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In a triangular array framework where n observations are randomly sam-
pled from a p-dimensional elliptical distribution with shape matrix Vn, we
consider the problem of testing the null hypothesis H0 : θθθ = θθθ0 against the
alternative hypothesis H1 : θθθ ̸= θθθ0, where θθθ is the (fixed) leading unit eigen-
vector of Vn and θθθ0 is a given unit p-vector. The dependence of the shape
matrix on the sample size allows us to consider challenging asymptotic sce-
narios in which the parameter of interest θθθ is unidentified in the limit, because
the ratio between both leading eigenvalues of Vn converges to one. We care-
fully study the corresponding limiting experiments under such weak identi-
fiability, and we show that these may be LAN or non-LAN. While earlier
work in the framework was strictly limited to Gaussian distributions, where
the study of local log-likelihood ratios could simply rely on explicit expres-
sions, our asymptotic investigation allows for essentially arbitrary elliptical
distributions. This requires original results on quadratic mean differentiable
families for triangular arrays of observations, that are likely to be of interest
in other models, too. Even in non-LAN experiments, our results enable us to
investigate, through Le Cam’s first and third lemmas, the asymptotic null and
non-null properties of multivariate rank tests. These nonparametric tests are
shown to exhibit an excellent behavior under weak identifiability: not only do
they maintain the target nominal size irrespective of the amount of weak iden-
tifiability, but they also keep their outstanding uniform efficiency properties
under such non-standard scenarios. In particular, Gaussian-score rank tests,
under arbitrarily weak identifiability, still uniformly dominate their paramet-
ric pseudo-Gaussian competitor in terms of asymptotic relative efficiencies.
Our theoretical results, that are the first ones to study rank tests in the tri-
angular array framework allowing for weak identifiability, are supported by
several Monte-Carlo exercises.

1. Introduction. Dimension reduction is nowadays a very classical topic in Statistics.
Among the various dimension reduction techniques, Principal Component Analysis (PCA)
remains by far the most commonly used. For a random p-vector X with arbitrary mean vector
and covariance matrix ΣΣΣ, it is well-known that the first principal component is obtained by
computing the projections θθθ′X of X onto the unit eigenvector θθθ associated with the largest
eigenvalue of ΣΣΣ. The remaining principal components are then obtained by projecting X
onto the other eigenvectors, ordered decreasingly according to their companion eigenvalues.
Obviously, in practice, the covariance matrix ΣΣΣ is usually unknown, so that one of the key
issues in PCA is to perform inference on the corresponding eigenvectors and eigenvalues.

The seminal paper Anderson (1963) provided asymptotic results for estimated eigenvec-
tors and eigenvalues of ΣΣΣ in the Gaussian case. Later, Tyler (1981, 1983) extended these
results to the broader elliptical case. Inference on the eigenvalues of ΣΣΣ is still a very im-
portant topic; see, among others, the recent papers Donoho, Gavish and Johnstone (2018),
Dörnemann and Dette (2025), Bernard and Verdebout (2024a,b), and the references therein.
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Inference on eigenvectors of covariance/scatter matrices is also a very popular topic: Hallin,
Paindaveine and Verdebout (2014) proposed efficient R-estimators for the eigenvectors of
scatter matrices, while Croux and Haesbroeck (2000), Hubert, Rousseeuw and Vanden Bran-
den (2005), and He et al. (2011) developed robust PCA methods. Recently, Johnstone and Lu
(2009), Han and Liu (2014), and Fan et al. (2022) considered inference on eigenvectors of ΣΣΣ
in the high-dimensional framework.

In the present work, we consider, in a general elliptical framework, inference on the leading
eigenvector θθθ, that is, the one associated with the largest eigenvalue of the corresponding
scatter matrix ΣΣΣ (all our results would actually apply to inference on any other eigenvector
of ΣΣΣ). More precisely, we consider the problem of testing H0 : θθθ = θθθ0 against H1 : θθθ ̸= θθθ0,
where θθθ0 is a given unit p-vector. While the emphasis in PCA is usually more on point
estimation, the testing problem above is of high practical relevance, too. For instance, it is of
paramount importance in “confirmatory PCA”, that is, when one wants to test that θθθ (or any
other eigenvector) coincides with an eigenvector obtained from an earlier real data analysis
(“historical data”) or with an eigenvector resulting from a theory or a model. In line with this,
tests for the null hypothesis H0 : θθθ = θθθ0 have been used, for instance, in Jackson (2005) to
analyze the concentration of a chemical component in a solution and in Sylvester, Kramer
and Jungers (2008) to study the geometric similarity among modern humans.

Denoting the sample covariance matrix as S(n) := (1/n)
∑n

i=1 (Xi − X̄(n))(Xi − X̄(n))′

(with X̄(n) := (1/n)
∑n

i=1Xi, as usual) and its largest eigenvalue as λ̂1, the textbook test for
this problem is the Anderson (1963) Gaussian likelihood ratio test, ϕA say, that rejects the
null hypothesis at asymptotic level α when

QA := n
(
λ̂1θθθ

′
0(S

(n))−1θθθ0 + λ̂−1
1 θθθ′0S

(n)θθθ0 − 2
)
>χ2

p−1,1−α,

where χ2
p−1,1−α stands for the upper α-quantile of the chi-square distribution with p − 1

degrees of freedom. Various extensions of this test have been proposed in the literature. To
mention only a few, Jolicoeur (1984) considered a small-sample version of this test, Flury
(1988) proposed an extension to a larger number of eigenvectors, Tyler (1981, 1983) robus-
tified the test to possible (elliptical) departures from multinormality, while Schwartzman,
Mascarenhas and Taylor (2008) considered extensions to the case of Gaussian random ma-
trices. Le Cam optimal tests for the same problem were obtained in Hallin, Paindaveine and
Verdebout (2010a). More precisely, Hallin, Paindaveine and Verdebout (2010a) first defined a
pseudo-Gaussian test ϕG that achieves asymptotically the target nominal size under any null
elliptical distribution with finite fourth-order moments, while keeping the same asymptotic
power as the Gaussian likelihood ratio test ϕA under multinormality. Motivated by invariance
arguments, Hallin, Paindaveine and Verdebout (2010a) further developed multivariate rank
tests, that in particular avoid any moment assumption. When based on a score function K ,
this rank test, ϕK say, rejects the null hypothesis at asymptotic level α when

QK :=
np(p+ 2)

Jp(K)

p∑
j=2

(
θ̃θθ
′
j S

(n)
K θθθ0

)2
>χ2

p−1,1−α,

where S
(n)
K is a signed-rank scatter matrix involving the score function K and where λ̂j

and θ̃θθj , j = 2, . . . , p are suitable estimators of the p− 1 smallest eigenvalues of the under-
lying shape matrix and of the corresponding unit eigenvectors, respectively; see Section 2
for details. When the corresponding population eigenvalues λ1, . . . , λp are fixed and satisfy
λ1 > λ2 ≥ λ3 ≥ . . . ≥ λp (the minimal condition under which θθθ is identifiable—up to an
unimportant sign), the above tests compare as follows:
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(a1) in the Gaussian case, the test statistics of ϕA and ϕG are asymptotically equivalent in
probability under the null hypothesis, hence also under sequences of contiguous alterna-
tives. The advantage of ϕG with respect to ϕA is that it is robust to non-normality under the
null hypothesis: it shows the target nominal size asymptotically under any null elliptical
distribution with finite fourth-order moments;

(b1) robustness of the rank test ϕK under the null hypothesis is actually even better: unlike
the pseudo-Gaussian test, the rank test still achieves asymptotically the target nominal size
even under infinite fourth-order moments;

(c1) rank tests combine the above “validity-robustness” (robustness in terms of Type I risk)
with “efficiency-robustness” (robustness in terms of Type II risk): in particular, denot-
ing as AREg(ϕa/ϕb) the asymptotic relative efficiency of ϕa with respect to ϕb under
the elliptical density g, the Chernoff–Savage result in Paindaveine (2006) entails that the
Gaussian-score rank test ϕKϕ1

(the one that achieves Le Cam optimality under Gaussian
distributions) satisfies

(1.1) AREg(ϕKϕ1
/ϕG)≥ 1

under any g with finite fourth-order moments, and that equality in (1.1) holds in the Gaus-
sian case only (see (2.6) below for details on ϕKϕ1

). As soon as the underlying elliptical
distribution is not Gaussian, thus, the Gaussian-score rank test strictly improves over its
pseudo-Gaussian competitor in terms of asymptotic relative efficiencies.

In the classical asymptotic scenario where eigenvalues remain fixed as the sample size di-
verges to infinity, thus, the pseudo-Gaussian test ϕG should be favoured over the Anderson
test ϕA in terms of validity-robustness, whereas rank tests, and in particular the Gaussian-
score rank test, should be favoured over ϕG in terms of both validity- and efficiency-
robustness.

As recently shown in Paindaveine, Remy and Verdebout (2020a) (hereafter, PRV20), how-
ever, another type of robustness is of high practical relevance, too. PRV20 proved that the
asymptotic equivalence between ϕG and ϕA in the Gaussian case (see (a1) above) does not
resist situations under which θθθ is weakly identified: more precisely, under triangular arrays
of Gaussian observations for which the ratio between both leading eigenvalues of the un-
derlying scatter matrix satisfies λn1/λn2 = 1 + O(n−1/2), the Anderson test ϕA becomes
extremely liberal (we also refer to Dümbgen (1995) for the behavior of likelihood ratio tests
under weak identifiability) whereas the pseudo-Gaussian test ϕG still shows asymptotically
the target null size (the terminology weak identifiability here reflects the fact that, in this
non-standard asymptotic scenario, the parameter of interest θθθ is not identified in the limit). In
other words, when λn1 and λn2 get “too close to each other”, ϕG remains an asymptotically
valid test while ϕA does not. In this sense, ϕG is robust to weak identifiability while ϕA is
not. In view of the dominance of rank tests over pseudo-Gaussian tests in standard asymp-
totic scenarios, an urgent question is then the following: “do points (b1)–(c1) above extend to
situations involving weak identifiability?” Answering this question is the main objective of
the present paper. More precisely, the questions we consider are the following ones:

(b2) Under general elliptical distributions, does the validity-robustness of the rank test ϕK

survive asymptotic scenarios involving weak identifiability?

