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Abstract. Spatial quantiles are among the most successful concepts of multivariate quantiles. In particular, they are essentially the only
quantiles that can be computed in high dimensions. There has been an intense research activity to study spatial quantiles in the last two
decades, yet surprisingly little is known about their robustness properties. In the present work, we carefully study the breakdown point
of spatial quantiles. We offer three approaches, that show diverse distinctive advantages. The first approach is a constructive one: it is
conceptually simple and allows us to derive the finite-sample breakdown point of spatial quantiles. While the second approach is not
constructive and does not identify the global breakdown point of spatial quantiles, it provides an upper bound on the breakdown point
under contamination in any fixed direction. It also allows us to determine the breakdown point of Lp-spatial quantiles for any p > 1.
Last but not least, the third approach characterizes precisely when breakdown occurs under any given contamination scheme, hence
provides the breakdown points associated with very diverse contamination scenarios. Quite nicely, this last approach further covers
cases where the contamination and/or the ground probability measures are continuous distributions. An intriguing corollary of our
results states that, in high dimensions, the “practical” breakdown point exceeds the theoretical one. Throughout, our theoretical results
are illustrated through numerical exercises. Part of our results cover infinite-dimensional Hilbert spaces as well.

Résumé. Les quantiles spatiaux comptent parmi les concepts de quantiles multivariés qui ont rencontré le plus grand succès. En
particulier, ces quantiles sont essentiellement les seuls qui peuvent être calculés en grande dimension. Ils ont fait l’objet d’une activité
de recherche intense au cours des deux dernières décennies, mais, de façon surprenante, on sait très peu au sujet de leur robustesse.
Dans ce travail, nous étudions en détail le point de rupture des quantiles spatiaux. Nous adoptons trois approches, qui ont chacune
des avantages propres. La première approche est constructive: elle est conceptuellement simple et nous permet d’obtenir le point de
rupture exact des quantiles spatiaux. Si la seconde approche n’est pas constructive et ne permet pas d’identifier le point de rupture
global des quantiles spatiaux, elle fournit une borne supérieure sur le point de rupture associé à des contaminations dans une direction
fixée. Elle nous permet par ailleurs de déterminer le point de rupture des quantiles spatiaux Lp pour tout p > 1. Enfin et surtout, la
troisième approche caractérise précisément quand la rupture survient sous un quelconque schéma de contamination fixé, ce qui fournit
les points de rupture associés à des scenarios de contamination très divers. De façon intéressante, cette dernière approche couvre de
plus les cas où la contamination et/ou la mesure de probabilité de référence sont des distributions continues. Un corollaire surprenant
de nos résultats montre que le point de rupture “pratique” en grande dimension excède le point de rupture théorique. Tout du long, nos
résultats théoriques sont illustrés par des exercices numériques. Une partie de nos résultats couvrent également les espaces de Hilbert
de dimension infinie.
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1. Introduction

The problem of defining multivariate quantiles, i.e. quantiles for probability measures over the d-dimensional Euclidean
space, has attracted much attention in the last two decades. One of the most celebrated solutions is the concept of spatial
(or geometric) quantiles, that was introduced in [7] and [11]. Spatial quantiles are defined as follows. For a probability
measure P over Rd, a spatial quantile of order α in direction u, with α ∈ [0,1) and u in the unit sphere Sd−1 = {x ∈Rd :
∥x∥2 = x′x= 1} of Rd, is defined as a minimizer of

(1.1) µ 7→Mα,u(µ;P ) =

∫
Rd

(∥x− µ∥ − ∥x∥)dP (x)− αu′µ

1
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over Rd. While existence is guaranteed, uniqueness is not. To unambiguously define spatial quantiles in this work, we
choose to define the spatial quantile of order α in direction u for P , denoted as µα,u(P ) or simply µα,u, as the barycentre
of the collection of minimizers of the objective function (1.1) (since this function is convex, the collection of minimizers
is a convex subset of Rd and its barycentre is itself a minimizer). When spatial quantiles are not uniquely defined, the
robustness results we will obtain below depend on this choice, as is already the case in dimension d= 1.

Spatial quantiles belong to the family of “center-outward” quantiles concepts: the innermost quantile is associated
with α= 0 (and an arbitrary direction u) and is known as the spatial median or L1-median (see [4], [22], [24]), whereas,
typically, the larger α, the less central the spatial quantile µα,u in direction u (the term “typically” is needed in view of
the results from [26]). Therefore, a natural outlyingness measure O(x;P ) for a given location x in Rd with respect to P
is the order α of the spatial quantile µα,u equal to x (under mild assumptions, it can be shown that the function from the
open unit ball in Rd to Rd that maps αu to µα,u is one-to-one, which justifies this definition).

As usual, sample quantiles are obtained by considering the population concept above with the empirical probability
measure associated with the sample at hand. More precisely, for a given d-variate sample x1, . . . , xn, the spatial quantile
of order α in direction u is defined as the barycentre, µα,u(x1, . . . , xn) say, of the set of minimizers of

(1.2) µ 7→Mα,u(µ;x1, . . . , xn) =
1

n

n∑
i=1

(∥xi − µ∥ − ∥xi∥)− αu′µ

over Rd (while the term ∥x∥ in (1.1) is needed to guarantee that the objective function is well-defined without any moment
assumption, the term ∥xi∥ in (1.2) can of course be safely dropped in the empirical case). Note that the convention that
is adopted here to identify a unique representative of the set of possible quantiles is the one that is traditionally used
when considering the univariate median with an even sample size. Spatial quantiles have been much investigated. Their
consistency and asymptotic distribution were studied in [7], and Bahadur representation results were obtained in [17]
and [18]; see also [33]. In the population case, extreme spatial quantiles (i.e., those obtained with α close to one) were
studied in [12] and [13], with a motivation arising from extreme value theory; part of these results were extented to
the empirical case in [27]. Spatial quantiles are minimizers of a convex objective function and can be computed very
efficiently, even in high dimensions; see [25] and [31]. New properties of spatial quantiles have recently been identified
in [28] when using these quantiles in a general robustification procedure.

Spatial quantiles were generalized in various directions. They were used in a regression context to define a multiple-
output version of quantile regression; see, e.g., [6] and [8]. The definition of spatial quantiles naturally also makes sense
in a general Hilbert space, which explains that these quantiles were also investigated in infinite-dimensional spaces,
in particular in a functional data analysis context; see [5], [9], [29], or [30]. Spatial quantiles have also been recently
defined on unit spheres ([20]), where they provide alternatives to spherical-cap quantiles ([21]) or to quantiles based
on measure transportation ideas ([15]). Coming back to the d-dimensional Euclidean case, the construction of spatial
quantiles inspired the definition of the spatial expectiles in [16], and, more generally, the definition of general ρ-quantiles
in [19]. To be more specific, for a non-decreasing loss function ρ : [0,∞)→ [0,∞), a spatial ρ-quantile of order α in
direction u is defined as a minimizer of

(1.3) µ 7→Mα,u,ρ(µ;P ) =

∫
Rd

(Hα,u,ρ(x− µ)−Hα,u,ρ(x))dP (x),

where we let

Hα,u,ρ(z) = ρ(∥z∥)
(
1 + α

u′z

∥z∥

)
I[z ̸= 0];

here, I[A] denotes the indicator function associated with condition A. The L1 loss function defined by ρ(t) = t provides
the spatial quantiles above, whereas the L2 loss function defined by ρ(t) = t2 provides the spatial expectiles from [16].
More generally, spatial Lp-quantiles are obtained with ρ(t) = tp, and even more general loss functions yield a spatial
concept of multivariate M-quantiles; see [3]. We refer to [19] for a systematic investigation of spatial ρ-quantiles.

Of course, it is expected that spatial quantiles, that are L1 concepts, will be more robust that their Lp-counterparts
above; in line with this, while the innermost spatial quantile (obtained with α= 0) is a multivariate median, the innermost
spatial L2-quantile is the mean vector. It is very surprising, however, that the robustness properties of spatial quantiles
have barely been considered in the literature. To the best of our knowledge, the breakdown point (BDP) has been investi-
gated for the spatial outlyingness measure above ([10], [23], [32]), but not for the spatial quantiles themselves (since the
outlyingness measure actually has an explicit expression, obtaining the BDP of this measure is significantly easier than
for spatial quantiles). More precisely, the only spatial quantile for which the BDP is known is the spatial median itself;
see [22].
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The goal of the present work is therefore to study the breakdown properties of spatial quantiles and some of their
extensions. We offer three approaches that show diverse distinctive advantages. In Section 2, we first obtain a lower
bound by extending the corresponding spatial median result from [22]; to obtain a matching upper bound, we then adopt
a constructive approach, that is conceptually simple and allows us to derive the finite-sample breakdown point of spatial
quantiles. In Section 3, we adopt an alternative approach, that provides an upper bound on the BDP under contamination
in any fixed direction, and that also allows us to determine the breakdown point of Lp-spatial quantiles for any p > 1. Last
but not least, in Section 4, we use a third approach, that characterizes precisely when breakdown occurs under any given
contamination scheme, hence provides the BDPs associated with very diverse contamination scenarios. Quite nicely,
this last approach further covers cases where the contamination and/or the ground probability measures are continuous
distributions. In Section 5, we show that, in high dimensions, the “practical” BDP will exceed the theoretical one. In
Section 6, we briefly summarize the results and provide some final comments. Finally, we collect the proofs in several
technical appendices.

2. The BDP of spatial quantiles: a constructive approach

For an order α ∈ [0,1), a direction u ∈ Sd−1, and a d-variate sample x1, . . . , xn, the breakdown point of the spatial
quantile µα,u(x1, . . . , xn) is defined as

BDP(µα,u;x1, . . . , xn)

= min
ℓ∈{1,...,n}

{
ℓ

n
: sup

y
∥µα,u(x1, . . . , xn)− µα,u(y1, . . . , yn)∥=∞

}
,

where the supremum is taken over all d-variate samples y1, . . . , yn that differ from x1, . . . , xn by at most ℓ observations
(we recall that we use throughout the unique representative of spatial quantiles defined in the introduction). Thus, the BDP
is the smallest fraction of the sample one needs to perturb to be able to put the corresponding spatial quantile outside any
bounded set of Rd. In [22], it was shown that, for the spatial median (that is, for α= 0 and an arbitrary direction u), the
BDP is ⌊(n+ 1)/2⌋/n, which rewrites ⌈n/2⌉/n.

In this section, our goal is to determine the BDP for any given spatial quantile. We first obtain the following lower
bound.

Theorem 2.1. Fix α ∈ [0,1), u ∈ Sd−1 and a positive integer n. Then,

BDP(µα,u;x1, . . . , xn)≥
⌈
n(1− α)

2

⌉
/n

for any d-variate sample x1, . . . , xn.

This result can be established by adapting the argument in Theorem 2.2 of [22]; see Appendix A for a proof. In the
median case, there is no need to derive the corresponding upper bound since any location-equivariant estimator has a BDP
that is smaller than or equal to ⌈n/2⌉ (see Theorem 2.1 of [22]), which, jointly with the lower bound, establishes that the
BDP of the spatial median is indeed ⌈n/2⌉. All spatial quantiles are location-equivariant, so that the upper bound ⌈n/2⌉
also applies; for α > 0, however, this upper bound is not sharp, so that we need some efforts to derive a suitable upper
bound.

We will actually show that the lower bound in Theorem 2.1 is sharp, that is, we will show that we can
put µα,u(x1, . . . , xn) at infinity by perturbing

ℓ=

⌈
n(1− α)

2

⌉
observations. We first provide the following weaker result.

Theorem 2.2. Fix α ∈ [0,1), u ∈ Sd−1 and a positive integer n, and let

(2.4) ℓ :=

⌊
n(1− α)

2

⌋
+ 1.
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Then, for any d-variate sample x1, . . . , xn, the contaminated sample y1, . . . , yn defined by

(2.5) yi :=

{
ru if i= 1, . . . , ℓ
xi otherwise

provides

µα,u(y1, . . . , yn) = ru

for r large enough.

