflecting each observation with respect to
the null value µ0. The induced group of transformations acts on {µ : µ ∈ R}
and similarly contains the identity mapping and the reflection with respect
to µ0. Invariant tests being distribution-free along the orbits of this induced
group, such tests will by construction have a symmetric power function. In this
sense, the invariance principle imposes a stronger restriction than the proposed
symmetry principle, which is an argument in favour of the symmetry principle
(the same conclusion can be reached in the Bernoulli example from the previ-
ous section by considering the group of transformations collecting the identity
mapping and the mapping (x1, . . . , xn) 7→ (1− x1, . . . , 1− xn)).

The only multi-observation problems we tackled in this work involve expo-
nential models. While this may seem to be a limitation, it might be so that,
under mild regularity conditions, existence of a UMPS test at a given sig-
nificance level for any sample size n requires the exponential paradigm. This
is actually the case already for existence of one-sided UMP tests; see Pfan-
zagl (1968). It might be explored in future research whether this is also the
case for UMPS tests, although it seems extremely challenging to obtain a for-
mal result in this direction. Finally, we note that existence of UMPS tests
and UMPSU tests in this work was established by applying the generalized
Neyman–Pearson fundamental lemma in an original way. It would be interest-
ing to see whether the same strategy can be exploited to establish existence
of optimal tests relative to other, original, statistical principles.

6 Proofs of auxiliary results

We first show that the SLR functions associated with the power-exponential
densities with p ∈ (1, 2] satisfy the monotonicity condition from Theorem 1
(Proposition 5 below). This requires the following preliminary result.

Lemma 1 Fix θ > 0. Let r, s : [0,∞) → R be continuous functions such
that r(x) > s(x) for any x > 0. Assume further that r and s are differentiable
on (0,∞) \ {θ} and that r′(x) ≥ −s′(x) > 0 for any x ∈ (0,∞) \ {θ}. Then
the function defined by

h(x) =
1

2
(er(x) + es(x))
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is strictly increasing over [0,∞).

Proof of Lemma 1. For any x ∈ (0,∞) \ {θ},

2h′(x) = r′(x)er(x) − (−s′(x))es(x) ≥ r′(x)(er(x) − es(x)) > 0,

so that h is strictly increasing on (0, θ) and on (θ,∞). Since h is continuous
on [0,∞), it is then strictly increasing on [0,∞). □

Proposition 5 Fix θ > 0 and p ∈ (1, 2]. Then the SLR function hθ in (2) is
strictly increasing over [0,∞).

Proof of Proposition 5. We prove the result by applying Lemma 1 with

r(x) := |x|p − |x− θ|p and s(x) := |x|p − |x+ θ|p,

that obviously define continuous functions on [0,∞). For any x > 0, we
have |x+ θ| > |x− θ|, hence r(x) > s(x). These functions are differentiable at
any x ∈ (0,∞) \ {θ}, with

r′(x) = pxp−1 − p|x− θ|p−1Sign(x− θ) and s′(x) = pxp−1 − p(x+ θ)p−1.

Since one clearly has −s′(x) > 0 for any x ∈ (0,∞) \ {θ}, it only remains to
show that r′(x) ≥ −s′(x) at any such x, that is, it remains to show that

(x+ θ)p−1 + |x− θ|p−1Sign(x− θ) ≤ 2xp−1 (19)

for any x ∈ (0,∞) \ {θ}. Now, for x ∈ (θ,∞), this readily follows from the
fact that t 7→ tp−1 is concave on [x− θ, x+ θ]. For x ∈ (0, θ), the Cr-inequality
(see, e.g., Bilodeau and Brenner (1999), page 33) provides

(θ + x)p−1 = (θ − x+ 2x)p−1 ≤ (θ − x)p−1 + (2x)p−1 ≤ (θ − x)p−1 + 2xp−1,

which proves (19), hence establishes the result. □

We now prove Proposition 3.