(c2) If so, does the efficiency-robustness of the rank test ϕK survive such non-standard
asymptotic scenarios, still under general elliptical distributions? In particular, does the
Chernoff–Savage result in (1.1) still hold under weak identifiability?
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Answering these questions raises important technical challenges that go much further what
was considered in earlier works on the topic, including PRV20. While, as mentioned above,
the asymptotic behavior of the pseudo-Gaussian test ϕG was already studied in PRV20, all
non-null results obtained there on this test were strictly limited to multinormal distributions.
The reason is clear: it is only in that particular distributional framework that PRV20 investi-
gated the asymptotic structure of local log-likelihood ratios. However, deriving the non-null
asymptotic behaviors of the pseudo-Gaussian and rank tests under general elliptical distribu-
tions, which is obviously needed to explore whether or not the above Chernoff–Savage result
extends to scenarios involving weakly identifiability, requires studying local log-likelihood
ratios in the framework of non-Gaussian triangular arrays. To this end, the methodology used
in PRV20, that relies on explicit expressions of the corresponding multinormal likelihoods,
cannot be used. In the present work, we therefore adopt a much more general approach
that allows us to study the asymptotic behavior of local log-likelihood ratios under double-
asymptotic scenarios involving arbitrarily weak identifiability. This is done in particular by
applying an original result on quadratic mean differentiable families in a general triangular
array framework; see Proposition A.1 below. This allows us to characterize, under a general
elliptical framework, the resulting limiting experiments; these are LAN (Locally Asymptot-
ically Normal) or non-LAN, depending on the severity of weak identifiability. Even in non-
LAN cases, Le Cam’s first and third lemmas will allow us to derive the non-null asymptotic
behaviors of the pseudo-Gaussian and rank tests above.

Other challenging points that will be tackled for the first time relate to rank tests them-
selves. Due to the mutual dependence of ranks, studying the asymptotic behavior of rank
tests under weak identifiability requires suitable asymptotic representation results in triangu-
lar arrays of observations—this was not required when considering sign tests in Paindaveine,
Remy and Verdebout (2020b), as multivariate signs are mutually independent random vec-
tors. An even more delicate issue for rank tests relates to the estimation of nuisance parame-
ters. Typically, controlling the resulting “aligned” ranks is done by establishing an asymptotic
linearity property. Establishing such a property in the double-asymptotic scenarios we con-
sider here, however, is another key difficulty we will need to address. We will actually do so
by deriving a general asymptotic linearity result under triangular arrays of observations; see
Proposition A.2 below. The general results in Propositions A.1 and A.2 are likely to be of
interest in other contexts, too.

The paper is organized as follows. In Section 2, we define the pseudo-Gaussian test ϕG

and the rank tests ϕK . In Section 3, we first investigate the asymptotic behavior of local
log-likelihood ratios under single-spiked elliptical distributions and possible weak identifia-
bility. Then, we study the corresponding null and non-null asymptotic behaviors of both the
pseudo-Gaussian and rank tests. In Section 4, we perform Monte-Carlo exercises in order to
explore the finite-sample relevance (and check the correctness) of our asymptotic results. In
Section 5, we provide power-enhanced versions of our tests that, unlike their original ver-
sion, are consistent under any fixed alternative. In Section 6, we extend our null and non-null
asymptotic results from single-spiked spectra to much more general spectra (this is another
major improvement over PRV20, where all results were strictly restricted to single-spiked
spectra). Finally, we conclude the paper in Section 7, where we also briefly discuss perspec-
tives for future research. In an appendix, we provide both aforementioned general results,
that allow us to study the asymptotic behavior of local log-likelihood ratios in a triangular
array framework (Proposition A.1) and to control aligned ranks under weak identifiability
(Proposition A.2). All proofs are deferred to the supplement Paindaveine, Peralvo Maroto
and Verdebout (2025).
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For the sake of convenience, we introduce here some notation that will be used through-
out the paper. We will denote as Sp−1 := {x ∈ Rp : ∥x∥2 = x′x = 1} the unit hypersphere
of Rp. Since unit eigenvectors are at best defined up to a sign, we will consider the “pos-
itive” hemisphere Sp−1

+ that collects the vectors in Sp−1 whose first non-zero component
is positive. Throughout, Ip will stand for the p × p identity matrix, and diag(ℓ1, . . . , ℓk)
will stand for the k × k diagonal matrix with diagonal entries ℓ1, . . . , ℓk. For a p × p ma-
trix A, the quantities vec (A) and vech (A) will respectively denote the vector obtained
by stacking the columns of A on top of each other and the vector obtained by doing the
same operation but keeping only the diagonal and upper-diagonal entries of A. We will
write Jp := vec (Ip)vec

′(Ip). Also, Kp will be the p2 × p2 commutation matrix, that is
such that Kpvec (A) = vec (A′). For a symmetric positive semi-definite matrix A, the ma-
trix A1/2 will stand for its symmetric square root and the matrix A−1/2 will then be the in-
verse of this symmetric square root. The determinant of A will be denoted as |A|. For a p×p
scatter matrix ΣΣΣ (that is, for a p× p symmetric positive definite matrix ΣΣΣ), the correspond-
ing scale is σ = |ΣΣΣ|1/(2p) and the corresponding shape matrix is V =ΣΣΣ/|ΣΣΣ|1/p =ΣΣΣ/σ2. As
already mentioned, χ2

p−1,1−α is the quantile of order 1 − α of the chi-square distribution
with p− 1 degrees of freedom. We write I[A] for the indicator function of A. All determin-
istic and stochastic convergences will be as the sample size n diverges to infinity (this will
include o and O statements, as well as oP and OP ones).

2. The pseudo-Gaussian and rank tests. In the rest of the paper, we focus on the prob-
lem of testing H0 : θθθ = θθθ0 against H1 : θθθ ̸= θθθ0, where θθθ is the eigenvector in Sp−1

+ associated
with the largest eigenvalue of a scatter matrix ΣΣΣn, or equivalently of the corresponding shape
matrix Vn, and where θθθ0 ∈ Sp−1

+ is fixed. We consider this problem within sequences of el-
liptical models indexed by a location parameter µµµ ∈Rp, a sequence of scatter matrices (ΣΣΣn),
and a radial density g1; see (3.1) below for details. We now precisely define the pseudo-
Gaussian and rank tests we will study in Section 3.

We start with rank tests. Based on a random sample Xn1, . . . ,Xnn, the rank test ϕK from
Hallin, Paindaveine and Verdebout (2010a), which results from the general methodology we
will describe around (A.9), rejects the null hypothesis at asymptotic level α when

(2.1) QK :=
np(p+ 2)

Jp(K)

p∑
j=2

(
θ̃θθ
′
j S

(n)
K θθθ0

)2
>χ2

p−1,1−α,

where Jp(K) and S
(n)
K are respectively a normalizing constant and a signed-rank scatter

matrix defined properly below and where θ̃θθ2, . . . , θ̃θθp are defined recursively through

(2.2) θ̃θθj := sj
(Ip − θθθ0θθθ

′
0 −

∑j−1
h=2 θ̃θθhθ̃θθ

′
h)θ̂θθj,Tyler

∥(Ip − θθθ0θθθ
′
0 −

∑j−1
h=2 θ̃θθhθ̃θθ

′
h)θ̂θθj,Tyler∥

;

here, sj ∈ {−1,1} is such that θ̃θθj ∈ Sp−1
+ , and summation over an empty collection of indices

being defined as zero). These θ̃θθj’s are thus obtained from a Gram–Schmidt orthogonalization
of θθθ0, θ̂θθ2,Tyler, . . . , θ̂θθp,Tyler∈ Sp−1

+ , where

V̂Tyler = (θ̂θθ1,Tyler . . . θ̂θθp,Tyler)Λ̂ΛΛTyler(θ̂θθ1,Tyler . . . θ̂θθp,Tyler)
′

= (θ̂θθ1,Tyler . . . θ̂θθp,Tyler)diag(λ̂1,Tyler, . . . , λ̂p,Tyler)(θ̂θθ1,Tyler . . . θ̂θθp,Tyler)
′,

with λ̂1,Tyler > . . . > λ̂p,Tyler, is the spectral decomposition of the Tyler (1987) estimator
of shape V̂Tyler computed with respect to the Hettmansperger and Randles (2002) affine-
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equivariant median µ̂µµn of Xn1, . . . ,Xnn; to be more specific, V̂Tyler is the symmetric positive
definite p× p matrix with unit determinant satisfying

p

n

n∑
i=1

(Xni − µ̂µµn)(Xni − µ̂µµn)
′

(Xni − µ̂µµn)V̂
−1
Tyler(Xni − µ̂µµn)

= V̂Tyler.