Denoting as My
α,u(µ) = Mα,u(µ;y1, . . . , yn) the objective function defining spatial quantiles of the contaminated

sample in (2.5) and as (∂My
α,u/∂v)(µ) the directional derivative of this function at µ in direction v, the proof proceeds

by showing that

lim inf
r→∞

min
v∈Sd−1

∂My
α,u

∂v
(ru)> 0,

which, from convexity, implies that µα,r(y1, . . . , yn) = ru is the unique minimizer of My
α,u for r large enough; see

Appendix A for details. Of course, in view of the lower bound in Theorem 2.1, considering arbitrary large values of r in
Theorem 2.2 readily proves the following result.

Corollary 2.1. Fix α ∈ [0,1), u ∈ Sd−1 and a positive integer n. Then, we have the following: (i) if n(1−α)/2 is not an
integer, then

BDP(µα,u;x1, . . . , xn) =

⌈
n(1− α)

2

⌉
/n

for any d-variate sample x1, . . . , xn; (ii) if n(1− α)/2 is an integer, then

BDP(µα,u;x1, . . . , xn) ∈
{⌈

n(1− α)

2

⌉
/n,

⌈
n(1− α)

2
+ 1

⌉
/n

}
for any d-variate sample x1, . . . , xn.

While this result is sufficient to determine the asymptotic BDP of spatial quantiles, which is given by

lim
n→∞

BDP(µα,u;x1, . . . , xn) =
1− α

2
,

the finite-sample BDP remains unclear in the framework of Corollary 2.1(ii). To improve on this, we present the following
result, whose proof is much more involved than that of Theorem 2.2.

Theorem 2.3. Fix α ∈ [0,1), u ∈ Sd−1 and a positive integer n such that n(1− α)/2 is an integer, and let

ℓ :=

⌈
n(1− α)

2

⌉
.

Then, (i) for any d-variate sample x1, . . . , xn such that not all xℓ+1, . . . , xn belong to the straight line L := {m+ λu :
λ ∈R}, with m := 1

n−ℓ

∑n
i=ℓ+1 xi, the contaminated sample y1, . . . , yn defined by

(2.6) yi :=

{
m+ ru if i= 1, . . . , ℓ
xi otherwise

provides

µα,u(y1, . . . , yn) =m+ ru

for r large enough; (ii) for any d-variate sample x1, . . . , xn such that xℓ+1, . . . , xn belong to L, the contaminated sam-
ple y1, . . . , yn in (2.6) provides

µα,u(y1, . . . , yn) =m+
max(u′(xℓ+1 −m), . . . , u′(xn −m)) + r

2
u
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for r large enough.

For the value of ℓ considered in this result, some samples x1, . . . , xn are such that the corresponding contaminated
sample in (2.5) will yield

lim inf
r→∞

min
v∈Sd−1

∂My
α,u

∂v
(ru)< 0,

so that µα,u(y1, . . . , yn) ̸= ru. This makes it necessary to consider the contaminated sample in (2.6). The reason why the
proof of Theorem 2.3 is more complicated than the one of the previous result is that, for the contaminated sample in (2.6),

lim inf
r→∞

min
v∈Sd−1

∂My
α,u

∂v
(m+ ru) = 0,

which does not allow one to conclude as above. Instead, the proof requires a second-order expansion of the minimal
directional derivative to show that

min
v∈Sd−1

∂My
α,u

∂v
(m+ ru) =

1

2nr2

n∑
i=ℓ+1

(
∥xi −m∥2 − (u′(xi −m))2

)
+O

(
1

r3

)
.

In the framework of Theorem 2.3(i), this guarantees that this minimal directional derivative is positive for r large enough,
which, from convexity, establishes the result (Theorem 2.3(ii) rather follows by directly computing the quantile in the
specific case considered there); see Appendix A for details.

More importantly, Theorem 2.3 allows us to refine Corollary 2.1 into the following result, which fully settles the
question of the finite-sample breakdown point of spatial quantiles.

Corollary 2.2. Fix α ∈ [0,1), u ∈ Sd−1 and a positive integer n. Then,

BDP(µα,u;x1, . . . , xn) =

⌈
n(1− α)

2

⌉
/n

for any d-variate sample x1, . . . , xn.

We conclude this section by illustrating empirically the theorems above; see Figure 1. For n = 40, we gener-
ated x1, . . . , xn independently from the bivariate normal distribution with mean vector (1,1) and identity covariance
matrix. For different values of ℓ, we then evaluated the spatial quantiles of order α= .49 (left panels) and order α= .5,
twice in direction u= (1,0), for contaminated samples y1, . . . , yn as in (2.5) (top panels) or as in (2.6) (bottom panels),
in each case for increasing values of r; note that only α= .5 makes n(1− α)/2 an integer. First note that, in all panels,
the quantiles associated with ℓ= ⌈n(1− α)/2⌉ do not break down, which is compatible with Theorem 2.1. The result in
Theorem 2.2 is confirmed by the quantiles associated with ℓ = ⌈n(1− α)/2⌉ in the top left panel and those associated
with ℓ = ⌈n(1− α)/2⌉+ 1 in the top right one (these quantiles, for large r, are equal to ru in both panels). It is seen
that, in the integer case, the quantiles associated with ℓ = ⌈n(1− α)/2⌉ are not equal to ru. As for Theorem 2.3, it is
illustrated by the quantiles associated with ℓ= ⌈n(1−α)/2⌉ in both bottom panels. Figure 1 therefore fully supports our
theoretical results.

Quite nicely, carefully inspecting the proofs of the results from this section reveals that these results also hold in a
general, possibly infinite-dimensional, Hilbert space (this will actually be the case for all results of Section 3, too).

3. A directional investigation and an extension to Lp-quantiles

Since lower and upper bounds are matching in Section 2, the approach adopted there considers the worst-case scenario in
terms of contamination schemes. Yet it is interesting to evaluate the impact of specific types of contaminations; we refer
to Section 5 for a motivation in a high-dimensional context. Also, the approach from Section 2 does not generalize to
spatial Lp-quantiles as it requires guessing the value of the corresponding quantile, which is possible only for the standard
spatial quantiles obtained with p= 1. In this section, we therefore adopt an alternative approach. We have the following
result.
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FIG 1. (Top left panel:) Trajectories of r 7→ µα,u(y1, . . . , yn), for n= 40, α= .49 and u= (1,0), for contaminated samples y1, . . . , yn as in (2.5)
for three different contamination levels ℓ (most of the red trajectory is hidden behind the blue one); the uncontamined sample x1, . . . , xn is shown
with grey circles. At a few selected values of r, squares show the corresponding values of ru, which are linked through a coloured line segment to
the corresponding quantile µα,u(y1, . . . , yn). (Top right panel:) the corresponding results for the value α= .5, for which n(1− α)/2 is an integer.
(Bottom left and right panels:) The corresponding results for only two contamination levels ℓ and for contaminated samples y1, . . . , yn as in (2.6), so
that the squares show a few selected values of m+ ru; see Section 2 for details.

Theorem 3.1. Fix α ∈ [0,1), u, v ∈ Sd−1 and a positive integer n, and let

ℓ :=

⌊
n(1− αu′v)

2

⌋
+ 1.
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Then, for any d-variate sample x1, . . . , xn, the quantile µα,u(y1, . . . , yn) associated with the contaminated sample defined
by

(3.7) yi :=

{
rv if i= 1, . . . , ℓ
xi otherwise

is such that ∥µα,u(y1, . . . , yn)∥→∞ as r→∞.

The proof proceeds by showing that, for a slightly modified objective function M̃α,u(µ;y1, . . . , yn) admitting the same
minimizers as the objective function Mα,u(µ;y1, . . . , yn) defining the spatial quantile µα,u(y1, . . . , yn), we have

M̃α,u(rv;y1, . . . , yn)< inf
µ:∥µ∥<

√
r
M̃α,u(µ;y1, . . . , yn),

which of course guarantees that, for r large enough, ∥µα,u(y1, . . . , yn)∥ ≥
√
r; see Appendix B. Now, in view of the

lower bound from Theorem 2.1, taking v = u in Theorem 3.1 provides an alternative proof of Corollary 2.1; this strategy
of proof, however, does not allow one to conclude about the BDP when n(1− α)/2 is an integer (that is, by proceeding
as in the proof of Theorem 3.1, one cannot strengthen Corollary 2.1 into Corollary 2.2). Theorem 3.1 is still interesting
for both following reasons.

First, Theorem 3.1 provides an upper bound on the BDP depending on the direction v in which contamination occurs,
as it states that, when contamination occurs in direction v, it is sufficient to perturb

(3.8)
⌊
n(1− αu′v)

2

⌋
+ 1

observations to break the quantile. Quite intuitively, this is a monotone non-decreasing function of u′v: the more the
contamination occurs in a direction v that is opposed to u (that is, the smaller u′v), the larger the amount of contamination
needed to break the quantile in Theorem 3.1. A natural question, that will be tackled in the next section, is whether the
directional upper bound (3.8) is sharp. Note that this upper bound is sharp at least when v = u and n(1−αu′v)/2 is not an
integer, since it then coincides with the lower bound and upper bound from Theorem 2.1 and Theorem 2.2, respectively.

Second, the strategy of proof adopted in Theorem 3.1 allows us to get a strong result on the BDP of spatial Lp-
quantiles for p > 1 (as mentioned above, the constructive approach from Section 2 does not allow one to obtain results
on the robustness of Lp-quantiles). We have the following result (see Appendix B for a proof inspired by the one of the
previous theorem).

Theorem 3.2. Fix α ∈ [0,1), u, v ∈ Sd−1 and a positive integer n. Then, for any p > 1 and d-variate sample x1, . . . , xn,
the Lp-quantile µα,u,p(y1, . . . , yn) associated with the contaminated sample defined by

(3.9) yi :=

{
rv if i= 1
xi otherwise

is such that ∥µα,u,p(y1, . . . , yn)∥→∞ as r→∞.

Quite remarkably, irrespective of the direction v in which contamination occurs, it is thus sufficient to perturb a
single observation to break spatial Lp-quantiles with p > 1. This is illustrated numerically in Figure 2. For the same
sample x1, . . . , xn as in Figure 1, we report there, for p ∈ {1.5,2,3,4}, the trajectories of r 7→ µα,u,p(y1, . . . , yn),
with α= .5 and u= (1,0), computed from contaminated samples y1, . . . , yn as in (3.9) with v = u= (1,0), v = (0,1),
and v =−u= (−1,0). As expected from Theorem 3.2, breakdown occurs for any combination of the values of p and v
considered.

Of course, Theorem 3.2 directly provides the following result.

Corollary 3.1. Fix α ∈ [0,1), u ∈ Sd−1 and a positive integer n. Then,

BDP(µp
α,u;x1, . . . , xn) =

1

n

for any p > 1 and any d-variate sample x1, . . . , xn.
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FIG 2. Trajectories of r 7→ µα,u,p(y1, . . . , yn) for p ∈ {1.5,2,3,4}, with α= .5 and u= (1,0), computed from contaminated samples y1, . . . , yn
as in (3.9) with v = u= (1,0), v = (0,1), and v =−u= (−1,0); the original sample x1, . . . , xn is the same as in Figure 1.

Clearly, it follows that, from a robustness point of view, spatial quantiles are to be strongly favored over their Lp-
counterparts with p > 1.

In Theorems 3.1–3.2 above, contamination occurs in a single direction v. We conclude this section by showing that the
poor robustness of Lp-quantiles also materializes when placing contamination symmetrically in directions v and −v (the
case of spatial quantiles, that is much more complicated, will be considered in Section 4 below). We have the following
result (see Appendix B for a proof).
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Theorem 3.3. Fix α ∈ (0,1), u, v ∈ Sd−1 and a positive integer n. Then, for any p > 1 and d-variate sample x1, . . . , xn,
the Lp-quantile, µα,u,p(Pn) say, associated with the contaminated probability measure defined by

(3.10) Pn :=
1

2n
δrv +

1

2n
δ−rv +

1

n

n∑
i=2

δxi

is such that ∥µα,u,p(Pn)∥→∞ as r→∞ (here, δa denotes the Dirac probability measure at a).