Proof of Proposition 3. (i) Since the power function of ϕα is given by

θ 7→ Eθ[ϕα] = Pθ[|X − θ0| > sα] = 1−
ˆ θ0+sα

θ0−sα

f0(x− θ) dx

= 1−
ˆ sα

−sα

f0(z − (θ − θ0)) dz = 1−
ˆ sα

−sα

f0(z − |θ − θ0|) dz, (20)

the power function is always symmetric about θ0. Now, denoting as F0 is the
cumulative distribution function associated with the density f0, unimodality
of f0 ensures that

c 7→ g(c) :=

ˆ sα

−sα

f0(z − c) dz = F0(sα − c)− F0(−sα − c)
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satisfies g′(c) = f0(−sα − c)− f0(sα − c) ≤ 0 for any c > 0. It follows that g is
a monotone non-increasing function over R+, hence that the power function
of ϕα in (20) is a monotone non-decreasing function of |θ− θ0|. It follows that
this power function is symmetric about θ0 and U-shaped.

(ii) Assume that f0 is not unimodal, so that there exist z2 > z1 ≥ 0 such
that f0(z2) > f0(z1). From continuity, the mapping α 7→ sα from (0, 1)
to (0,∞) is surjective, so that there exists α0 ∈ (0, 1) such that sα0 =
(z2 − z1)/2. Thus, at c = z1 + sα0 , we have

g′(c) = f0(−sα0 − c)− f0(sα0 − c)

= f0(sα0
+ c)− f0(−sα0

+ c)

= f0(z2)− f0(z1) > 0.

Continuity of f0 then implies that g′ is strictly positive in a neighbourhood N
of c, which, in view of the computations in Part (i) of the proof, entails that
the power function θ 7→ Eθ[ϕα0

] is a monotone strictly decreasing function
of |θ − θ0| for any value of |θ − θ0| ∈ N . Consequently, this power function is
not U-shaped. □

We turn to the proof of Proposition 4, which requires the following prelim-
inary result.

Lemma 2 There is no θ ∈ Θ such that T is Pθ-almost surely constant.

Proof of Lemma 2. Ad absurdum, assume that there exist θ ∈ Θ and a
possible value t of T such that Pθ[T = t] = 1. Fix an arbitrary θ1 ∈ Θ \ {θ}.
For any A ∈ A, we have

Pθ1 [A] =

ˆ
A

fθ1(x) dµ(x) =

ˆ
A

fθ1(x)

fθ(x)
dPθ(x)

=
C(θ1)

C(θ)

ˆ
A

exp((η(θ1)− η(θ))T (x)) dPθ(x)

=
C(θ1)

C(θ)
exp((η(θ1)− η(θ))t)Pθ[A].

Taking A = X entails that

C(θ1)

C(θ)
exp((η(θ1)− η(θ))t) = 1,

which in turn implies that Pθ1 = Pθ, a contradiction. □
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Proof of Proposition 4. Before proving the result, we first make the fol-
lowing general considerations. Rewrite the densities in (15) as

fθ(x) = C(θ) exp(η(θ)Eθ0 [T ])h(x) exp(η(θ)S(x))

=: D(θ)h(x) exp(η(θ)S(x)).

Changing the dominating measure to the measure ξ defined through ξ(A) =´
A
h(x) dν(x) yields the densities

dPθ

dξ
(x) =

dPθ

dν (x)
dξ
dν (x)

= D(θ) exp(η(θ)S(x)).