With this notation, a natural estimator of the shape matrix Vn under the null hypothe-
sis is Ṽn := θ̃θθ0Λ̂ΛΛTylerθ̃θθ

′
0, with θ̃θθ0 := (θθθ0 θ̃θθ2 . . . θ̃θθp). The signed-rank covariance matrix S

(n)
K

in (2.1) is then

(2.3) S
(n)
K :=

1

n

n∑
i=1

K

(
Rni(µ̂µµn,Ṽn)

n+ 1

)
Uni(µ̂µµn,Ṽn)U

′
ni(µ̂µµn,Ṽn),

where we wrote Rni(µµµ,V) for the rank of dni(µµµ,V) := ∥V−1/2(Xni − µµµ)∥ among
dn1(µµµ,V), . . . , dnn(µµµ,V) and Uni(µµµ,V) := V−1/2(Xni − µµµ)/dni(µµµ,V) for the “standard-
ized spatial sign” of the observation Xni with respect to µµµ; see, e.g., Oja (2010). These ranks
and signs together form the maximal invariant associated with a group of monotone radial
transformations from µµµ (more precisely, they are asymptotically equivalent in probability to
this maximal invariant); see Hallin and Paindaveine (2006) for details on this group. When
deriving asymptotic results, we will assume that K satisfies the following mild assumption.

ASSUMPTION (A). The score function K : (0,1)→R+

(A1) is continuous and square-integrable,
(A2) can be expressed as the difference of two monotone increasing functions, and
(A3) is normalized so that

∫ 1
0 K(u)du= p.

Optimality at a target radial density f1 is achieved by choosing a score function K =Kf1

defined by Kf1(u) = F̃−1
1p (u)φf1(F̃

−1
1p (u)); see the beginning of Section 3 for the definition

of the functions φf1 and F̃1p. For score functions K,K1 and K2 satisfying Assumption (A),
we let

(2.4) Jp(K1,K2) := E[K1(U)K2(U)] and Jp(K) := Jp(K,K),

where U stands for a random variable that is uniformly distributed over (0,1). We also let

(2.5) Jp(K,f1) := Jp(K,Kf1) and Jp(f1) = Jp(Kf1 ,Kf1)

for score functions achieving optimality at f1 (it is only when using score functions asso-
ciated to a radial density f1 that the dependence on p needs to be stressed in the nota-
tion, but we will still use the notation in (2.4) throughout). Classical score functions sat-
isfying Assumption (A) include the power score functions K(u) = p(a + 1)ua (a ≥ 0),
with Jp(K) = p2(a+ 1)2/(2a+ 1); a = 0, a = 1 and a = 2 provide the Laplace (or sign),
Wilcoxon, and Spearman scores, respectively. An important example of score functions Kf1

is that of normal scores (also called van der Waerden scores) obtained when f1 = ϕ1 is the
radial density associated with p-variate multinormal distributions, for which

(2.6) Kϕ1
(u) = Ψ−1

p (u) and Jp(ϕ1) = p(p+ 2),

where Ψp denotes the chi-square distribution function with p degrees of freedom. If f1 is
rather the radial density associated with p-variate elliptical t distributions with ν degrees of
freedom, then

Kf1(u) =
p(p+ ν)G−1

p,ν(u)

ν + pG−1
p,ν(u)

and Jp(f1) =
p(p+ 2)(p+ ν)

p+ ν + 2
,
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where Gp,ν stands for the Fisher–Snedecor distribution function with p and ν degrees of
freedom. In standard asymptotic scenarios where eigenvalues are fixed (i.e., scenarios that
do not involve weak identifiability), this test is known to be locally asymptotically optimal
(more precisely, locally asymptotically most stringent) under radial density f1; see Hallin,
Paindaveine and Verdebout (2010a).

The second test we will consider is the pseudo-Gaussian test ϕG that results from the
general methodology we will describe around (A.8). This test rejects the null hypothesis at
asymptotic level α when

(2.7) QG :=
n

(1 + κ̂n)λ̂n1

p∑
j=2

λ̂−1
nj (θ̃θθ

′
jS

(n)θθθ0)
2 >χ2

p−1,1−α,

where λ̂n1, . . . , λ̂np are the eigenvalues of S(n) = 1
n

∑n
i=1(Xni − X̄(n))(Xni − X̄(n))′

and where θ̃θθ2, . . . , θ̃θθp are obtained via the Gram–Schmidt procedure in (2.2) applied here
to θθθ0, θ̂θθ2, . . . , θ̂θθp, where θ̂θθj is the eigenvector of S(n) in Sp−1

+ associated with the eigen-
value λ̂nj . The quantity κ̂n in (2.7) is defined as

κ̂n :=
p
{

1
n

∑n
i=1 d

4
ni(X̄

(n),S(n))
}

(p+ 2)
{

1
n

∑n
i=1 d

2
ni(X̄

(n),S(n))
}2 − 1;

it is a consistent estimator of the kurtosis coefficient κp(g1) of the elliptical distribution with
location centre µµµ, scatter matrix ΣΣΣ and radial density g1, defined as

κp(g1) :=
pEp(g1)

(p+ 2)D2
p(g1)

− 1,

with Dp(g1) := E[d2n1(µµµ,ΣΣΣ)] and Ep(g1) := E[d4n1(µµµ,ΣΣΣ)] (the value of κp(g1) does not de-
pend on µµµ, nor on ΣΣΣ, which justifies the notation). Obviously, existence of κp(g1) requires
finite fourth-order moments.

The asymptotic behavior of ϕG under weak identifiability was already studied in PRV20,
but all non-null results there focused on the simple Gaussian case only. It is of course of
interest, however, to know what is the non-null behavior of this test away from the Gaussian
case, particularly so under heavy tails. An investigation of the asymptotic properties of the
rank test ϕK is even more urgent; indeed, no result on the asymptotic behavior of this test is
available, neither under the null hypothesis nor under local alternatives, even in the Gaussian
case. In the next section, we therefore conduct a systematic study, under weak identifiability
and in the general elliptic case, of the asymptotic behaviors of ϕK and ϕG, both under the
null hypothesis and under suitable local alternatives.

3. Asymptotics in the single-spiked case. In the present section, we state our main
asymptotic results under the single-spiked spectra that were considered in PRV20 (the ex-
tension to more general spectra will be conducted in Section 6 below). We start by properly
providing the assumptions under which the various results will be obtained. Consider tri-
angular arrays of elliptically symmetric observations Xni, i = 1, . . . , n, n = 1,2, . . ., where
Xn1, . . . ,Xnn form a random sample from the distribution that admits the density (with re-
spect to the Lebesgue measure on Rp)

(3.1) fµµµ,ΣΣΣn,g1(x) :=
cp,g1

|ΣΣΣn|1/2
g1

(√
(x−µµµ)′ΣΣΣ−1

n (x−µµµ)

)
, x ∈Rp,

where µµµ ∈ Rp is a location parameter, ΣΣΣn := ξ(Ip + rnvθθθθθθ
′), with ξ > 0 and θθθ ∈ Sp−1

+ , is a
sequence of scatter matrix parameters, g1 is a radial density, and cp,g1(> 0) is a normalizing



8

constant. Letting µℓ,h :=
∫∞
0 rℓh(r)dr, we assume throughout that g1 belongs to the class

F1 :=

{
g1 :R+

0 →R+ such that µp−1,g1 <∞ and
1

µp−1,g1

∫ 1

0
rp−1g1(r)dr =

1

2

}
of standardized radial densities (we will explain the nature of the standardization below).
Above, (rn) is a positive real sequence and v is a positive real number (we see rn as a rate
and v as an intensity parameter that governs the signal strength for any fixed rate rn; see the
next paragraph). The parameter ξ is an overall scale factor. The resulting hypothesis will be
denoted as P(n)

µµµ,ξ,θθθ,rn,v,g1
.

We factorize the scatter parameter ΣΣΣn into σ2
nVn, where

σn := |ΣΣΣn|1/(2p) =
√

ξ(1 + rnv)
1/(2p)

is a scale parameter (with values in R+
0 ) and

Vn :=ΣΣΣn/σ
2
n := (1 + rnv)

−1/p(Ip + rnvθθθθθθ
′)

is a shape parameter (with values in the collection of symmetric positive definite p× p ma-
trices with unit determinant). Such a factorization is natural in the PCA context we consider
since ΣΣΣn and Vn share the same eigenvectors. The shape matrix Vn has eigenvalues

(a) λn1,Vn
= (1+ rnv)

(p−1)/p and (b) λn2,Vn
= · · ·= λnp,Vn

= (1+ rnv)
−1/p,

and the corresponding eigenspaces are (a) the vectorial line spanned by θθθ and (b) its orthog-
onal complement in Rp. Consequently, the considered triangular array of elliptical random
vectors has a single-spike structure, in the sense of Donoho, Gavish and Johnstone (2018)
or Banerjee and Ma (2022). The direction of the spike is θθθ and its strength is driven by rnv.
When rn ≡ 1 for any n, the ratio between the two largest eigenvalues of Vn (or equivalently,
of ΣΣΣn) is 1 + v for any n, so that the leading eigenvector θθθ remains identified in the limit
as n diverges to infinity. In contrast, if (rn) is o(1), then the ratio between the two largest
eigenvalues of Vn converges to one, and θθθ is no longer identified in the limit; we then say
that θθθ is weakly identified.

Under P
(n)
µµµ,ξ,θθθ,rn,v,g1

, the Mahalanobis distances dni(µµµ,Vn), i = 1, . . . , n, are i.i.d, with
density and distribution functions given by

(3.2) r 7→ 1

σn
g̃1p

(
r

σn

)
:=

1

σn
(µp−1,g1)

−1

(
r

σn

)p−1

g1

(
r

σn

)
I[r > 0]

and

(3.3) r 7→ G̃1p

(
r

σn

)
:=

∫ r/σn

0
g̃1p(s)ds,

respectively. The standardization of g1 above is such that the density in (3.2) has median σn,
a constraint that properly identifies ξ and g1 without requiring any moment assumption; see
Hallin and Paindaveine (2006) for a discussion. Under the same hypothesis, the multivariate
signs Uni(µµµ,Vn), i= 1, . . . , n, are i.i.d. uniform over the unit hypersphere Sp−1 in Rp, and
they are independent of the Mahalanobis distances dni(µµµ,Vn), i= 1, . . . , n.