In line with Theorem 3.2, the result thus shows that a fraction 1/n of (here, symmetric) contamination is enough to
break Lp-quantiles1 when p > 1. We provide a numerical illustration in Figure 3. Still for the same sample x1, . . . , xn as in
Figure 1, we plot there, for p ∈ {1.5,2,3,4}, the trajectories of r 7→ µα,u,p(Pn) for p ∈ {1.5,2,3,4}, with α= .5 and u=
(1,0), computed from contaminated probability measures Pn as in (3.10) with v = u = (1,0), v = (1/

√
2,1/

√
2),

and v = (0,1). Clearly, irrespective of the direction v of the symmetric contamination considered, all Lp-quantiles break,
as predicted in Theorem 3.3.

4. A sharp approach

The previous section considered robustness of spatial quantiles when contamination occurs in a fixed direction v and
derived an upper bound on the corresponding BDP. This of course leaves some space for improvement. In particular, we
may wonder about the exact value of such a directional BDP. Also, we may consider robustness of spatial quantiles under
more general contamination schemes, e.g. under symmetric contamination schemes that, for a unit vector v and for r
large, would put half of the contamination in rv and the other half in −rv (in line, thus, with the contamination pattern
considered in Theorem 3.3). In this section, we provide a general result that characterizes when breakdown occurs when
the ground probability measure (the one associated with the original sample x1, . . . , xn) is contaminated in an essentially
arbitrary way, through a contamination measure. The result even allows the ground probability and/or contamination
measures to be absolutely continuous with respect to the Lebesgue measure (see Appendix C for a proof).

Theorem 4.1. Fix sequences (Qk) and (Λk) of probability measures on Rd. Assume that (Qk) converges weakly to a
probability measure Q and that Λk(K)→ 0 for any compact subset K of Rd as k→∞ with

wk :=

∫
Rd\{0}

z

∥z∥
dΛk(z)→w

for some w ∈Rd as k→∞. Fix c ∈ [0,1) and define Pk := (1− c)Qk + cΛk for all k. Fix α ∈ [0,1) and u ∈ Sd−1, and
define α̃= ∥αu+ cw∥/(1− c). Let ũ= (αu+ cw)/∥αu+ cw∥ if α̃ > 0 and ũ be arbitrary in Sd−1 if α̃= 0. Then, the
following holds.

(i) If α̃ > 1, then ∥µα,u(Pk)∥→∞ as k→∞.
(ii) If α̃= 1, then ∥µα,u(Pk)∥→∞ as k→∞, provided either a) Q is not supported on a halfline with direction −ũ,

or b) there exists a bounded sequence (zk) such that, for all k, Qk is supported on the halfline {zk − λũ : λ≥ 0}
and Λk is supported on the halfline {zk + λũ : λ≥ rk} with rk →∞.

(iii) If α̃ < 1, then the sequence (µα,u(Pk)) is bounded. In addition, if Q is not supported on a line with direction ũ,
then µα,u(Pk)→ µα̃,ũ(Q) as k→∞.

When applying this result to determine BDPs, Qk will play the role of the ground probability measure, whereas Λk

will stand for the contamination measure; in this framework, note that wk is the mean direction associated with the
contamination measure. In particular, wk = 0 for symmetric contamination patterns, and, more generally, w = 0 for
contamination patterns that are eventually symmetric.

An examination of the proof of Theorem 4.1 shows that Part (i) does not require that (Qk) converges weakly: it holds
for an arbitrary sequence (Qk) of probability measures. Similarly, the boundedness result in (iii) holds as soon as (Qk)
is tight. It also worth mentioning that only case b) of Part (ii) requires taking µα,u(Pk) as the barycenter of the collection
of minimizers of the objective function in (1.1); all other statements in Theorem 4.1 are valid for an arbitrary sequence
(µα,u(Pk)) of quantiles of order α in direction u for (Pk).

1A difference with Theorem 3.2, however, is that the case α= 0 is excluded in Theorem 3.3, which is quite natural (such symmetric contaminations
are not expected to break the innermost Lp-quantile).
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FIG 3. Trajectories of r 7→ µα,u,p(Pn) for p ∈ {1.5,2,3,4}, with α= .5 and u= (1,0), computed from contaminated probability measures Pn as
in (3.10) with v = u= (1,0), v = (1/

√
2,1/

√
2), and v = (0,1); the original sample x1, . . . , xn is the same as in Figure 1. In both upper panels, the

green trajectory coincides with the orange one.

This result, that characterizes when breakdown occurs, has several important consequences. In particular, as it may
be expected from the characteristic nature of the result, Theorem 4.1 yields an alternative proof of Corollary 2.2, as
we now briefly explain. Let Qk ≡ Q be the empirical probability measure of yℓ+1 = xℓ+1, . . . , yn = xn and Λk be the
empirical probability measure of y1, . . . , yℓ = kv, with v ∈ Sd−1. With c = ℓ/n, the resulting probability measure Pk

is the empirical probability measure of y1, . . . , yn. Assume here, for the sake of simplicity, that xℓ+1, . . . , xn are not
supported on a single line. Then breakdown will occur if and only if

α̃=
∥αu+ (ℓ/n)v∥

1− (ℓ/n)
=

√
α2 + (ℓ/n)2 + 2α(ℓ/n)u′v

1− (ℓ/n)
≥ 1,
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that is, breakdown can be achieved by perturbing

(4.11)
⌈

n(1− α2)

2(1 + αu′v)

⌉
observations but not less. The smallest value of (4.11) is obtained for v = u, so that breakdown can be achieved by
perturbing

ℓ=

⌈
n(1− α2)

2(1 + α)

⌉
=

⌈
n(1− α)

2

⌉
observations but not less, in line with Corollary 2.2. Using Theorem 4.1, we provide in Appendix C a detailed proof
of Corollary 2.2 that applies to arbitrary contamination schemes which, in particular, do not make any assumption
on x1, . . . , xn.

If one restricts to contamination in a fixed direction v, then the argument above implies that the corresponding BDP is

(4.12)
⌈

n(1− α2)

2(1 + αu′v)

⌉
/n.

It is interesting to compare this with the result in Theorem 3.1, that shows that an upper bound for the BDP in direction v
is (⌊

n(1− αu′v)

2

⌋
+ 1

)
/n.

Focusing, for the sake of simplicity, on asymptotic BDPs, Theorem 3.1 provides an upper bound on the asymptotic BDP
in direction v given by

1− αu′v

2

(see (3.8)), whereas, in view of (4.12), the sharp approach from this section shows that the asymptotic BDP in direction v
is actually equal to

(1− α2)

2(1 + αu′v)
=

1− αu′v

2
× 1− α2

1− α2(u′v)2
≤ 1− αu′v

2
·

Therefore, the asymptotic upper bound from Theorem 3.1 is sharp if and only if |u′v|= 1, and the smaller |u′v| is, the
less sharp this upper bound is.

Parallel to the upper bound resulting from Theorem 3.1, the BDP in direction v in (4.12) is a monotone non-increasing
function of u′v, which can interpreted in the same way as in Section 3. The BDPs in direction v = u, in an arbitrary
direction v orthogonal to u, and in direction v =−u are given by

(4.13) ℓu :=

⌈
n(1− α)

2

⌉
/n, ℓ⊥ :=

⌈
n(1− α2)

2

⌉
/n, and ℓ−u :=

⌈
n(1 + α)

2

⌉
/n,

respectively. Also, for arbitrary “symmetric” contaminations, i.e. those providing w = 0 in Theorem 4.1 (such as, e.g.,
those distributing half of the contamination in rv and half of it in −rv for a given unit vector v), the same reasoning as
above shows that the corresponding BDP is

(4.14) ℓsymm := ⌈n(1− α)⌉/n;

see Figure 4. A numerical illustration is provided in Figure 5. We show there trajectories of the form r 7→ µα,u(y1, . . . , yn),
still with α = .5 and u = (1,0), for contamined samples y1, . . . , yn obtained by combining the four contamination lev-
els ℓu, ℓ⊥, ℓ−u and ℓsymm with the four types of contaminations described above (that is, the type of contamination in (3.7)
for v = u = (1,0), v = (0,1), v = −u = (−1,0), and the symmetric contamination that has y1 = . . . = yℓ/2 = r(0,1),
y(ℓ/2)+1 = . . .= yℓ = r(0,−1) and yi = xi for i > ℓ). The results are perfectly in line with the various BDPs above: for
each type of contamination, indeed, the quantile breaks when the number of contaminated observations is larger than or
equal to (n times) the corresponding BDP in (4.13)–(4.14) above.
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FIG 4. Plots, as functions of α, of the BDP of µα,u in any direction u for contaminations in direction v = u (ℓu; red), for contaminations in an arbitrary
direction orthogonal to u (ℓ⊥; blue), for contaminations in direction v = −u (ℓ−u; green), and for an arbitrary symmetric contaminations (ℓsymm;
orange). See (4.13)–(4.14).

5. High dimensions

As we learned in the previous sections, the BDP for the spatial quantile of order α in direction u is ⌊n(1−α)/2⌋/n when
all types of contaminations are considered, but this increases to

(5.15)
⌈

n(1− α2)

2(1 + αu′v)

⌉
/n

when one restricts to contaminations in direction v. While this may seem to be of academic interest only, it is actually
practically relevant in high dimensions: in high-dimensional scenarios indeed, the probability mass (hence also, the pos-
sible contamination) will increasingly concentrate on the orthogonal complement to any given direction (see, e.g., [14]
and the discussion therein), and in particular to the direction u in which the quantile is considered. This will result into a
practical BDP given by

(5.16)
⌈
n(1− α2)

2

⌉
/n

(which is larger than ⌊n(1 − α)/2⌋/n). One might argue, however, that while the contamination will eventually take
place in the orthogonal complement to u (denote it as {u}⊥), there is no reason why contamination should concentrate
along a single direction v ∈ {u}⊥, so that it might be misleading to consider that the practical BDP in high dimensions
is (5.16). This is an important motivation to determine the BDP associated with an arbitrary contamination that eventually
concentrates on {u}⊥.

To do so, consider thus, in the framework of Theorem 4.1, a sequence of contamination measures (Λk) that eventually
concentrates on {u}⊥, so that the corresponding sequence (wk) is such that u′wk → 0 as k → ∞. Assuming that the
sequence (wk) converges in Rd, its limit w thus belongs to the unit ball in {u}⊥. The special case for which w = v ∈
Sd−1 ∩ {u}⊥ provides the case where the contamination is eventually along a single direction v of {u}⊥, which yields
the BDP in (5.16). Assume thus that ∥w∥< 1. It then follows from Theorem 4.1 that the spatial quantile µα,u will break
down if and only if

α̃=
∥αu+ (ℓ/n)w∥

1− (ℓ/n)
=

√
α2 + (ℓ/n)2∥w∥2

1− (ℓ/n)
≥ 1.
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FIG 5. Trajectories of r 7→ µα,u(y1, . . . , yn), with α = .5 and u = (1,0), computed from contaminated samples y1, . . . , yn as in (3.9) with v =
u = (1,0), v = (0,1), and v = −u = (−1,0), and from samples y1, . . . , yn that are contaminated symmetrically in directions (0,1) and (0,−1).
The various panels differ by the number ℓ of contaminated observations. In each case, the original sample x1, . . . , xn is the same as in Figure 1; see
Section 4 for details.

Since it is easy to check that this condition rewrites

ℓ≥

⌈
−2n+

√
4n2 − 4n2(1− α2)(1− ∥w∥2)

−2(1− ∥w∥2)

⌉
,

the BDP in the considered high-dimensional scenario is

(5.17)

⌈
(1− α2)n

1 +
√
1− (1− α2)(1− ∥w∥2)

⌉
/n.
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Interestingly, this is a monotone decreasing function of ∥w∥, so that the BDP in (5.16), that is associated with contamina-
tion in a given direction v ∈ {u}⊥, actually corresponds to the worst-case scenario. The BDP in high dimensions can be
as large as ⌈n(1− α)⌉/n, which is the value of (5.17) obtained for w = 0. Remarkably, this (very large!) maximal value
of the BDP is obtained when the contamination in {u}⊥ is symmetric, which, in view of the results in [14], is the rule
rather than the exception.