Letting (S,B) be the measure space associated with S = T − Eθ0 [T ], we then
have, for any B ∈ B,

PS
θ [B] = Pθ[S

−1(B)] =

ˆ
S−1(B)

D(θ) exp(η(θ)S(x)) dξ(x)

=

ˆ
B

D(θ) exp(η(θ)s) dξS(s),

where ξS is the measure defined through νS(B) = ν(S−1(B)). It follows that
fS
θ (s) := D(θ) exp(η(θ)s) is a version of the Radon–Nykodim derivative of PS

θ

with respect to ξS . Therefore, for any B ∈ B, we have

PS
θ [B] =

ˆ
B

dPS
θ /dξ

S(s)

dPS
θ0
/dξS(s)

dPS
θ0(s)

=
D(θ)

D(θ0)

ˆ
B

exp((η(θ)− η(θ0))s) dP
S
θ0(s),

so that

s 7→ D(θ)

D(θ0)
exp((η(θ)− η(θ0))s) =

exp((η(θ)− η(θ0))s)´
S exp((η(θ)− η(θ0))s) dPS

θ0
(s)

is a version of the Radon–Nykodim derivative of PS
θ with respect to PS

θ0
. We

can now prove the result.

(⇒) Assume that the exponential model is symmetric about θ0. By assump-
tion, the distribution of T under Pθ0 is symmetric with respect to its mean Eθ0 [T ],
so that we only need to show that η(2θ0 − θ) − η(θ0) = −(η(θ) − η(θ0)) for
any θ. To do so, fix θ ̸= θ0 arbitrarily (the claim is trivial for θ = θ0). For
any B ∈ B, the symmetry assumption implies that

PS
2θ0−θ[B] =

´
B
exp((η(2θ0 − θ)− η(θ0))s) dP

S
θ0
(s)´

S exp((η(2θ0 − θ)− η(θ0))s) dPS
θ0
(s)
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is equal to

PS
θ [−B] =

´
−B

exp((η(θ)− η(θ0))s) dP
S
θ0
(s)´

S exp((η(θ)− η(θ0))s) dPS
θ0
(s)

=

´
B
exp(−(η(θ)− η(θ0))s) dP

S
θ0
(s)´

S exp(−η(θ)− η(θ0))s) dPS
θ0
(s)

,

where we used the fact PS
θ0

is symmetric by assumption. Thus,

s 7→ exp((η(2θ0 − θ)− η(θ0))s)´
S exp((η(2θ0 − θ)− η(θ0))s) dPS

θ0
(s)

(21)

and

s 7→ exp(−(η(θ)− η(θ0))s)´
S exp(−(η(θ)− η(θ0))s) dPS

θ0
(s)

(22)

are versions of the Radon–Nykodim derivative of PS
2θ−θ0

with respect to PS
θ0
,

hence coincide PS
θ0
-almost everywhere. Assume that η(2θ0 − θ) − η(θ0) ̸=

−(η(θ)−η(θ0)). Since injectivity of the parametrization ensures that both η(θ)−
η(θ0) and η(2θ0 − θ) − η(θ0) are non-zero, the Radon–Nykodim derivatives
in (21)–(22) can be equal for at most one value of s, which implies that PS

θ0
is a Dirac probability measure. Since this contradicts Lemma 2, we must then
have that η(2θ0 − θ)− η(θ0) = −(η(θ)− η(θ0)), as was to be shown.

(⇐) Assume that the distribution of T under Pθ0 is symmetric with respect
to its mean Eθ0 [T ] and that η(2θ0 − θ) − η(θ0) = −(η(θ) − η(θ0)) for any θ.
Fix θ ̸= θ0 arbitrarily. Using the symmetry assumption on PS

θ0
, we have

PS
2θ−θ0 [B] =

´
B
exp((η(2θ − θ0)− η(θ0))s) dP

S
θ0
(s)´

S exp((η(2θ − θ0)− η(θ0))s) dPS
θ0
(s)

=

´
B
exp(−(η(θ)− η(θ0))s) dP

S
θ0
(s)´

S exp(−(η(θ)− η(θ0))s) dPS
θ0
(s)

=

´
−B

exp((η(θ)− η(θ0))s) dP
S
θ0
(s)´

S exp(−(η(θ)− η(θ0))s) dPS
θ0
(s)

= PS
θ [−B]

for any B ∈ B. This shows that the distribution of S under P2θ0−θ is the same
as the distribution of −S under Pθ, which establishes the result. □
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