Achieving optimality at a fixed value f1 of g1 will require some mild regularity conditions
on f1: we need to impose that f1 belongs to the collection Fa

1 of absolutely continuous
densities in F1 such that

(3.4) Jp(f1) =

∫ 1

0
r2φ2

f1(r)f̃1p(r)dr <∞,
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where φf1 :=−ḟ1/f1 involves the a.e. derivative ḟ1 of f1 (note that the integral expression
in (3.4) agrees with the definition of Jp(f1) in (2.5)). Finally, define the collection

F4
1 :=

{
g1 ∈ F1 :

∫ ∞

0
r4g̃1p(r)dr <∞

}
=
{
g1 ∈ F1 : µp+3,g1 <∞

}
of radial densities for which the densities defined in (3.2), hence also the corresponding el-
liptical densities in (3.1), have finite fourth-order moments. Since both the pseudo-Gaussian
and rank tests are invariant under translations and homothetic transformations, that is, un-
der transformations of the form (Xn1, . . . ,Xnn) 7→ (Xn1 + t, . . . ,Xnn + t) (with t ∈ Rp)
and (Xn1, . . . ,Xnn) 7→ (µµµ + a(Xn1 − µµµ), . . . ,µµµ + a(Xnn − µµµ)) (with a > 0), we may as-
sume without loss of generality that µµµ=000 and ξ = 1. Consequently, we focus in the sequel
on P

(n)
θθθ,rn,v,f1

:= P
(n)
000,1,θθθ,rn,v,f1

. We will then simply write dni(Vn), Uni(Vn) and Rni(Vn)

rather than dni(000,Vn), Uni(000,Vn) and Rni(000,Vn).
Our first aim is to study the asymptotic behavior of local log-likelihood ratios of the form

Λn := log
dP

(n)
θθθ0+νnτττn,rn,v,f1

dP
(n)
θθθ0,rn,v,f1

,

where (νn) is a suitable positive real sequence and where (τττn) is a bounded sequence in Rp

such that

(3.5) τττ ′nθθθ0 =−νn
2
∥τττn∥2 for any n;

the constraint (3.5) ensures that θθθ0 + νnτττn is a unit p-vector, hence is an admissible per-
turbation of θθθ0. The asymptotic behavior of the log-likelihood ratio Λn is described in the
following result (see Section S.1 of the supplement for a proof that crucially relies on our
general result in Proposition A.1).

THEOREM 3.1. Fix θθθ0 ∈ Sp−1
+ , v > 0, a positive sequence (rn), and f1 ∈ Fa

1 . Then,
writing dni := dni(Vn) and Uni :=Uni(Vn), we have the following (where, in each case,
(τττn) is a bounded sequence in Rp such that (3.5) holds):

(i) if rn ≡ 1, then, with νn = 1/
√
n,

∆∆∆
(n)
f1

:=
v√
1 + v

√
n(Ip − θθθ0θθθ

′
0)

(
1

n

n∑
i=1

dni
σn

φf1

(
dni
σn

)
UniU

′
ni − Ip

)
θθθ0

and

ΓΓΓf1 =
Jp(f1)v

2

p(p+ 2)(1 + v)
(Ip − θθθ0θθθ

′
0),

we have that, under P(n)
θθθ0,rn,v,f1

, Λn = τττ ′n∆∆∆
(n)
f1

− 1
2τττ

′
nΓΓΓf1τττn+oP(1) and that∆∆∆(n)

f1
is asymp-

totically normal with mean zero and covariance matrix ΓΓΓf1 ;
(ii) if rn is o(1) with

√
nrn →∞, then, with νn = 1/(

√
nrn),

∆∆∆
(n)
f1

:= v
√
n(Ip − θθθ0θθθ

′
0)

(
1

n

n∑
i=1

dni
σn

φf1

(
dni
σn

)
UniU

′
ni − Ip

)
θθθ0

and

ΓΓΓf1 =
Jp(f1)v

2

p(p+ 2)
(Ip − θθθ0θθθ

′
0),
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we still have that, under P(n)
θθθ0,rn,v,f1

, Λn = τττ ′n∆∆∆
(n)
f1

− 1
2τττ

′
nΓΓΓf1τττn + oP(1) and that ∆∆∆(n)

f1
is

asymptotically normal with mean zero and covariance matrix ΓΓΓf1 ;
(iii) if rn = 1/

√
n, then, with νn ≡ 1,

Λn = τττ ′n

[
v
√
n

(
1

n

n∑
i=1

dni
σn

φf1

(
dni
σn

)
UniU

′
ni − Ip

)(
θθθ0 +

1

2
τττn

)]
(3.6)

−Jp(f1)v
2

2p(p+ 2)

(
∥τττn∥2 −

∥τττn∥4

4

)
+ oP(1)

under P(n)
θθθ0,rn,v,f1

, where, if τττn = τττ + o(1), then

τττ ′n
√
n

(
1

n

n∑
i=1

dni
σn

φf1

(
dni
σn

)
UniU

′
ni − Ip

)(
θθθ0 +

1

2
τττn

)
is asymptotically normal with mean zero and covariance matrix

Jp(f1)

p(p+ 2)

(
∥τττ∥2 − ∥τττ∥4

4

)
;

(iv) if rn = o(1/
√
n), then, even with νn ≡ 1, we have that Λn = oP(1) under P(n)

θθθ0,rn,v,f1
.

It follows from Theorem 3.1 that in regime (i) (rn ≡ 1) and in regime (ii) (rn is o(1) with√
nrn →∞), the considered sequence of models is LAN, with central sequence

(3.7) ∆∆∆
(n)
f1

=

√
nv√

1 + δv
(Ip − θθθ0θθθ

′
0)

(
1

n

n∑
i=1

dni
σn

φf1

(
dni
σn

)
UniU

′
ni − Ip

)
θθθ0

and Fisher information matrix

(3.8) ΓΓΓf1 =
Jp(f1)v

2

p(p+ 2)(1 + δv)
(Ip − θθθ0θθθ

′
0),

where δ = 1 in regime (i) and δ = 0 in regime (ii). The situation in regime (iii) (rn = 1/
√
n)

is much less standard: indeed, the sequence of experiments there is neither LAN nor LAMN
(Locally Asymptotically Mixed Normal), and the stochastic expansion of the local log-
likelihood ratio in (3.6) is not a LAQ (Locally Asymptotically Quadratic) one. Nevertheless,
Theorem 3.1(iii) and Le Cam’s first lemma (see, e.g., Lemma 6.4 in van der Vaart (1998))
entail that P(n)

θθθ0,1/
√
n,v,f1

and P
(n)

θθθ0+τττn,1/
√
n,v,f1

are mutually contiguous. It is remarkable that
fixed alternatives, that is alternatives associated with νn ≡ 1, are contiguous to the null hy-
pothesis (the severe weak identifiability in regime (iii) explains that this is possible). Finally,
in regime (iv), local log-likelihood ratios converge in probability to zero even for the most se-
vere alternatives that can be considered (that is, the fixed alternatives associated with νn ≡ 1),
so that no test will be able to detect even fixed alternatives in this case. Intuitively, the weak
identifiability is so severe in regime (iv) that the considered inference problem is too difficult
to allow for a non-trivial solution.

Now, we turn our attention to the pseudo-Gaussian and rank tests described in Section 2
and aim at deriving their asymptotic behavior, both under the null hypothesis and under
suitable local alternatives. Theorem 3.1 will obviously be a key result to derive the asymptotic
powers of these tests under the contiguous alternatives identified in regimes (i)–(iv). The
following result, which was proved in PRV20 provides the asymptotic null behavior of the
pseudo-Gaussian test.
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PROPOSITION 3.1. Fix θθθ0 ∈ Sp−1
+ , v > 0, a bounded positive sequence (rn), and g1 ∈

F4
1 . Then, under P

(n)
θθθ0,rn,v,g1

, the test statistic QG in (2.7) is aymptotically chi-square with
p− 1 degrees of freedom.

It follows that ϕG is robust to weak identifiability under any elliptical distribution that has
finite fourth-order moments. The next result describes the asymptotic behavior of this test
under the contiguous alternatives associated with the various regimes of Theorem 3.1 (see
Section S.1 of the supplement for a proof).

THEOREM 3.2. Fix θθθ0 ∈ Sp−1
+ , v > 0 and g1 ∈ F4

1 ∩Fa
1 . Then, we have the following (in

each case, (τττn) is a sequence in Rp that satisfies (3.5) and that converges to τττ ):

(i) if rn ≡ 1, then, under P
(n)

θθθ0+τττn/
√
n,rn,v,g1

, QG is asymptotically chi-square with p − 1

degrees of freedom and non-centrality parameter

v2

(1 + κp(g1))(1 + v)
∥τττ∥2;

(ii) if rn = o(1) with
√
nrn →∞, then, under P(n)

θθθ0+τττn/(
√
nrn),rn,v,g1

, QG is asymptotically
chi-square with p− 1 degrees of freedom and non-centrality parameter

v2

1 + κp(g1)
∥τττ∥2;

(iii) if rn = 1/
√
n, then, under P(n)

θθθ0+τττn,rn,v,g1
, QG is asymptotically chi-square with p− 1

degrees of freedom and non-centrality parameter

(3.9)
v2

16(1 + κp(g1))
∥τττ∥2(4− ∥τττ∥2)(2− ∥τττ∥2)2.