To illustrate numerically the fact that the BDP is practically larger than expected in high dimensions, we conducted
the following simulation exercise. We considered spatial quantiles of order α = .5 in direction u = (1,0, . . . ,0) ∈ Rd.
For n= 200 and various dimensions d, we generated independently observations x1, . . . , xn from the d-variate standard
normal distribution and a direction v from the uniform distribution over Sd−1. Denoting as µ0(x1, . . . , xn) the spatial
median of x1, . . . , xn, we then computed

(5.18) ℓ∗ := min

{
ℓ :

∥µα,u(Rv, . . . ,Rv,xℓ+1, . . . , xn)− µ0(x1, . . . , xn)∥
∥µα,u(x1, . . . , xn)− µ0(x1, . . . , xn)∥

>C

}
(we used R= 106 and C = 1000), which is an empirical estimate of the BDP when the sample x1, . . . , xn is contaminated
in direction v. In each dimension d ∈ {3,10,40,200}, we repeated this 4,000 times and plotted the histogram of the
resulting 4,000 values of ℓ∗; see Figure 6. In each dimension, we also plotted the density of

(1− α2)

2(1 + αu′V )

in direction V , where V is uniform over Sd−1 (conditional on V , this is the asymptotic BDP under contamination in
direction V ); this density was obtained by using the fact that u′V has a symmetric distribution such that (u′V )2 ∼
Beta(1/2, (d − 1)/2) (see, e.g., [1], page 54). Obviously, the excellent fit confirms our theoretical results, as well as
the practical strategy in (5.18) to estimate the BDP (in this respect, empirical results are robust to the specific choices
of R and C). For any dimension d, the histogram expands from the minimal BDP value ⌈n(1 − α)/2⌉/n to the max-
imal BDP value ⌈n(1 + α)/2⌉/n that are associated with contamination in a single direction v, that is the lower and
upper bounds in v of the BDP in (5.15). As the dimension d increases, however, the histogram concentrates around the
BDP value ⌈n(1− α2)/2⌉/n, as expected, so that this value may be considered the practical BDP in high dimensions.
Importantly, recall that the present simulation exercise focuses on the worst-case scenario where contamination in high
dimensions would concentrate in a single direction of {u}⊥: as we showed above, any other contamination schemes that
asymptotically concentrate on {u}⊥ will actually provide larger practical BDPs.

6. Wrap up and final comments

Being a concept of an L1-nature, spatial (or geometric) quantiles naturally enjoy some robustness to possible outlying
observations. In view of the important success met by these quantiles in the last decades, it is most surprising that their
robustness properties have not been investigated in the literature. This provided a motivation to study in this paper the
breakdown properties of spatial quantiles in any dimension d.

Spatial quantiles reduce to the traditional univariate quantiles for d= 1, and our results reveal that part of their robust-
ness properties are indeed inherited from their classical univariate antecedents: spatial quantiles of order α in direction u
have a BDP equal to ⌈

n(1− α)

2

⌉
/n

when all types of contaminations are allowed for, and a BDP equal to

(6.19)
⌈
n(1− α)

2

⌉
/n and

⌈
n(1 + α)

2

⌉
/n

when restricting to contaminations in direction u and −u, respectively (in the univariate case, contamination can be
considered only in the direction u in which the quantile is computed or in the opposite direction −u); comparison with
the BDPs of univariate quantiles of course requires adopting for these the center-outward parametrization used for spatial
quantiles.

Of course, spatial quantiles were designed to tackle the multivariate case, where, interestingly, much richer types of
contaminations may be considered. Our results imply that, when focusing on contaminations with mean direction w (in
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FIG 6. (Top left panel:) For d = 3, this provides the histogram of the BDP estimates in (5.18) (from 4,000 replications) when evaluating the spatial
quantile of order α= .5 in direction u= (1,0, . . . ,0) ∈ Rd for standard normal samples of size n= 200 contaminated in a direction v that is randomly
sampled from the uniform distribution over Sd−1 . The density described in Section 5 is plotted in black, and three important values of the BDP are
marked in red, blue and green. (Other panels): the corresponding results for dimensions d= 10,40,200.

the sense of Theorem 4.1), the BDP of spatial quantiles of order α in direction u is⌈
n(1− α2)

(1 + αu′w) +
√
(1 + αu′w)2 − (1− α2)(1− ∥w∥2)

⌉
/n
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(this general BDP, that has not been derived in the earlier sections, can be obtained from Theorem 4.1). Taking w = v ∈
Sd−1 provides contaminations in a given direction v, which yields the BDP⌈

n(1− α2)

2(1 + αu′v)

⌉
/n,

that is achieving a continuum of values between both “univariate” extreme ones in (6.19). Considering rather u′w = 0
provides contaminations in the orthogonal complement to the direction u in which the spatial quantile is considered,
which, as explained in Section 5, is the natural case in high dimensions; the resulting BDP, namely

(6.20)

⌈
n(1− α2)

1 +
√
1− (1− α2)(1− ∥w∥2)

⌉
/n

then ranges between ⌈n(1 − α2)/2⌉/n and ⌈n(1 − α)⌉/n. This reveals that spatial quantiles may show a remarkably
high robustness, particularly in high dimensions, where contaminations will tend to be symmetric in the orthogonal
complement to u ([14]), a framework that provides the maximal value ⌈n(1− α)⌉/n of the BDP in (6.20).

While these results provide a thorough investigation of the breakdown properties of spatial quantiles, there remain
two open questions that could be considered in future research work: (1) when breakdown occurs, it would be interesting
to characterize in which directions spatial quantiles go to infinity. While spatial quantiles probably go to infinity in
direction v when contamination is in direction v indeed, it is much less easy to guess what happens for symmetric
contaminations schemes. (2) Remember that the results of Sections 2–3 hold in general, possibly infinite-dimensional,
Hilbert spaces (to the best of our knowledge, these actually provide the first robustness results on infinite-dimensional
quantiles). Another avenue for future research would then be to extend Theorem 4.1 to general Hilbert spaces, too. The
technical challenges this raises, that are associated with the lack of compactness of the unit sphere in infinite-dimensional
Hilbert spaces, did not allow us to consider this extension in the framework of the present paper.

Appendix A: Proofs for Section 2

In this first appendix, we prove Theorems 2.1–2.3.

PROOF OF THEOREM 2.1. Fix an arbitrary d-variate sample x1, . . . , xn. Since µα,u is translation-equivariant,

BDP(µα,u;x1 + t, . . . , xn + t) = BDP(µα,u;x1, . . . , xn)

for any t ∈Rd (see Lemma 2.1 in [22]), so that we may assume, without any loss of generality, that µα,u(x1, . . . , xn) = 0.
Let then

ℓ :=

⌈
n(1− α)

2

⌉
− 1

and fix an arbitrary d-variate sample y1, . . . , yn differing from x1, . . . , xn by at most ℓ observations. To keep the notation
light, we denote the corresponding quantiles as µx

α,u and µy
α,u. Since µα,u is invariant under permutations of its arguments,

we may assume that yi = xi for all i= ℓ+ 1, . . . , n. Define

d := inf
µ∈B2M

∥µy
α,u − µ∥,

where we let Br := {z ∈ Rd : ∥z∥ ≤ r} and M := maxi=ℓ+1,...,n ∥xi∥. For any ε > 0, there then exists µ ∈ B2M such
that

∥µy
α,u∥ ≤ ∥µy

α,u − µ∥+ ∥µ∥ ≤ (d+ ε) + 2M,

so that ∥µy
α,u∥ ≤ d+ 2M . We will show that

(A.21) d≤ 2M(ℓ+ nα)

n(1− α)− 2ℓ
·

Ad absurdum, assume that

(A.22) d >
2M(ℓ+ nα)

n(1− α)− 2ℓ
·
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In particular, d > 0, so that, using that ∥yi∥ ≤M for i= ℓ+ 1, . . . , n, we have

∥yi − µy
α,u∥ ≥M + d≥ ∥yi∥+ d

for i= ℓ+ 1, . . . , n. Now, since

∥yi − µy
α,u∥ ≥ ∥yi∥ − ∥µy

α,u∥ ≥ ∥yi∥ − (d+ 2M),

for i= 1, . . . , n, it follows that

1

n

n∑
i=1

∥yi − µy
α,u∥ − αu′µy

α,u

≥ 1

n

n∑
i=1

∥yi∥ −
ℓ(d+ 2M)

n
+

(n− ℓ)d

n
− α∥µy

α,u∥

≥ 1

n

n∑
i=1

∥yi∥ −
(ℓ+ nα)(d+ 2M)

n
+

(n− ℓ)d

n

=
1

n

n∑
i=1

∥yi∥+
(n(1− α)− 2ℓ)d− 2M(ℓ+ nα)

n

>
1

n

n∑
i=1

∥yi∥,

where the last inequality results from (A.22). Since this contradicts the fact that µy
α,u minimizes µ 7→ 1

n

∑n
i=1 ∥yi−µ∥−

αu′µ over Rd, this establishes (A.21), hence that

∥µx
α,u − µy

α,u∥= ∥µy
α,u∥ ≤ d+ 2M ≤ 2M(n− ℓ)

n(1− α)− 2ℓ
·

Since the contaminated sample y1, . . . , yn was arbitrary, we have

sup
y

∥µx
α,u − µy

α,u∥ ≤
2M(n− ℓ)

n(1− α)− 2ℓ
<∞,

which shows that

BDP(µα,u;x1, . . . , xn)≥
ℓ+ 1

n
,

hence concludes the proof. □

We turn to the proof of Theorem 2.2, which requires both following lemmas.

Lemma A.1. For any v,w ∈Rd \ {0}, ∥∥∥∥ v

∥v∥
− w

∥w∥

∥∥∥∥≤ 2∥v−w∥
∥w∥

·

PROOF OF LEMMA A.1. Since the triangle inequality directly provides∥∥∥∥ v

∥v∥
− w

∥w∥

∥∥∥∥≤
∥∥∥∥∥w∥v− ∥v∥v− ∥v∥(w− v)

∥v∥∥w∥

∥∥∥∥
≤

∣∣∥w∥ − ∥v∥
∣∣

∥w∥
+

∥w− v∥
∥w∥

≤ 2
∥v−w∥
∥w∥

,

the result is proved. □
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Lemma A.2. Fix α ∈ [0,1) and a positive integer n. Then, the integer ℓ in (2.4) satisfies |n(1− α)− ℓ|< ℓ.

PROOF OF LEMMA A.2. Since one has trivially n(1−α)− ℓ >−ℓ, it is sufficient to show that n(1−α)− ℓ < ℓ, that is,
that

ℓ >
n(1− α)

2
·

Since this trivially follows from the definition of ℓ, the lemma is proved. □

We can now prove Theorem 2.2.

PROOF OF THEOREM 2.2. Recall that, for a general probability measure P , the objective function Mα,u(µ;P ) in (1.1)
admits directional derivative in any direction v(∈ Sd−1), and that the corresponding directional derivative at µ is

∂Mα,u

∂v
(µ;P ) = (1− αu′v)P [{µ}] + v′E

[(
µ−Z

∥µ−Z∥
− αu

)
I[Z ̸= µ]

]
;

see, e.g., Section 5 from [19]. For the empirical measure associated with the contaminated sample y1, . . . , yn, this direc-
tional derivative at µ= ru, for r >M := maxi=ℓ+1,...,n ∥xi∥, is given by

∂My
α,u

∂v
(µ) = (1− αu′v)

ℓ

n
+

1

n

n∑
i=ℓ+1

v′(ru− xi)

∥ru− xi∥
− n− ℓ

n
αv′u

=
ℓ

n
+ v′

{(
n− ℓ

n
− α

)
u+

1

n

n∑
i=ℓ+1

(
ru− xi

∥ru− xi∥
− u

)}
.(A.23)

Clearly, the minimal value of this directional derivative over the unit sphere is

min
v∈Sd−1

∂My
α,u

∂v
(ru) =

ℓ

n
−
∥∥∥∥(n− ℓ

n
− α

)
u+

1

n

n∑
i=ℓ+1

(
ru− xi

∥ru− xi∥
− u

)∥∥∥∥.
Applying Lemma A.1, we have∥∥∥∥(n− ℓ

n
− α

)
u+

1

n

n∑
i=ℓ+1

(
ru− xi

∥ru− xi∥
− u

)∥∥∥∥
≤
∣∣∣∣n− ℓ

n
− α

∣∣∣∣+ 1

n

n∑
i=ℓ+1

∥∥∥∥ ru− xi

∥ru− xi∥
− ru

∥ru∥

∥∥∥∥
≤ |n(1− α)− ℓ|

n
+

1

n

n∑
i=ℓ+1

2∥xi∥
r

≤ |n(1− α)− ℓ|
n

+
2(n− ℓ)M

nr
·

Therefore, using Lemma A.2, we have

lim inf
r→∞

min
v∈Sd−1

∂My
α,u

∂v
(ru)> 0.