(iv) if rn = o(1/
√
n), then, under under P

(n)
θθθ0+τττn,rn,v,g1

, QG is asymptotically chi-square
with p− 1 degrees of freedom.

While the asymptotic behavior of the pseudo-Gaussian test statistic QG is rather standard
in regimes (i) and (ii), it is highly non-standard in regime (iii), with a non-centrality parame-
ter that is not monotonic in ∥τττ∥. In regime (iv), QG remains (central) chi-square with p− 1
degrees of freedom under fixed alternatives, which is in line with the fact that, from Theo-
rem 3.1(iv), no test can detect even the most severe alternatives in this challenging regime.

We now turn to the asymptotic behavior of the rank test ϕK , which is much more delicate
since it involves the asymptotic representation of signed-rank statistics in the context of weak
identifiability. First rewrite the test statistic QK in (2.1) as

QK =
np(p+ 2)

Jp(K)

p∑
j=2

(
θ̃θθ
′
j S

(n)
K θθθ0

)2
=

np(p+ 2)

Jp(K)
θθθ′0S

(n)
K (Ip − θθθ0θθθ

′
0)S

(n)
K θθθ0

=
p(p+ 2)

Jp(K)
∥T(n)

K ∥2,
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where we let T(n)
K :=

√
n(Ip − θθθ0θθθ

′
0)S

(n)
K θθθ0. An important step to study the asymptotic be-

havior of the rank test ϕK is to obtain an asymptotic representation result for T(n)
K that holds

for any sequence (rn). This actually requires modifying the estimator (µ̂µµn, Ṽn = θ̃θθ0Λ̂ΛΛTylerθ̃θθ
′
0)

of (µµµ,Vn) introduced in Section 2 so that it is (or more precisely, so that its vectorized
form is) locally and asymptotically discrete in the following sense; see, e.g., Definition 4.3
in Kreiss (1987) or Assumption (B3) in Hallin, Paindaveine and Verdebout (2010a).

DEFINITION 3.1. A sequence of statistics Tn with values in Rk is locally and asymp-
totically discrete (with respect to the standard root-n rate) if and only if, for all c > 0, there
exists M = M(c) > 0 such that the number of possible values of Tn in balls of the form
{t ∈Rk :

√
n∥t− t0∥ ≤ c} is bounded by M , uniformly as n→∞.

In other words, the estimator (µ̂µµn, Ṽn) should be discretized so that it only takes a bounded
number of distinct values in balls with O(n−1/2) radius centered at (µµµ,Vn). This discretiza-
tion has no practical consequences for fixed n since the discretization radius can be taken
arbitrarily large; see page 2467 in Ilmonen and Paindaveine (2011) for more details. Such a
discretization is thus a purely technical requirement that is needed to establish asymptotic re-
sults, and we will tacitly assume in the sequel that (µ̂µµn, Ṽn) has indeed been discretized. We
then have the following asymptotic representation result (see Section S.1 of the supplement
for a proof).

PROPOSITION 3.2. Fix θθθ0 ∈ Sp−1
+ , v > 0, a bounded positive sequence (rn), and g1 ∈

Fa
1 , and let Assumption (A) hold. Let T(n)

K,g1
:=

√
n(Ip − θθθ0θθθ

′
0)S

(n)
K,g1

θθθ0, with

(3.10) S
(n)
K,g1

:=
1

n

n∑
i=1

K

(
G̃1p

(
dni(Vn)

σn

))
Uni(Vn)U

′
ni(Vn),

where G̃1p was defined in (3.3). Then, T(n)
K =T

(n)
K,g1

+ oP(1) under P(n)
θθθ0,rn,v,g1

.

This result directly entails that, for any bounded sequence (rn),

QK =
p(p+ 2)

Jp(K)
∥T(n)

K,g1
∥2 + oP(1)

under P(n)
θθθ0,rn,v,g1

. This asymptotic equivalence in probability, that thus holds in all regimes
(i)–(iv) from Theorem 3.1, greatly simplifies the study of the asymptotic behavior of the
test ϕK under weak identifiability. The following result provides the null asymptotic behavior
of this test (see Section S.1 of the supplement for a proof).

THEOREM 3.3. Fix θθθ0 ∈ Sp−1
+ , v > 0, a bounded positive sequence (rn), and g1 ∈ Fa

1 ,

and let Assumption (A) hold. Then, under P
(n)
θθθ0,rn,v,g1

, the test statistic QK is asymptotically
chi-square with p− 1 degrees of freedom.

It follows from Theorem 3.3 that the rank test ϕK is asymptotically robust to weak identi-
fiability, without any moment assumption on the underlying elliptical distribution. To check
that such a strong validity-robustness is not obtained at the expense of power, we derive next
the asymptotic behavior of ϕK under the same local alternatives as in Theorem 3.2. We have
the following result (see again Section S.1 of the supplement for a proof).
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THEOREM 3.4. Fix θθθ0 ∈ Sp−1
+ , v > 0 and g1 ∈ Fa

1 , and let Assumption (A) hold. Then,
we have the following (in each case, (τττn) is a sequence in Rp that satisfies (3.5) and that
converges to τττ ):

(i) if rn ≡ 1, then, under P
(n)

θθθ0+τττn/
√
n,rn,v,g1

, the test statistic QK is asymptotically non-
central chi-square with p− 1 degrees of freedom and non-centrality parameter

J 2
p (K,g1)v

2

Jp(K)p(p+ 2)(1 + v)
∥τττ∥2;

(ii) if rn = o(1) with
√
nrn →∞, then, under P(n)

θθθ0+τττn/(
√
nrn),rn,v,g1

, QK is asymptotically
non-central chi-square with p− 1 degrees of freedom and non-centrality parameter

J 2
p (K,g1)v

2

Jp(K)p(p+ 2)
∥τττ∥2;

(iii) if rn = 1/
√
n, then, under P(n)

θθθ0+τττn,rn,v,g1
, QK is asymptotically non-central chi-square

with p− 1 degrees of freedom and non-centrality parameter

(3.11)
v2J 2

p (K,g1)

16Jp(K)p(p+ 2)
∥τττ∥2(4− ∥τττ∥2)(2− ∥τττ∥2)2;

(iv) if rn = o(1/
√
n), then, under P

(n)
θθθ0+τττn,rn,v,g1

, QK is asymptotically chi-square with
p− 1 degrees of freedom.

By combining Theorems 3.2 and 3.4, we can obtain the Pitman asymptotic relative effi-
ciencies (AREs) of the rank test ϕK with respect to the pseudo-Gaussian test ϕG. Recall that
the ARE of a test ϕa with respect to a test ϕb is defined as the limit, when it exists, as n
diverges to infinity, of the ratio N(n)/n of the sample size N(n) that is needed by ϕb to
match the local power ϕa will show based on a sample of size n. As usual, such AREs in
the present situation are obtained as the ratio of the non-centrality parameters in the corre-
sponding non-null asymptotic distributions of these test statistics. For any sequence (rn) in
regimes (i)–(iii) (regime (iv) is irrelevant here since no test can show non-trivial asymptotic
powers in this regime), the resulting AREs thus are given by

(3.12) AREθθθ0,rn,v,g1(ϕK/ϕG) :=
(1 + κp(g1))J 2

p (K,g1)

p(p+ 2)Jp(K)
·

Since this expression does not depend on the underlying sequence (rn), we conclude that the
AREs of the rank tests with respect to their pseudo-Gaussian competitor are the same in the
weak identifiability regimes (ii)–(iii) as in the standard regime (i). As a direct corollary, the
Chernoff–Savage result of Paindaveine (2006) is robust to weak identifiability: irrespective
of the severity of the possible weak identifiability (with the exception, again, of the extreme
regime (iv)), the ARE of the Gaussian-score rank test with respect to the pseudo-Gaussian test
is larger than or equal to one at any g1 and is equal to one only when g1 is the Gaussian radial
density. In Table 1, we provide some numerical values of the ARE in (3.12) for various rank
tests and for various underlying distributions. This illustrates in particular the aforementioned
Chernoff–Savage result.

4. Simulations. In this section, we perform several Monte-Carlo exercises (a) to check
that the various tests considered in this work are robust to weak identifiability under the
null hypothesis (i.e., that they show asymptotically the target Type I risk in each asymptotic
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Underlying density
K p t5 t8 t12 N e2 e3 e5

2 2.204 1.215 1.078 1.000 1.129 1.308 1.637
3 2.270 1.233 1.086 1.000 1.108 1.259 1.536

vdW 4 2.326 1.249 1.093 1.000 1.093 1.223 1.462
6 2.413 1.275 1.106 1.000 1.072 1.174 1.363

10 2.531 1.312 1.126 1.000 1.050 1.121 1.254
∞ 3.000 1.500 1.250 1.000 1.000 1.000 1.000
2 1.500 0.750 0.625 0.500 0.392 0.365 0.347
3 1.800 0.900 0.750 0.600 0.493 0.464 0.444

L 4 2.000 1.000 0.833 0.667 0.565 0.537 0.517
6 2.250 1.125 0.938 0.750 0.662 0.636 0.617

10 2.500 1.250 1.041 0.833 0.766 0.746 0.730
∞ 3.000 1.500 1.250 1.000 1.000 1.000 1.000
2 2.258 1.174 1.067 0.844 0.789 0.804 0.842
3 2.386 1.246 1.070 0.913 0.897 0.933 1.001

W 4 2.432 1.273 1.094 0.945 0.955 1.006 1.095
6 2.451 1.283 1.105 0.969 1.008 1.075 1.188

10 2.426 1.264 1.088 0.970 1.032 1.106 1.233
∞ 2.250 1.125 0.938 0.750 0.750 0.750 0.750
2 2.301 1.230 1.067 0.934 0.965 1.042 1.168
3 2.277 1.225 1.070 0.957 1.033 1.141 1.317

SP 4 2.225 1.200 1.051 0.956 1.057 1.179 1.383
6 2.128 1.146 1.007 0.936 1.057 1.189 1.414

10 2.001 1.068 0.936 0.891 1.017 1.144 1.365
∞ 1.667 0.833 0.694 0.556 0.556 0.556 0.556

TABLE 1
AREs of the van der Waerden (vdW), Laplace (L), Wilcoxon (W), and Spearman (SP) rank tests with respect to

the pseudo-Gaussian test, under p-dimensional t (with 5, 8, and 12 degrees of freedom), normal, and
power-exponential densities (with parameter η ∈ {2,3,5}), for p ∈ {2,3,4,6,10} and p→∞.

regime), (b) to compare the small-sample powers of the rank and pseudo-Gaussian tests under
weak identifiability, and (c) to check correctness of the highly non-standard asymptotic result
obtained in Theorem 3.4(iii).

(a) In a first simulation exercise, we generated for any b = 0,1, . . . ,5, M = 2,500 mutu-
ally independent random samples X(b,s)

i , i= 1, . . . , n= 200, from several trivariate elliptical
distributions with location zero and scatter matrix

(4.1) ΣΣΣ(b)
n := I3 + n−b/6θθθ0θθθ

′
0, with θθθ0 = (1,0,0)′.

For s = 1,2,3, the X
(b,s)
i ’s are sampled from a t distribution with one degree of freedom,

from a t distribution with 5 degrees of freedom, and from the multinormal distribution, re-
spectively. For each sample, we performed the following tests for H(n)

0 : θθθ = θθθ0 at asymptotic
level 5%: the pseudo-Gaussian test, the Wilcoxon rank test, and the van der Waerden rank
test. The value of b allows us to consider the various regimes considered in the paper, namely
regime (i) (b = 0), regime (ii) (b = 1,2), regime (iii) (b = 3), and regime (iv) (b = 4,5).
Increasing values of b therefore provide weaker and weaker identifiability. Figure 1, that
reports the resulting rejection frequencies, indicates that the pseudo-Gaussian test asymptot-
ically shows the target Type I risk only when moments of order four are finite (which is not
the case for the t distribution with one degree of freedom). In contrast, both considered rank
tests achieve the target Type 1 risk in all cases, hence are validity-robust to both heavy tails
and weak identifiability.

(b) In a second simulation exercise, we generated M = 2,500 mutually independent ran-
dom samples X

(b,s,ℓ)
i , i = 1, . . . , n = 500, b = 0,1,2, ℓ = 0,1, . . . ,5, from several trivariate
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FIG 1. Empirical rejection frequencies, under the null hypothesis, of the pseudo-Gaussian test, the Wilcoxon rank
test, and the van der Waerden rank test, all performed at asymptotic level 5%. Results are based on M = 2,500
mutually independent three-dimensional random samples of size n = 200, obtained from the t distribution with
one degree of freedom (t1), the t distribution with 5 degrees of freedom (t5), and the multinormal distribution
(N ). Increasing values of b bring the underlying spiked shape matrix closer and closer to the identity matrix,
hence provide weaker and weaker identifiability.

elliptical distributions with location zero and scatter matrix

(4.2) ΣΣΣ(b,ℓ)
n := I3 + n−b/6(θθθ0 + τττ ℓ)(θθθ0 + τττ ℓ)

′,

with θθθ0 = (1,0,0)′ and θθθ0+τττ ℓ = (cos(ℓπ/25), sin(ℓπ/25)),0)′. For s= 1,2,3, the X(b,s,ℓ)
i ’s

are sampled from a t distribution with one degree of freedom, from a t distribution with 5
degrees of freedom, and from the multinormal distribution, respectively. The value ℓ = 0
is associated with the null hypothesis, whereas the values ℓ = 1, . . . ,5 provide increasingly
severe alternatives. The larger b, the more severe the weak identifiability (only regimes (i)
and (ii) are considered here), hence the more challenging the considered testing problem.
For each sample, we performed the same three tests for H(n)

0 : θθθ = θθθ0 as in the first simula-
tion exercise, still at asymptotic level 5%. The resulting rejection frequencies are plotted in
Figure 2. Inspection of this figure reveals that, as expected from the AREs in Table 1, the
Wilcoxon rank test is doing very well globally in terms of power. The pseudo-Gaussian test
and the van der Waerden rank test share the same performances in the Gaussian case, but,
in line with the theory, the van der Waerden test dominates its parametric competitor away
from the Gaussian case. Clearly, the pseudo-Gaussian test does not meet the nominal level
constraint in the Cauchy case, where fourth-order moments are infinite.
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FIG 2. Empirical rejection frequencies, under the null hypothesis and under some fixed alternatives, of the pseudo-
Gaussian test (G), the Wilcoxon rank test (W), and the van der Waerden rank test (vdW), all performed at asymp-
totic level 5%. Results are based on M = 2,500 mutually independent three-dimensional random samples of
size n= 500, obtained from the t distribution with one degree of freedom (t1), the t distribution with 5 degrees
of freedom (t5), and the multinormal distribution (N ). Increasing values of b bring the underlying spiked shape
matrix closer and closer to the identity matrix, while increasing values of ℓ provide more and more severe alter-
natives (the null hypothesis is obtained for ℓ= 0).

(c) In a last simulation exercise, we generated M = 100,000 mutually independent random
samples X

(ℓ)
i , i = 1, . . . , n = 10,000, ℓ = 0,1, . . . ,20, from the bivariate t distribution with

one degree of freedom, location zero, and scatter matrix

(4.3) ΣΣΣ(ℓ)
n := Ip + n−1/2(θθθ0 + τττ ℓ)(θθθ0 + τττ ℓ)

′,

with θθθ0 = (1,0)′ and θθθ0 + τττ ℓ = (cos(ℓπ/40), sin(ℓπ/40))′. For each sample, we performed
the van der Waerden rank test for H(n)

0 : θθθ = θθθ0 at asymptotic level 5%. The resulting rejec-
tion frequencies are plotted in Figure 3, along with the asymptotic powers obtained through
Theorem 3.4(iii). The results clearly support correctness of Theorem 3.4(iii).
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FIG 3. Empirical rejection frequencies (dashed line), under the null hypothesis (∥τττ∥= 0) and local alternatives
(∥τττ∥ > 0) in regime (iii), of the van der Waerden test performed at asymptotic level 5%. The corresponding
asymptotic powers obtained from Theorem 3.4(iii) are also provided (solid line).

5. Power-enhanced tests. While the tests considered in the previous sections behave
well under local alternatives1, they actually suffer consistency issues under specific fixed
alternatives, even in cases that do not involve weak identifiability. To show this, assume that
the observations form a random sample from an elliptical distribution with a radial density g1
ensuring finite fourth-order moments (so that the population kurtosis κp(g1) is well-defined)
and with covariance matrix ΣΣΣcov := ξ(Ip + vθθθ1θθθ

′
1), where ξ, v > 0 and θθθ1 ∈ Sp−1

+ are fixed.
Then, we readily have that the pseudo-Gaussian test statistic QG in (2.7) is such that

n−1QG =
1

(1 + κ̂n)λ̂n1

p∑
j=2

λ̂−1
nj

(
θ̃θθ
′
jS

(n)θθθ0
)2

P→ 1

ξ2(1 + κp(g1))(1 + v)
θθθ′0ΣΣΣcov(Ip − θθθ0θθθ

′
0)ΣΣΣcovθθθ0

=
v2

(1 + κp(g1))(1 + v)
(1− (θθθ′1θθθ0)

2)(θθθ′0θθθ1)
2 =: ξ(θθθ1),

where P→ denotes convergence in probability. If θθθ1 ∈ Sp−1
+ \ {θθθ0} is such that θθθ′1θθθ0 ̸= 0,

then we have ξ(θθθ1) > 0, so that the pseudo-Gaussian test ϕG is consistent (note that θθθ′1θθθ0

1In particular, irrespective of the possible weak identifiability, the AREs of the Gaussian-score rank test with
respect to the pseudo-Gaussian test are larger than or equal to one at any radial density g1 and are equal to one
only when g1 is the Gaussian radial density.
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cannot be equal to −1 since θθθ0,θθθ1 ∈ Sp−1
+ ). However, if θθθ′1θθθ0 = 0, then θ̃θθ

′
jΣΣΣcovθθθ0 = ξθ̃θθ

′
jθθθ0 = 0

for j = 2, . . . , p, so that Lemma 5.1 from PRV20 entails that

QG =
1

(1 + κ̂n)λ̂n1

p∑
j=2

λ̂−1
nj

(
θ̃θθ
′
j

√
n(S(n) −ΣΣΣcov)θθθ0

)2
=

1

ξ2(1 + κp(g1))(1 + v)
∥(θθθ′0 ⊗ (Ip − θθθ0θθθ

′
0))

√
nvec(S(n) −ΣΣΣcov)∥2 + oP(1)

is asymptotically χ2
p−1, which implies that the asymptotic power of the pseudo-Gaussian

test ϕG is then equal to the nominal level α. It is easy to show that, similarly, the rank test ϕK

is consistent if and only if the fixed alternative θθθ1 ∈ Sp−1
+ \ {θθθ0} satisfies θθθ′1θθθ0 ̸= 0. In the

present single-spiked scenario, the tests studied in the paper thus actually address the larger
null hypothesis that θθθ0 is an eigenvector of the underlying scatter matrix (as opposed to the
null hypothesis that it is the eigenvector associated to the leading eigenvalue).