Convexity of My
α,u then implies that µα,u(y1, . . . , yn) is uniquely defined and is equal to ru. □

The proof of Theorem 2.3 requires the following lemma.

Lemma A.3. Let K be a bounded set of Rd. Then, (i) for any u ∈ Sd−1,

sup
v∈Sd−1

sup
x∈K

∣∣∣∣v′u− v′(ru− x)

∥ru− x∥
− v′(Id − uu′)x

r

∣∣∣∣=O

(
1

r2

)
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as r diverges to infinity; (ii) for any u ∈ Sd−1,

sup
x∈K

∣∣∣∣1− u′(ru− x)

∥ru− x∥
− ∥x∥2 − (u′x)2

2r2

∣∣∣∣=O

(
1

r3

)
as r diverges to infinity.

Establishing Lemma A.3 in turn requires the following preliminary result.

Lemma A.4. Let K be a bounded set of Rd and m be a non-negative integer. Then, any u ∈ Sd−1, we have

sup
x∈K

∣∣∣∣ 1

∥ru− x∥(∥ru− x∥+ r)m
− 1

2mrm+1

∣∣∣∣=O

(
1

rm+1

)
as r diverges to infinity.

PROOF OF LEMMA A.4. Throughout the proof, C is a positive constant such that ∥x∥ ≤ C for any x ∈K . Since, for r
large enough, ∥ru− x∥ ≥ r/2 for any x ∈K , we have∣∣∣∣ 1

∥ru− x∥
− 1

r

∣∣∣∣= ∣∣∣∣r− ∥ru− x∥
r∥ru− x∥

∣∣∣∣= |2r(u′x)− ∥x∥2|
r∥ru− x∥(r+ ∥ru− x∥)

≤ 2rC +C2

r(r/2)(r+ (r/2))
,

which establishes the result for m = 0. Proceeding by induction, assume then that the result holds for m− 1. We have
(below, all O’s are uniform in x ∈K)

1

∥ru− x∥(∥ru− x∥+ r)m
− 1

2mrm+1

=
1

∥ru− x∥+ r

(
1

2m−1rm
+O

(
1

rm

))
− 1

2mrm+1

=
1

2m−1rm

(
1

∥ru− x∥+ r
− 1

2r

)
+O

(
1

rm+1

)
,

where ∣∣∣∣ 1

∥ru− x∥+ r
− 1

2r

∣∣∣∣= ∣∣∣∣r− ∥ru− x∥
∥ru− x∥+ r

∣∣∣∣= ∣∣∣∣ 2r(u′x)− ∥x∥2

(∥ru− x∥+ r)2

∣∣∣∣≤ 2rC +C2

((r/2) + r)2
·

We conclude that

sup
x∈K

∣∣∣∣ 1

∥ru− x∥(∥ru− x∥+ r)m
− 1

2mrm+1

∣∣∣∣= 1

2m−1rm
O

(
1

r

)
+O

(
1

rm+1

)
,

which establishes the result. □

We can now prove Lemma A.3.

PROOF OF LEMMA A.3. Throughout the proof, C is still a positive constant such that ∥x∥ ≤ C for any x ∈K , and we
assume that r is large enough to have ∥ru− x∥ ≥ r/2 for any x ∈K . (i) Since

v′u− v′(ru− x)

∥ru− x∥
=

(u′v)∥ru− x∥ − v′(ru− x)

∥ru− x∥

=
(u′v)∥ru− x∥ − r(u′v)

∥ru− x∥
+

r(u′v)− v′(ru− x)

∥ru− x∥

=
∥ru− x∥ − r

∥ru− x∥
(u′v) +

x′v

∥ru− x∥
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=
∥x∥2 − 2r(u′x)

∥ru− x∥(∥ru− x∥+ r)
(u′v) +

x′v

∥ru− x∥
,

we have

v′u− v′(ru− x)

∥ru− x∥
− v′(Id − uu′)x

r
= S1 + S2 + S3,

with

S1 :=

(
1

∥ru− x∥
− 1

r

)
(x′v),

S2 :=

(
−2r

∥ru− x∥(∥ru− x∥+ r)
+

1

r

)
(u′x)(u′v)

and

S3 :=
∥x∥2

∥ru− x∥(∥ru− x∥+ r)
(u′v)·

Since ∣∣∣∣ 1

∥ru− x∥
− 1

r

∣∣∣∣= ∣∣∣∣r− ∥ru− x∥
r∥ru− x∥

∣∣∣∣= ∣∣∣∣ 2r(u′x)− ∥x∥2

r∥ru− x∥(r+ ∥ru− x∥)

∣∣∣∣≤ 2rC +C2

r(r/2)(r+ (r/2))
,

we have

sup
v∈Sd−1

sup
x∈K

|S1|=O

(
1

r2

)
.

Since Lemma A.4 directly yields

sup
v∈Sd−1

sup
x∈K

|S2|=O

(
1

r2

)
and

|S3| ≤
C2

(r/2)((r/2) + r)
=O

(
1

r2

)
,

Part (i) of the result is proved.

(ii) Since

1− u′(ru− x)

∥ru− x∥
=

1

∥ru− x∥
(∥ru− x∥ − r+ u′x)

=
1

∥ru− x∥

(
∥x∥2 − 2r(u′x)

∥ru− x∥+ r
+ u′x

)

=
∥x∥2

∥ru− x∥(∥ru− x∥+ r)
+

(∥ru− x∥+ r)(u′x)− 2r(u′x)

∥ru− x∥(∥ru− x∥+ r)

=
∥x∥2

∥ru− x∥(∥ru− x∥+ r)
+

∥ru− x∥(u′x)− r(u′x)

∥ru− x∥(∥ru− x∥+ r)
,

we have

1− u′(ru− x)

∥ru− x∥
− ∥x∥2 − (u′x)2

2r2
= T1 + T2,

with

T1 :=

(
1

∥ru− x∥(∥ru− x∥+ r)
− 1

2r2

)
∥x∥2
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and

T2 :=

(
∥ru− x∥ − r

∥ru− x∥(∥ru− x∥+ r)
+

u′x

2r2

)
(u′x)

=

(
∥x∥2 − 2r(u′x)

∥ru− x∥(∥ru− x∥+ r)2
+

u′x

2r2

)
(u′x)

=
∥x∥2(u′x)

∥ru− x∥(∥ru− x∥+ r)2
+

(
−2r

∥ru− x∥(∥ru− x∥+ r)2
+

1

2r2

)
(u′x)2

=: T2a + T2b,

say. Since Lemma A.4 directly yields

sup
v∈Sd−1

sup
x∈K

|T1|=O

(
1

r2

)
and sup

v∈Sd−1

sup
x∈K

|T2b|=O

(
1

r2

)
and

|T2a| ≤
C3

(r/2)((r/2) + r)2
,

the result is proved. □

We can finally prove Theorem 2.3.

PROOF OF THEOREM 2.3. First note that (A.23), with m+ ru instead of ru, here yields

∂My
α,u

∂v
(m+ ru) =

ℓ

n
− αv′u+

1

n

n∑
i=ℓ+1

v′(m+ ru− xi)

∥m+ ru− xi∥

=
ℓ

n
(1 + u′v) +

n(1− α)− 2ℓ

n
u′v+

1

n

n∑
i=ℓ+1

(
v′(m+ ru− xi)

∥m+ ru− xi∥
− u′v

)

=
ℓ

n
+ v′

{
ℓ

n
u+

1

n

n∑
i=ℓ+1

(
m+ ru− xi

∥m+ ru− xi∥
− u

)}
.

The minimal directional derivative on the unit sphere is then

min
v∈Sd−1

∂My
α,u

∂v
(m+ ru) =

ℓ

n
−
∥∥∥∥ ℓ

n
u+

1

n

n∑
i=ℓ+1

(
m+ ru− xi

∥m+ ru− xi∥
− u

)∥∥∥∥.
Since Lemma A.1 entails that{

ℓ

n
+

∥∥∥∥ ℓ

n
u+

1

n

n∑
i=ℓ+1

(
m+ ru− xi

∥m+ ru− xi∥
− u

)∥∥∥∥}=
2ℓ

n
+O

(
1

r

)
as r diverges to infinity,

(A.24)
(
2ℓ

n
+O

(
1

r

))
min

v∈Sd−1

∂My
α,u

∂v
(m+ ru) =−T1(r) + T2(r),

where we let

T1(r) :=

∥∥∥∥ 1n
n∑

i=ℓ+1

(
m+ ru− xi

∥m+ ru− xi∥
− u

)∥∥∥∥2
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and

T2(r) :=− 2ℓ

n2

n∑
i=ℓ+1

(
u′(m+ ru− xi)

∥m+ ru− xi∥
− 1

)
.

Lemma A.3(i) entails that

sup
v∈Sd−1

∣∣∣∣∣v′
{
1

n

n∑
i=ℓ+1

(
m+ ru− xi

∥m+ ru− xi∥
− u

)}

+
1

nr

n∑
i=ℓ+1

v′(Id − uu′)(xi −m)

∣∣∣∣∣=O

(
1

r2

)
,

so that the definition of m ensures that

T1(r) =O

(
1

r4

)
.

Since Lemma A.3(ii) provides

T2(r) =
ℓ

n2r2

n∑
i=ℓ+1

(
∥xi −m∥2 − (u′(xi −m))2

)
+O

(
1

r3

)
,

we conclude from (A.24) that

(A.25) min
v∈Sd−1

∂My
α,u

∂v
(m+ ru) =

1

2nr2

n∑
i=ℓ+1

(
∥xi −m∥2 − (u′(xi −m))2

)
+O

(
1

r3

)
.

We may now consider both cases in the statement of the theorem. (i) If it is not so that xℓ+1, . . . , xn all belong to the
line L= {m+ λu : λ ∈R}, then (A.25) ensures that there exists R> 0 such that

min
v∈Sd−1

∂My
α,u

∂v
(m+ ru)> 0

for any r ≥ R, which, from the convexity of the objective function defining spatial quantiles, implies that, for r ≥
R, µα,u(y1, . . . , yn) is uniquely defined and is equal to m+ ru. (ii) If xℓ+1, . . . , xn all belong to L, then y1, . . . , yn all
belong to L and take the form m+ ru, . . . ,m+ ru,m+λℓ+1u, . . . ,m+λnu, with λi = u′(xi−m). From Lemma S.1.1
in [20], any spatial quantile of order α in direction u for the empirical probability measure associated with y1, . . . , yn then
itself belongs to L, and, if r >maxi=ℓ+1,...,n u

′(xi −m), then a direct computation shows that the collection of these
quantiles is given by [maxi=ℓ+1,...,n λi, r]. By definition, we thus have

µα,u(y1, . . . , yn) =m+
(maxi=ℓ+1,...,n λi) + r

2
u,

which establishes the result. □

Appendix B: Proofs for Section 3

Before proving Theorem 3.1, we note that when establishing results on spatial quantiles, we may safely substitute the
objective function

(B.26) µ 7→ M̃α,u(µ;x1, . . . , xn) :=
1

n

n∑
i=1

∥xi − µ∥+ α

n

n∑
i=1

u′(xi − µ)

for the original one

µ 7→Mα,u(µ;x1, . . . , xn) =
1

n

n∑
i=1

(∥xi − µ∥ − ∥xi∥)− αu′µ
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in (1.2), as these objective functions share the same minimizers.