In order to correct the lack of consistency obtained when θθθ′1θθθ0 = 0, we propose the power-
enhanced pseudo-Gaussian and rank tests rejecting the null hypothesis at asymptotic level α
whenever

(5.1) QPE
G :=QG + n(λ̂n1 − λ̂n2)

2
(
θ̂θθ
′
1θθθ0 − 1

)2
>χ2

p−1,1−α

and

(5.2) QPE
K :=QK + n(λ̂1,Tyler − λ̂2,Tyler)

2
(
θ̂θθ
′
1,Tylerθθθ0 − 1

)2
>χ2

p−1,1−α,

respectively; here, λ̂n1, λ̂n2 and θ̂θθ1 are respectively the two largest eigenvalues and the lead-
ing eigenvector of the empirical covariance matrix S(n), whereas λ̂1,Tyler, λ̂2,Tyler and θ̂θθ1,Tyler

are the corresponding quantities obtained from the estimator of shape V̂Tyler considered in
Section 2. We then have the following result (see Section S.2 of the supplement for a proof).

PROPOSITION 5.1. Fix θθθ0 ∈ Sp−1
+ , v > 0, a bounded positive sequence (rn) such

that
√
nrn →∞, and a radial density g1 that, for the results on QPE

G below, should ensure
finite fourth-order moments (such moment condition is not needed for the results on QPE

K ).
Then,

(i) under P(n)
θθθ0,rn,v,g1

, QPE
G =QG + oP(1) and QPE

K =QK + oP(1) as n→∞;

(ii) for any θθθ1 ∈ Sp−1
+ \ {θθθ0},

P
(n)
θθθ1,rn,v,g1

[QPE
G > t]→ 1 and P

(n)
θθθ1,rn,v,g1

[QPE
K > t]→ 1

as n→∞ for any t > 0.

Proposition 5.1(i) entails that, in regimes (i)–(ii), the power-enhanced tests in (5.1)–(5.2)
have asymptotic level α under the null hypothesis and, from contiguity, share the same local
asymptotic powers as their original versions (in particular, the power-enhanced Gaussian-
score rank test still uniformly dominates the power-enhanced pseudo-Gaussian test in terms
of AREs). Proposition 5.1(ii), however, implies that the power-enhanced tests are consistent
under any fixed alternative in regimes (i)–(ii). Note that this is as good as one may expect, as
such universal consistency cannot be achieved in regime (iii): since any fixed alternative θθθ1
is contiguous to the null hypothesis in regime (iii), the asymptotic equivalences in Proposi-
tion 5.1(i) that would be obtained from any power-enhancement mechanism would indeed
automatically extend to the alternatives with θθθ′1θθθ0 = 0, so that the corresponding tests would
suffer the same consistency issue as the original pseudo-Gaussian and rank tests.
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We conclude this section with a simulation exercise to illustrate the results obtained above.
We generated M = 10,000 mutually independent random samples X

(b,ℓ,s)
i , i = 1, . . . , n =

500, b = 0,1, ℓ = 0,1, . . . ,L = 50, s = 1,2,3, from several bivariate elliptical distributions
with location zero and scatter matrix

(5.3) ΣΣΣ(b,ℓ)
n := I2 + n−b/6(θθθ0 + τττ ℓ)(θθθ0 + τττ ℓ)

′,

where θθθ0 = (1,0)′ and θθθ0+τττ ℓ = (cos(ℓπ/(2L)), sin(ℓπ/(2L))′. For s= 1,2,3, the X(b,ℓ,s)
i ’s

are sampled from a t distribution with one degree of freedom, from a t distribution with 5
degrees of freedom, and from a multinormal distribution, respectively. The value ℓ = 0 is
associated with the null hypothesis H(n)

0 : θθθ = θθθ0, whereas the values ℓ = 1, . . . ,L provide
increasingly severe alternatives; note that θθθ′0θθθ decreases from 1 to 0 as ℓ ranges from 0 to L,
so that ℓ= L provides a value of θθθ that is orthogonal to θθθ0. For each sample, we performed
the pseudo-Gaussian test ϕG and the van der Waerden rank test ϕK , as well as their power-
enhanced versions in (5.1)–(5.2), all at asymptotic level 5%. The resulting rejection frequen-
cies are plotted in Figure 4. The results confirm that the original pseudo-Gaussian and van
der Waerden tests are blind to alternatives that are orthogonal to θθθ0 and that such alternatives
are detected by the power-enhanced tests.

6. Extension to more general spectra. The asymptotic analysis provided in Section 3
focused on scatter matrices of the form ΣΣΣn := ξ(Ip + rnvθθθθθθ

′), with ξ, v > 0 and θθθ ∈ Sp−1,
involving a single-spiked spectrum for which, when excluding the leading eigenvalue, all
other eigenvalues are equal. In the present section, our objective is to show that the main
results obtained in Section 3 can be extended to much more general spectra. More precisely,
we will consider triangular arrays of elliptically symmetric observations Xn1, . . . ,Xnn with
location parameter µµµ, scatter matrix

ΣΣΣn := ξ

{
(1 + rnv)θθθθθθ

′ +

(
Ip − θθθθθθ′ −

p∑
j=q+1

θθθjθθθ
′
j

)
+

p∑
j=q+1

λjθθθjθθθ
′
j

}
,

and radial density g1 ∈ F1; here, ξ, v > 0, 1> λq+1 > . . . > λp > 0, θθθ,θθθq+1, . . . ,θθθp are pair-
wise orthogonal vectors in Sp−1

+ , and (rn) is a positive real sequence. The same invariance
arguments as in Section 3 imply that we may assume without loss of generality that µµµ = 0
and ξ = 1. The scatter parameter ΣΣΣn has then eigenvalues

(6.1) λn1 = 1+ rnv, λ2 = · · ·= λq = 1> λq+1 > . . . > λp;

obviously, θθθ is the eigenvector in Sp−1
+ associated with the leading eigenvalue λn1,

θθθq+1, . . . ,θθθp are the eigenvectors in Sp−1
+ associated with the eigenvalues λq+1, . . . , λp, re-

spectively, whereas the eigenvectors associated with the eigenvalue 1 span the orthogonal
complement to the vector subspace that is spanned by θθθ,θθθq+1, . . . ,θθθp. The eigenvectors
structure is thus fully determined by the p × (p − q + 1) matrix ΓΓΓ := (θθθ θθθq+1 . . . θθθp). We
will denote the resulting sequence of hypotheses as P(n)

ΓΓΓ,rn,v,λλλ,g1
, with λλλ= (λq+1, . . . , λp)

′.
We aim at studying the asymptotic behavior of the rank test ϕK and of the pseudo-

Gaussian test ϕG under local alternatives involving the general spectra above. Since the
eigenvectors θθθq+1, . . . ,θθθp must belong to the orthogonal complement to θθθ, perturbing θθθ in-
duces a perturbation of θθθq+1, . . . ,θθθp. Accordingly, we will consider local perturbations of the
form

ΓΓΓ+ τττnνννn := ΓΓΓ+ (τττn1 τττn,q+1 . . . τττnp)

(
νn 0

0 n−1/2Ip−q

)
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FIG 4. Empirical rejection frequencies, under the null hypothesis and under some fixed alternatives, of the pseudo-
Gaussian test (G, solid line) and the van der Waerden rank test (vdW, solid line), and of their power-enhanced
version in (5.1)–(5.2) (G and vdW, dashed lines), all performed at asymptotic level 5%. Results are based on
M = 10,000 mutually independent two-dimensional random samples of size n = 500, obtained from the t dis-
tribution with one degree of freedom (t1), the t distribution with 5 degrees of freedom (t5), and the multinormal
distribution (N ). The values b = 0 and b = 1 correspond to regimes (i) and (ii), respectively. Increasing values
of ℓ provide more and more severe alternatives (the null hypothesis is obtained for ℓ = 0 and the most severe
alternatives, obtained for ℓ= 50, are associated with a leading eigenvector that is orthogonal to the null leading
eigenvector θθθ0); see Section 5 for details.

= (θθθ+ νnτττn1 θθθq+1 + n−1/2τττn,q+1 . . . θθθp + n−1/2τττnp),

for some suitable positive real sequence (νn). Since the column vectors of ΓΓΓ+ τττnνννn should
be pairwise orthogonal vectors in Sp−1

+ , we must have

(6.2) ΓΓΓ′τττnνννn + ννν ′nτττ
′
nΓΓΓ+ ννν ′nτττ

′
nτττnνννn = 0 for any n.

The following result then describes the corresponding null and non-null asymptotic behaviors
of the rank test ϕK , hence extends to the general spectra above the results in Theorems 3.3–
3.4 focusing on single-spiked spectra (see Section S.3 of the supplement for a proof).