PROOF OF THEOREM 3.1. We consider the objective function in (B.26), which, at the contaminated sample y1, . . . , yn
defined in the statement of the theorem, takes the value

M̃α,u(µ;y1, . . . , yn) =
ℓ

n
(∥rv− µ∥+ αu′(rv− µ))

+
1

n

n∑
i=ℓ+1

∥xi − µ∥+ α

n

n∑
i=ℓ+1

u′(xi − µ).

At µ= rv, we have

M̃α,u(µ;y1, . . . , yn) =
1

n

n∑
i=ℓ+1

∥xi − µ∥+ α

n

n∑
i=ℓ+1

u′(xi − µ)

=
(n− ℓ)(1− αu′v)

n
r+ o(r),

as r diverges to infinity. Now,

M̃α,u(µ;y1, . . . , yn)

≥ ℓ

n
∥rv− µ∥+ ℓα

n
u′(rv− µ)

=
ℓ

n
∥rv− µ∥

(
1 + α

u′(rv− µ)

∥rv− µ∥

)

=
ℓ

n
∥rv− µ∥(1 + αu′v) +

ℓα

n
∥rv− µ∥

(
u′(v− µ/r)

∥v− µ/r∥
− u′v

∥v∥

)

≥ ℓ

n
∥rv− µ∥(1 + αu′v)− ℓα

n
∥rv− µ∥

∥∥∥∥ v− µ/r

∥v− µ/r∥
− v

∥v∥

∥∥∥∥
≥ ℓ

n
∥rv− µ∥(1 + αu′v)− 2ℓα

nr
∥rv− µ∥∥µ∥

∥v∥
,

so that, for any µ ∈B(
√
r) with r > 1, we have

M̃α,u(µ;y1, . . . , yn)≥
ℓ(1 + αu′v)

n
(r−

√
r)− 2ℓα

n
√
r
(r+

√
r)

=
ℓ(1 + αu′v)

n
(r−

√
r) + o(r).

Thus, for any net (µr)r>0 with ∥µr∥ ≤
√
r for all r > 0, we have

lim inf
r→∞

M̃α,u(rv;y1, . . . , yn)

M̃α,u(µr;y1, . . . , yn)
≤ (n− ℓ)(1− αu′v)

ℓ(1 + αu′v)

= 1+
n(1− αu′v)− 2ℓ

ℓ(1 + αu′v)
·

Since 2ℓ > n(1− αu′v), this entails that there exists ε ∈ (0,1) such that

M̃α,u(rv;y1, . . . , yn)< (1− ε)M̃α,u(µr;y1, . . . , yn)
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for r large enough and any net (µr) with ∥µr∥ ≤
√
r for all r. Now, choose a net (µr) of this type such that

M̃α,u(µr;y1, . . . , yn)≤
1

1− ε
inf

µ∈B(
√
r)
M̃α,u(µ;y1, . . . , yn).

We then have for r large enough

M̃α,u(rv;y1, . . . , yn)< inf
µ∈B(

√
r)
M̃α,u(µ;y1, . . . , yn).

This proves that µα,u(y1, . . . , yn) does not belong to B(
√
r) for r large enough, which establishes the result. □

In Section 3, it only remains to prove Theorem 3.2. Sample Lp-quantiles are defined through the minimizers of the
objective function

µ 7→Mα,u,p(µ;x1, . . . , xn) =
1

n

n∑
i=1

(Hα,u,p(xi − µ)−Hα,u,p(xi)),

with

Hα,u,p(z) = ∥z∥p
(
1 + α

u′z

∥z∥

)
I[z ̸= 0],

but we may of course safely rather consider the objective function

(B.27) µ 7→ M̃α,u,p(µ;x1, . . . , xn) =
1

n

n∑
i=1

∥xi − µ∥p + α

n

n∑
i=1

∥xi − µ∥p−1u′(xi − µ),

as it admits the same minimizers.

PROOF OF THEOREM 3.2. At the contaminated sample y1, . . . , yn defined in the statement of the result, the objective
function in (B.27) writes

M̃α,u,p(µ;y1, . . . , yn) =
1

n
∥rv− µ∥p + α

n
∥rv− µ∥p−1u′(rv− µ)

+
1

n

n∑
i=2

∥xi − µ∥p + α

n

n∑
i=2

∥xi − µ∥p−1u′(xi − µ).

Let c ∈ (0,1) be fixed (the value of c will be chosen later). At µ= crv, we have

M̃α,u,p(µ;y1, . . . , yn) =
1+ αu′v

n
(1− c)prp

+
1

n

n∑
i=2

∥xi − µ∥p + α

n

n∑
i=2

∥xi − µ∥p−1u′(xi − µ)

=
1+ αu′v

n
(1− c)prp +

(1− αu′v)(n− 1)

n
cprp + o(rp),

as r diverges to infinity. Now,

M̃α,u,p(µ;y1, . . . , yn)

≥ 1

n
∥rv− µ∥p + α

n
∥rv− µ∥p−1u′(rv− µ)

=
1

n
∥rv− µ∥p

(
1 + α

u′(rv− µ)

∥rv− µ∥

)

=
1

n
∥rv− µ∥p(1 + αu′v) +

α

n
∥rv− µ∥p

(
u′(v− µ/r)

∥v− µ/r∥
− u′v

∥v∥

)
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≥ 1

n
∥rv− µ∥p(1 + αu′v)− α

n
∥rv− µ∥p

∥∥∥∥ v− µ/r

∥v− µ/r∥
− v

∥v∥

∥∥∥∥
≥ 1

n
∥rv− µ∥p(1 + αu′v)− 2α

nr
∥rv− µ∥p ∥µ∥

∥v∥
,

so that, for any µ ∈B(
√
r) with r large enough to have

√
r < cr, we have

M̃α,u,p(µ;y1, . . . , yn)≥
1 + αu′v

n
(r−

√
r)p − 2α

n
√
r
(r+

√
r)p

=
1+ αu′v

n
(r−

√
r)p + o(rp).

Thus, reasoning as in the proof of Theorem 3.1 yields

lim inf
r→∞

M̃α,u,p(crv;y1, . . . , yn)

infµ∈B(
√
r) M̃α,u,p(µ;y1, . . . , yn)

≤ (1− c)p +
(1− αu′v)(n− 1)

1 + αu′v
cp =: f(c).

Since f(0) = 1 and f ′(0) < 0, it is possible to pick c ∈ (0,1) such that f(c) < 1. With this value of c, we have thus
showed that

M̃α,u,p(crv;y1, . . . , yn)< inf
µ∈B(

√
r)
M̃α,u,p(µ;y1, . . . , yn)

for r large enough, which proves that the Lp-quantile of order α in direction u for y1, . . . , yn does not belong to B(
√
r),

hence diverges to infinity in norm. □

We now proceed with the proof of Theorem 3.3.

PROOF OF THEOREM 3.3. At the contaminated probability measure Pn, the objective function in (B.27) writes

M̃α,u,p(µ;Pn) =
1

2n
∥rv− µ∥p + α

2n
∥rv− µ∥p−1u′(rv− µ) +

1

2n
∥ − rv− µ∥p + α

2n
∥ − rv− µ∥p−1u′(−rv− µ)

+
1

n

n∑
i=2

∥xi − µ∥p + α

n

n∑
i=2

∥xi − µ∥p−1u′(xi − µ).

Let c ∈ (0,1) be a fixed constant, to be determined later in the proof. At µ= cru, we have

M̃α,u,p(µ;Pn) =
1

2n
∥v− cu∥prp + α

2n
∥v− cu∥p−1rpu′(v− cu) +

1

2n
∥v+ cu∥prp − α

2n
∥v+ cu∥p−1rpu′(v+ cu)

+
1

n

n∑
i=2

∥xi − cru∥p + α

n

n∑
i=2

∥xi − cru∥p−1u′(xi − cru)

=
1

2n
∥v− cu∥prp + α

2n
∥v− cu∥p−1rpu′(v− cu) +

1

2n
∥v+ cu∥prp − α

2n
∥v+ cu∥p−1rpu′(v+ cu)

+
(1− α)(n− 1)

n
cprp + o(rp),

as r diverges to infinity. Now,

M̃α,u,p(µ;Pn)

≥ 1

2n
∥rv− µ∥p + α

2n
∥rv− µ∥p−1u′(rv− µ) +

1

2n
∥ − rv− µ∥p + α

2n
∥ − rv− µ∥p−1u′(−rv− µ)

=
1

2n
∥rv− µ∥p

(
1 + α

u′(rv− µ)

∥rv− µ∥

)
+

1

2n
∥rv+ µ∥p

(
1− α

u′(rv+ µ)

∥rv+ µ∥

)
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=
1

2n
∥rv− µ∥p(1 + αu′v) +

α

2n
∥rv− µ∥p

(
u′(v− µ/r)

∥v− µ/r∥
− u′v

∥v∥

)

+
1

2n
∥rv+ µ∥p(1− αu′v)− α

2n
∥rv+ µ∥p

(
u′(v+ µ/r)

∥v+ µ/r∥
− u′v

∥v∥

)

≥ 1

2n
∥rv− µ∥p(1 + αu′v)− α

2n
∥rv− µ∥p

∥∥∥∥ v− µ/r

∥v− µ/r∥
− v

∥v∥

∥∥∥∥
+

1

2n
∥rv+ µ∥p(1− αu′v)− α

2n
∥rv+ µ∥p

∥∥∥∥ v+ µ/r

∥v+ µ/r∥
− v

∥v∥

∥∥∥∥
≥ 1

2n
∥rv− µ∥p(1 + αu′v) +

1

2n
∥rv+ µ∥p(1− αu′v)− α

nr
∥rv− µ∥p ∥µ∥

∥v∥
− α

nr
∥rv+ µ∥p ∥µ∥

∥v∥
,

so that, for any µ ∈B(
√
r) with r large enough to have

√
r < cr, we have

M̃α,u,p(µ;Pn)≥
1 + αu′v

2n
(r−

√
r)p +

1− αu′v

2n
(r−

√
r)p − α

n
√
r
(r+

√
r)p

=
1

n
(r−

√
r)p + o(rp).

Thus, reasoning as in the proof of Theorem 3.1 yields

lim inf
r→∞

M̃α,u,p(cru;Pn)

infµ∈B(
√
r) M̃α,u,p(µ;Pn)

≤ 1

2
∥v− cu∥p + α

2
∥v− cu∥p−1(u′v− c)

+
1

2
∥v+ cu∥p − α

2
∥v+ cu∥p−1(u′v+ c) + (1− α)(n− 1)cp =: f(c).

Since f(0) = 1 and

f ′(0) =−α(p− 1)(u′v)2 − α< 0,

it is possible to pick c ∈ (0,1) such that f(c)< 1. With this value of c, we have thus showed that

M̃α,u,p(cru;Pn)< inf
µ∈B(

√
r)
M̃α,u,p(µ;Pn)

for r large enough, which proves that the Lp-quantile of order α in direction u for Pn does not belong to B(
√
r), hence

diverges to infinity in norm. □

Appendix C: Proofs for Section 4

The proof of Theorem 4.1 requires Lemmas C.1–C.4 below.

Lemma C.1. Fix µ ∈Rd. Then,

(C.28)
∣∣∣∣∥z − µ∥ − ∥z∥+ µ′z

∥z∥

∣∣∣∣≤ 2min

(
∥µ∥2

∥z∥
,∥µ∥

)
for any z ∈Rd \ {0}.

PROOF OF LEMMA C.1. Fix z ∈ Rd \ D, with D := {tµ : t ∈ [0,1]}. Since the function t 7→ f(t) = ∥z − tµ∥ is then
continuous on [0,1] and differentiable on (0,1), the mean-value theorem ensures that there exists t ∈ (0,1) such that

∥z − µ∥ − ∥z∥+ z′µ

∥z∥
= f(1)− f(0) +

z′µ

∥z∥
=

µ′z

∥z∥
− µ′(z − tµ)

∥z − tµ∥
·
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By applying Lemma A.1, this yields∣∣∣∣∥z − µ∥ − ∥z∥+ µ′z

∥z∥

∣∣∣∣≤ ∥µ∥
∥∥∥∥ z

∥z∥
− z − tµ

∥z − tµ∥

∥∥∥∥≤ 2∥µ∥2

∥z∥
·

Since we also trivially have ∣∣∣∣∥z − µ∥ − ∥z∥+ µ′z

∥z∥

∣∣∣∣≤ ∣∣∥z − µ∥ − ∥z∥
∣∣+ |µ′z|

∥z∥
≤ 2∥µ∥,

we proved that (C.28) holds for any z ∈Rd \ D. The result then follows from continuity. □

The next lemma, which we state under the assumptions of Theorem 4.1, actually does not require any assumption on
the sequence (Qk). Throughout, we let Br stand for the open ball of radius r(> 0) centered at the origin of Rd.

Lemma C.2. Under the assumptions of Theorem 4.1, we have

(C.29) sup
µ∈BR

∣∣MPk
α,u(µ)− (1− c)MQk

α̃,ũ(µ)
∣∣≤ 2R

(
∥wk −w∥+Λk(BR) +

R

T
+Λk(BT )

)
,

for any T >R> 0 and any k ∈N. In particular,

(C.30) sup
µ∈BR

∣∣MPk
α,u(µ)− (1− c)MQk

α̃,ũ(µ)
∣∣→ 0

for any R> 0 as k→∞.

PROOF OF LEMMA C.2. Fix R> 0, µ ∈BR, and k ∈N. We have

MPk
α,u(µ) = (1− c)MQk

α,u(µ) + cMΛk
α,u(µ)

= (1− c)

∫
Rd

(
∥z − µ∥ − ∥z∥ − αu′µ

)
dQk(z)

+c

∫
Rd

(
∥z − µ∥ − ∥z∥ − αu′µ

)
dΛk(z)

= (1− c)

∫
Rd

(
∥z − µ∥ − ∥z∥

)
dQk(z)− αu′µ

+c

∫
Rd

(
∥z − µ∥ − ∥z∥

)
dΛk(z).

This allows us to write

MPk
α,u(µ) = (1− c)MQk

α̃,ũ(µ) + cw′µ+ c

∫
Rd

(
∥z − µ∥ − ∥z∥

)
dΛk(z).

Lemma C.1 entails that∣∣∣∣w′µ+

∫
Rd

(
∥z − µ∥ − ∥z∥

)
dΛk(z)

∣∣∣∣
≤
∣∣∣∣µ′w−

∫
Rd\{0}

µ′z

∥z∥
dΛk(z)

∣∣∣∣+ 2

∫
Rd\{0}

min

(
∥µ∥2

∥z∥
,∥µ∥

)
dΛk(z) + ∥µ∥Λk({0})

≤ ∥µ∥

{
∥wk −w∥+ 2

∫
Rd\{0}

min

(
∥µ∥
∥z∥

,1

)
dΛk(z) + Λk({0})

}
.
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Observe that ∫
Rd\{0}

min

(
∥µ∥
∥z∥

,1

)
dΛk(z)≤Λk(B∥µ∥ \ {0}) + ∥µ∥

∫
Rd\B∥µ∥

1

∥z∥
dΛk(z).

Fix an arbitrary T >R. Then,∫
Rd\B∥µ∥

1

∥z∥
dΛk(z) =

∫
Rd\BT

1

∥z∥
dΛk(z) +

∫
BT \B∥µ∥

1

∥z∥
dΛk(z)≤

1

T
+

Λk(BT )

∥µ∥
·

This implies that ∫
Rd\{0}

min

(
∥µ∥
∥z∥

,1

)
dΛk(z)≤Λk(BR \ {0}) + R

T
+Λk(BT ),

for any µ ∈BR, T >R and k. Consequently, we have

sup
µ∈BR

∣∣∣∣w′µ+

∫
Rd

(
∥z − µ∥ − ∥z∥

)
dΛk(z)

∣∣∣∣≤ 2R

(
∥wk −w∥+Λk(BR) +

R

T
+Λk(BT )

)
,

hence also (C.29), for any T >R and k. Now, it follows from (C.29) that

limsup
k→∞

sup
µ∈BR

∣∣MPk
α,u(µ)− (1− c)MQk

α̃,ũ(µ)
∣∣≤ 2R2

T
·

Because T was arbitrary, this establishes (C.30). □

Lemma C.3. Let (Qk) be a sequence of probability measures on Rd. Fix β ∈R and u ∈ Sd−1. If (Qk) converges weakly
to a probability measure Q, then

(C.31) sup
µ∈BR

∣∣MQk

β,u(µ)−MQ
β,u(µ)

∣∣→ 0

for any R> 0 as k→∞.

PROOF OF LEMMA C.3. Fix R> 0 and write

MQk

β,u(µ)−MQ
β,u(µ) =

∫
Rd

gµ(z)dQk(z)−
∫
Rd

gµ(z)dQ(z),

for all µ ∈Rd, where we let gµ(z) = ∥z − µ∥ − ∥z∥. The class of functions

ΓR = {gµ : µ ∈BR} ⊂C0(Rd)

is uniformly bounded by R. Further observe that, for any µ ∈Rd, we have

|gµ(z)− gµ(z
′)| ≤ 2∥z − z′∥

for all z, z′ ∈ Rd. It follows that ΓR is equicontinuous at every point: for any z ∈ Rd and ε > 0, there exists δ > 0 such
that |gµ(z)− gµ(z

′)|< ε for all z′ ∈Bδ(z) and µ ∈BR. Therefore, Theorem 2.2.8 from [2] entails that

sup
f∈ΓR

∣∣∣∣ ∫
Rd

f(z)dQk(z)−
∫
Rd

f(z)dQ(z)

∣∣∣∣→ 0

as k→∞. This yields

sup
µ∈BR

∣∣MQk

β,u(µ)−MQ
β,u(µ)

∣∣→ 0

as k→∞. □

The next result is a refinement of Lemma 5 in [27].
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Lemma C.4. Let P be a probability measure on Rd and fix u ∈ Sd−1. The objective function MP
1,u admits a minimum

over Rd if and only if P is supported on a halfline with direction −u, say, the halfline {z0−λu : λ≥ 0}. In this case, any
µ= z0 + λu, with λ≥ 0, minimizes MP

1,u over Rd.

PROOF OF LEMMA C.4. We first show that the infimum value of MP
1,u over Rd is given by

m∗ :=−
∫
Rd

(∥z∥+ u′z)dP (z).

To this end, observe that, for any t≥ 0,

MP
1,u(tu) =

∫
Rd

(∥z − tu∥ − ∥z∥)dP (z)− t.

Straightforward computations entail that, for all z ∈Rd,

∥z − tu∥ − ∥z∥ − t=− 2t(u′z + ∥z∥)
∥z − tu∥+ ∥z∥+ t

→−(u′z + ∥z∥)

as t→∞. Because ∥z − tu∥ − ∥z∥ − t≤ 0 for all z ∈Rd and t≥ 0, Fatou’s lemma entails that

(C.32) limsup
t→∞

MP
1,u(tu)≤−

∫
Rd

(u′z + ∥z∥)dP (z) =m∗.

If m∗ =−∞, then the infimum value of MP
1,u over Rd is −∞(=m∗). If m∗ >−∞, then observe that, for all µ ∈Rd,

(C.33) MP
1,u(µ)−m∗ =

∫
Rd

(∥z − µ∥+ u′(z − µ))dP (z)≥ 0.

It follows that, in all cases, m∗ is indeed the infimum value of MP
1,u over Rd.

Let us now prove the equivalence in the statement. Assume that MP
1,u admits a minimum over Rd. This implies that

m∗ is finite. Fix µ0 ∈Rd such that MP
1,u(µ0) =m∗. Then, (C.33) entails that ∥z−µ0∥+u′(z−µ0) = 0 P -almost surely.

This yields that P is supported on a halfline with direction −u.
Assume now that P is supported on the halfline L = {z0 − λu : λ ≥ 0}. For the moment, further assume that the

integral
∫
Rd(∥z∥ + u′z)dP (z) is finite. In particular, m∗ is finite as well. Thus, (C.33) entails that MP

1,u attains its
infimum value m∗ at any point µ such that ∥z − µ∥+ u′(z − µ) = 0 P -almost surely. In particular, this happens for any
µ ∈ {z0 + λu : λ≥ 0}. It follows that MP

1,u admits a minimum. Therefore, it remains to show that
∫
Rd(∥z∥+ u′z)dP (z)

is finite. For this purpose, it is enough to show

(C.34) sup
z∈L

(∥z∥+ u′z)<∞.

For any z ∈ L, say, z := z0 − λu, write

∥z∥+ u′z = ∥z0 − λu∥ − λ+ u′z0 =: ϕ(λ).

For any λ > 0, we have

∥z0 − λu∥ − λ=
∥z0∥2 − 2λu′z0
∥z0 − λu∥+ λ

→−u′z0,

as λ→∞. Consequently, we have limλ→+∞ ϕ(λ) = 0. Because the map λ 7→ ϕ(λ) is continuous over [0,∞), we deduce
that ϕ is bounded over [0,∞). This establishes (C.34) and concludes the proof. □

We can now prove Theorem 4.1.

PROOF OF THEOREM 4.1. (i) Let us assume, ad absurdum, that the sequence (∥µα,u(Pk)∥) does not diverge to ∞ as
k→∞, so that it admits a bounded subsequence, (µn) say. We may thus fix R> 0 such that ∥µn∥ ≤R for any n. Letting
(Qn) denote the corresponding subsequence of (Qk), observe that∣∣MQn

α̃,ũ(µ)
∣∣≤ (1 + α̃)∥µ∥
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for any µ ∈ Rd. On the one hand, the sequence (MQn

α̃,u(µn)) is bounded because (µn) is bounded. On the other hand,
denoting by (Pn) the subsequence of (Pk) corresponding to (µn) and (Qn), we have, for any µ ∈Rd,

(1− c)MQn

α̃,ũ(µn) ≤MPn
α,u(µn) +∆n(R)

≤MPn
α,u(µ) +∆n(R)

≤ (1− c)MQn

α̃,ũ(µ) +∆n(R) +∆n(∥µ∥),(C.35)

where we let, for any r > 0,

∆n(r) := sup
z∈Br

∣∣MPn
α,u(z)− (1− c)MQn

α̃,ũ(z)
∣∣.

Since

MQn

α̃,ũ(µ)≤ ∥µ∥
(
1− α̃

ũ′µ

∥µ∥

)
for any µ ∈Rd, we have

MQn

α̃,ũ(sũ)≤ s(1− α̃)

for any s≥ 0. Taking µ=Rũ in (C.35) thus yields

(C.36) MQn

α̃,ũ(µn)≤R(1− α̃) +
2∆n(R)

1− c
·

Lemma C.2 provides

(C.37) ∆n(R)≤ 2R

{
∥wn −w∥+Λn(BR) +

R

T
+Λn(BT )

}
for any T >R. Since 4/(1− c)≥ 1, it follows from (C.36)–(C.37) that

MQn

α̃,ũ(µn)≤
4R

1− c

{
(1− α̃) + ∥wn −w∥+Λn(BR) +

R

T
+Λn(BT )

}
.

Consequently, we have

limsup
n→∞

MQn

α̃,ũ(µn)≤
4R

1− c

{
(1− α̃) +

R

T

}
for any T >R. Because R can be arbitrarily large and α̃ > 1, then letting R,T →∞ such that R/T → 0, yields

limsup
n→∞

MQn

α̃,ũ(µn) =−∞.

This contradicts the fact that (MQn

α̃,ũ(µn)) is bounded.

(ii) Consider first the case under which Q is not supported on a halfline with direction −ũ. Assume, ad absurdum,
that the sequence (∥µα,u(Pk)∥) does not diverge to ∞ as k → ∞. It thus admits a bounded subsequence, (µn) say.
Up to extracting a further subsequence, we may assume that (µn) converges to some µ0 ∈ Rd. Denoting by (Pn) the
corresponding subsequence of (Pk), Lemmas C.2–C.3 entail that, for any µ ∈Rd,

(1− c)MQ
1,ũ(µn) =MPn

α,u(µn) + o(1)≤MPn
α,u(µ) + o(1) = (1− c)MQ

1,ũ(µ) + o(1).

Taking limits as n→∞ in both sides, continuity of MQ
1,ũ over Rd yields

MQ
1,ũ(µ0)≤MQ

1,ũ(µ)

for any µ ∈ Rd. It follows that µ0 is a minimizer of MQ
1,ũ. Because Q is not supported on a halfline with direction −ũ,

Lemma C.4 entails that M1,ũ(Q) admits no minimum over Rd, a contradiction. We deduce that ∥µα,u(Pk)∥ → ∞ as
k→∞.
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Second, consider the case under which there exists a bounded sequence (zk) such that, for all k, Qk is supported
on the halfline {zk − λũ : λ ≥ 0} and Λk is supported on the halfline {zk + λũ : λ ≥ rk} with rk → ∞. Because
∥zk∥/rk → 0, the support of Λk does not contain the origin of Rd for sufficiently large values of k. Denoting then
by Λzk,ũ the distribution of ũ′(Y − zk) when Y has distribution Λk , we have∫

Rd\{0}

z

∥z∥
dΛk(z) =

∫ ∞

rk

zk + λũ

∥zk + λũ∥
dΛzk,ũ(λ).

Thus, Lemma A.1 entails that ∥∥∥∥∫
Rd\{0}

z

∥z∥
dΛk(z)− ũ

∥∥∥∥
=

∥∥∥∥∫ ∞

rk

{
zk + λũ

∥zk + λũ∥
− λũ

∥λũ∥

}
dΛzk,ũ(λ)

∥∥∥∥
≤ 2∥zk∥

∫ ∞

rk

1

λ
dΛzk,ũ(λ)

≤ 2∥zk∥
rk

·

Because ∥zk∥/rk → 0, this entails that w = ũ. Recalling that

ũ=
αu+ cw

∥αu+ cw∥
,

this yields that u = ũ. Since α̃ = 1, we thus have c = (1 − α)/2. Because Pk is supported on a line with direction u,
Theorem 1 from [27] entails that any spatial quantile of order α in direction u for Pk writes as zk + ℓαu, where ℓα is
a (univariate) spatial quantile of order α in direction 1 for Pzk,u (equivalently, a standard quantile of order (1 + α)/2
for Pzk,u), with Pzk,u the distribution of u′(Z − zk) when Z has distribution Pk . This implies that the set Sα,u(Pk) of
spatial quantiles of order α in direction u for Pk satisfies

Sα,u(Pk)⊂ {zk + λu : λ ∈R}.

Because Pzk,u[(−∞, λ]] = 1− c= (1+ α)/2 for any λ ∈ [0, rk), we have

{zk + λu : 0≤ λ < rk} ⊂ Sα,u(Pk).

Since (Qk) is tight, there exists R> 0 such that

inf
k
Qk(BR)> 0.

In particular, since (zk) is bounded, there exists r∗ > 0 such that

inf
k
Qk

(
{zk + λu :−r∗ < λ≤ 0}

)
> 0.

This implies that Pzk,u[(−∞,−r∗]]< 1− c= (1+ α)/2 for any k, hence that

{zk + λu : 0≤ λ < rk} ⊂ Sα,u(Pk)⊂ {zk + λu :−r∗ < λ<∞}.

Therefore, µα,u(Pk), which, by definition, is the barycentre of Sα,u(Pk), satisfies

∥µα,u(Pk)− (zk − r∗u)∥ ≥ rk + r∗

2
·

It follows that ∥µα,u(Pk)∥→∞ as k→∞.
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(iii) Let us first show that (µα,u(Pk)) is bounded. To do that, we start by showing that there exist R> 0 and κ > 0 such
that

MQk

α̃,ũ(µ)> κ∥µ∥

for all k and µ ∈Rd \BR. We have

MQk

α̃,ũ(µ)

∥µ∥
=

∫
Rd

(
∥z − µ∥ − ∥z∥

∥µ∥

)
dQk(z)− α̃

ũ′µ

∥µ∥
·

Fix η ∈ (0,1/2) small enough to have (1 + α̃)(1 + 2η)/2< 1. Because (Qk) converges weakly, it is tight. In particular,
there exists R0 > 0 such that

inf
k
Qk(BR0)>

1 + α̃

2
(1 + 2η).

Write then ∫
Rd

(
∥z − µ∥ − ∥z∥

∥µ∥

)
dQk(z)

=

∫
Bη∥µ∥

(
∥µ∥ − 2µ′z/∥µ∥
∥z − µ∥+ ∥z∥

)
dQk(z)

+

∫
Rd\Bη∥µ∥

(
∥z − µ∥ − ∥z∥

∥µ∥

)
dQk(z)

≥
∫
Bη∥µ∥

(
∥µ∥ − 2∥z∥
∥µ∥+ 2∥z∥

)
dQk(z)−Qk

(
Rd \Bη∥µ∥

)
≥ 1− 2η

1 + 2η
Qk(Bη∥µ∥)−Qk

(
Rd \Bη∥µ∥

)
=

2

1+ 2η
Qk(Bη∥µ∥)− 1.

Letting R :=R0/η, it follows that, for any µ ∈Rd \BR, we have

MQk

α̃,ũ(µ)

∥µ∥
≥ 2

1 + 2η

(
Qk(BR0

)− 1 + α̃

2
(1 + 2η)

)
for all k. Letting

κ :=
2

1 + 2η

(
inf
k
Qk(BR0

)− 1 + α̃

2
(1 + 2η)

)
> 0,

we then have

MQk

α̃,ũ(µ)≥ κ∥µ∥

for all k and µ ∈Rd \BR. In particular, for any µ ∈Rd with ∥µ∥=R, we have

MPk
α,u(µ) ≥ (1− c)MQk

α̃,ũ(µ)− sup
µ∈B2R

∣∣MPk
α,u(µ)− (1− c)MQk

α̃,ũ(µ)
∣∣

≥ (1− c)κR− sup
µ∈B2R

∣∣MPk
α,u(µ)− (1− c)MQk

α̃,ũ(µ)
∣∣

>
(1− c)κR

2
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for all k large enough. In particular, we have MPk
α,u(µ)> 0 for all µ ∈Rd with ∥µ∥=R and all k large enough. Because

MPk
α,u(0) = 0, the convexity of MPk

α,u entails that, for all k large enough, we have MPk
α,u(µ)> 0 for all µ ∈ Rd such that

∥µ∥ ≥R. Since µα,u(Pk) is a minimizer of MPk
α,u, we must have µα,u(Pk) ∈BR for all k large enough. This shows that

the sequence (µα,u(Pk)) is bounded.
Now assume that Q is not supported on a line with direction ũ and let us show that µα,u(Pk)→ µα̃,ũ(Q) as k→∞.

To this end, consider an arbitrary subsequence of (µα,u(Pk)). Because it is bounded, it admits a further subsequence (µn)
converging in Rd, say to µ0. Denoting by (Pn) the corresponding subsequence of (Pk), Lemmas C.2–C.3 entail that, for
any µ ∈Rd, we have

(1− c)MQ
α̃,ũ(µn) =MPn

α,u(µn) + o(1)≤MPn
α,u(µ) + o(1) = (1− c)MQ

α̃,ũ(µ) + o(1).

Taking limits as n→∞ in both sides, the continuity of MQ
α̃,ũ over Rd yields

MQ
α̃,ũ(µ0)≤MQ

α̃,ũ(µ)

for any µ ∈ Rd. It follows that µ0 is a minimizer of MQ
α̃,ũ. Because Q is not concentrated on a line with direction ũ,

Theorem 1 in [27] entails that Q admits a unique minimizer of order α̃ in direction ũ, namely µα̃,ũ(Q). This implies that
µ0 = µα̃,ũ(Q). We thus proved that any subsequence of (µα,u(Pk)) admits a further subsequence converging to µα̃,ũ(Q).
We conclude that µα,u(Pk)→ µα̃,ũ(Q) as k→∞. □

Finally, we provide an alternative proof of Corollary 2.2 based on Theorem 4.1.

PROOF OF COROLLARY 2.2. First, let us show that

(C.38) BDP(µα,u;x1, . . . , xn)≤
⌈
n(1− α)

2

⌉
/n.

Fix ℓ= ⌈n(1− α)/2⌉. Letting m := 1
n−ℓ

∑n
i=ℓ+1 xi and denoting as δx the Dirac probability measure at x, consider the

sequence of probability measures

Pk :=
1

n

n∑
i=1

δ
y
(k)
i

,

where y
(k)
i =m+ ku for i= 1, . . . , ℓ and y

(k)
i = xi for i= ℓ+ 1, . . . , n. Define

Qk :=
1

n− ℓ

n∑
i=ℓ+1

δ
y
(k)
i

and Λk :=
1

ℓ

ℓ∑
i=1

δ
y
(k)
i

for all k. Letting c := ℓ/n, we then have Pk = (1− c)Qk + cΛk . Obviously, Λk(Br)→ 0 for any r > 0 as k→∞. Using
the notation of Theorem 4.1, we have w = u, hence

α̃=
α+ ℓ/n

1− ℓ/n
=

nα+ ⌈n(1− α)/2⌉
n− ⌈n(1− α)/2⌉

·

We consider two cases. (A) n(1−α)/2 is not an integer. Then, α̃ > 1, so that Theorem 4.1(i) implies that ∥µα,u(Pk)∥→
∞, which establishes (C.38). (B) n(1−α)/2 is an integer. Then, α̃= 1. Of course, the sequence (Qk) converges weakly
to Q :=Q1 since Qk =Q1 for any k. If xℓ+1, . . . , xn do not all belong to a halfline with direction −ũ=−u, then Part a)
of Theorem 4.1(ii) implies that ∥µα,u(Pk)∥→∞, which establishes (C.38). If xℓ+1, . . . , xn all belong to a halfline with
direction −u, then applying Part b) of Theorem 4.1(ii) with zk ≡m implies that ∥µα,u(Pk)∥ →∞, which establishes
again (C.38).

Now, let us show that

(C.39) BDP(µα,u;x1, . . . , xn)≥
⌈
n(1− α)

2

⌉
/n.

To this end, fix an arbitrary ℓ ∈ {1, . . . , n} and assume that there exists a sequence ({y(k)1 , . . . , y
(k)
n })k ⊂ Rd of samples

such that y(k)i ∈ {x1, . . . , xn} for all i= ℓ+ 1, . . . , n and all k, and

∥µα,u(x1, . . . , xn)− µα,u(y
(k)
1 , . . . , y(k)n )∥→∞
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as k→∞. In particular, we have

∥µα,u(y
(k)
1 , . . . , y(k)n )∥→∞

as k→∞. For all k, define the probability measure

Pk =
1

n

n∑
i=1

δ
y
(k)
i

.

Up to extracting subsequences, let us assume that each sequence (y
(k)
i )k either converges in Rd or exits any compact as

k→∞. Then, define

B :=
{
i ∈ {1, . . . , n} : (y(k)i )k converges in Rd

}
and U := {1, . . . , n} \B. For any k, let

Qk =
1

|B|
∑
i∈B

δ
y
(k)
i

, Λk =
1

|U |
∑
i∈U

δ
y
(k)
i

and wk :=

∫
Rd

z

∥z∥
dΛk(z).

Since (wk) is contained in the closed unit ball of Rd, up to extracting a further subsequence we may assume that (wk)
converges to some w ∈ Rd with ∥w∥ ≤ 1. Letting c := |U |/n, we have Pk = (1− c)Qk + cΛk , where (Qk) converges
weakly and Λk(Br) → 0 for any r > 0 as k → ∞. Therefore, Theorem 4.1(ii) entails that ∥αu + cw∥ ≥ 1 − c. In
particular, because ∥w∥ ≤ 1, we have α+ c≥ 1− c, hence c≥ (1− α)/2. Now observe that, because (y

(k)
i ) is bounded

for all i = ℓ + 1, . . . , n, we have |U | ≤ ℓ, i.e. c ≤ ℓ/n. This implies that ℓ ≥ n(1 − α)/2. Because ℓ ∈ N, this yields
ℓ≥ ⌈n(1− α)/2⌉. This establishes (C.39). □
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