THEOREM 6.1. Fix a matrix ΓΓΓ0 := (θθθ0θθθq+1 . . . θθθp) with pairwise orthogonal column
vectors in Sp−1

+ , v > 0, λλλ= (λq+1, . . . , λp)
′ with 0< λp < . . . < λq+1 < 1, and g1 ∈ Fa

1 , and
let Assumption (A) hold. Let τττn = (τττn1 τττn,q+1 . . . τττnp) be a sequence of bounded matrices
such that (6.2) holds and such that τττ = (τττ1 τττ q+1 . . .τττp) := limn→∞ τττn exists. Then, we have
the following:
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(i) if rn ≡ 1, then, under P
(n)
ΓΓΓ0+τττnνννn,rn,v,λλλ,g1

with νn = 1/
√
n, QK is asymptotically non-

central chi-square with p− 1 degrees of freedom and non-centrality parameter

J 2
p (K,g1)

Jp(K)p(p+ 2)(1 + v)

×

{
v2∥τττ1∥2 +

p∑
j=q+1

1

λj

(
v2(1−

√
λj)

2 + 2v(1− λj) + (1− λj)
2

)
(τττ ′jθθθ0)

2

}
;

(ii) if rn = o(1) with
√
nrn →∞, then, under P(n)

ΓΓΓ0+τττnνννn,rn,v,λλλ,g1
with νn = 1/(

√
nrn), QK

is asymptotically non-central chi-square with p− 1 degrees of freedom and non-centrality
parameter

J 2
p (K,g1)

Jp(K)p(p+ 2)

{
v2∥τττ1∥2 +

p∑
j=q+1

(1− λj)
2

λj
(τττ ′jθθθ0)

2

}
;

(iii) if rn = 1/
√
n, then, under P

(n)
ΓΓΓ0+τττnνννn,rn,v,λλλ,g1

with νn ≡ 1, QK is asymptotically non-
central chi-square with p− 1 degrees of freedom and non-centrality parameter

J 2
p (K,g1)

Jp(K)p(p+ 2)

{
v2

16
∥τττ1∥2

(
4− ∥τττ1∥2

)(
2− ∥τττ1∥2

)2
+

p∑
j=q+1

(1− λj)
2

λj
(τττ ′jθθθ0)

2

}
;

(iv) if rn = o(1/
√
n), then, under P

(n)
ΓΓΓ0+τττnνννn,rn,v,λλλ,g1

with νn ≡ 1, QK is asymptotically
non-central chi-square with p− 1 degrees of freedom and non-centrality parameter

J 2
p (K,g1)

Jp(K)p(p+ 2)

p∑
j=q+1

(1− λj)
2

λj
(τττ ′jθθθ0)

2.

Some comments are in order. First, taking τττn ≡ 0 in this result shows that, under the
general spectra above, QK remains asymptotically chi-square with p − 1 degrees of free-
dom in regimes (i)–(iv), so that the rank test ϕK is still robust to weak identifiability under
the null hypothesis. Second, compared to the non-centrality parameters in regimes (i)–(iv)
from Theorem 3.4, those in Theorem 6.1 include additional positive contributions involv-
ing (τττ ′jθθθ0)

2, j = q+1, . . . , p. This can be interpreted as follows: (a) when τττ ′jθθθ0 ̸= 0, the per-
turbation/rotation of θθθj into θθθnj = θθθj + n−1/2τττnj induces a perturbation/rotation of θθθ = θθθ0,
which, since θθθj remains identified in the limit, brings extra asymptotic power at the standard
root-n rate. (b) When τττ ′jθθθ0 = 0, however, the corresponding rotation of θθθj fixes θθθ = θθθ0, so
that it is only natural that no extra power is then obtained. Except for this new feature that can
only be achieved in the general spectra considered in the present section, the non-null behav-
ior of the rank test ϕK is the same for general spectra as for single-spiked ones. Third, while
we do not state the result explicitly here in order to save space, working exactly along the
same lines as in the proof of Theorem 6.1 allows one to show that the corresponding asymp-
totic non-null behavior of the pseudo-Gaussian test ϕG is simply obtained by replacing the
factors

J 2
p (K,g1)

Jp(K)p(p+ 2)
with

1

1 + κp(g1)

in the statement of Theorem 6.1(i)–(iv), which extends Theorem 3.2 to the more general
spectra considered here. An important corollary is that, while the local asymptotic powers
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of ϕK and ϕG depend on the structure of the underlying spectrum, the AREs of ϕK with
respect to ϕG do not (in particular, the uniform dominance of the Gaussian-score rank test
over its pseudo-Gaussian competitor not only hold for single-spiked spectra but also for the
general spectra we considered in this section). Last, we would like to mention that correctness
of Theorem 6.1 was checked through Monte Carlo exercises; for the sake of brevity, we do
not provide the corresponding results here, but they are available on a simple request.

7. Conclusions. This work tackled, in a general elliptical framework, the one-sample
testing problem on the leading principal direction, under double asymptotic scenarios where
this direction is weakly identified. For the first time, the corresponding limiting experiments
were studied away from the multinormal case, which revealed that, depending on the sever-
ity of weak identifiability, both LAN and non-LAN structures can be obtained. This was
a key prerequisite to study the asymptotic null and non-null behaviors of multivariate rank
tests under weak identifiability. As it was showed, such rank tests exhibit extremely good
robustness to weak identifiability, both in terms of Type 1 risk and in terms of Type 2 risk:
irrespective of the severity of the weak identifiability, rank tests show the target size under
the null hypothesis as soon as the underlying elliptical density satisfies some mild regu-
larity conditions (that in particular do not impose any moment assumption). Moreover, it
remains so under arbitrarily weak identifiability that, when based on normal scores, rank
tests uniformly dominate their pseudo-Gaussian competitor in terms of asymptotic relative
efficiencies. Power-enhanced versions of our tests allow us to combine this excellent local
behavior with consistency under any alternative. Our null and non-null asymptotic findings
required deriving general results (i) on the asymptotic behavior of local log-likelihood ratios
for triangular arrays and (ii) asymptotic linearity results in a similar framework. The tests
considered in the present work achieve semiparametric efficiency bounds at a target radial
density f1 only. Perspectives for future research could thus aim at defining tests that are uni-
formly semiparametrically efficient, which can be obtained by using scores Kĝ1 associated
to a suitable kernel density estimator ĝ1 of the underlying radial density; we refer to Hallin
and Werker (2003) for the general principle and to Section 6.2 of Hallin and Paindaveine
(2004) for an application in the elliptical framework. Of course, the high-dimensional case is
another most interesting (and most challenging) venue for future research work.

APPENDIX: GENERAL ASYMPTOTIC RESULTS UNDER TRIANGULAR ARRAYS

This appendix provides the general asymptotic results that allowed us to study the asymp-
totic behavior of local log-likelihood ratios in a triangular array framework and to con-
trol aligned ranks under weak identifiability. Since these results are likely to be of inter-
est for other problems, we present them in a generic semiparametric model indexed by a
finite-dimensional parameter of interest θθθ, a finite-dimensional nuisance parameter ηηη, and
an infinite-dimensional nuisance g in some collection F of functions (for the elliptical test-
ing problem considered in the paper, θθθ would be the leading eigenvector of the underlying
scatter matrix, ηηη would collect the location parameter and the remaining parameters in the
scatter matrix, and g would be the “radial” density that makes the difference between, e.g., a
multinormal distribution and a multivariate t distribution).

As in the body of the paper, we actually consider triangular arrays of observations where
the nth row is made of a random sample from a distribution Pθθθ,ηηηn,g

such that, at the limit
as n diverges to infinity, the parameter of interest θθθ is not identified: in other words, the
sequences ηηηn we consider are such that the weak limits, as n diverges to infinity, of the
distributions Pθθθ,ηηηn,g

form a model in which injectivity of the parametrization in θθθ is violated.
This is precisely what we call weak identifiability in this generic context (in the PCA problem
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we considered, for instance, the leading eigenvector θθθ is not identified in the limit if the ratio
between both leading eigenvalues (that are part of the nuisance parameter ηηηn) converges
to one. Under such weak identifiability, local log-likelihood ratios may show non-standard
asymptotic behaviors and in particular may provide limiting experiments that are not LAN.

We now provide a general result that allows one to determine the corresponding limiting
experiments. In line with the above discussion, we phrase the result in a semiparametric
framework, although the result itself is intrinsically parametric: it will be associated to a
given value f of the infinite-dimensional nuisance g, namely the value f at which one aims
to achieve optimality. Our general result is the following (see Section S.4 of the supplement
for a proof).

PROPOSITION A.1. Fix a sequence (ϑϑϑn) in ΘΘΘ(⊂Rk) and f ∈ F . Let Xni, i= 1, . . . , n,
n= 1,2, . . . be a triangular array of observations such that, for any n, Xn1, . . . ,Xnn form
a random sample from the distribution Pϑϑϑn,f . Assume that there exist a positive real se-
quence (νn) and real-valued functions ℓ̇

(n)
ϑϑϑn,τττn

such that, for any sequence (τττn) in Rk such
that ϑϑϑn + νnτττn ∈ΘΘΘ for any n, we have

(A.1)
∫ {

f
1/2
ϑϑϑn+νnτττn

(x)− f
1/2
ϑϑϑn

(x)− 1

2
ℓ̇
(n)
ϑϑϑn,τττn

(x)f
1/2
ϑϑϑn

(x)

}2

dµ(x) = o(n−1),

where we let fϑϑϑ := dPϑϑϑ,f/dµ for some suitable dominating measure µ. Denoting as P
(n)
ϑϑϑn,f

the joint distribution of Xn1, . . . ,Xnn, further assume that

(A.2) EP
(n)

ϑϑϑn,f

[
nℓ̇

(n)
ϑϑϑn,τττn

(Xn1)
]
= o(1),

(A.3) I(n)
ϑϑϑn,τττn

:= nEP
(n)

ϑϑϑn,f

[(
ℓ̇
(n)
ϑϑϑn,τττn

(Xn1)
)2]

=O(1),

(A.4)
n∑

i=1

(
ℓ̇
(n)
ϑϑϑn,τττn

(Xni)
)2

= I(n)
ϑϑϑn,τττn

+ oP(n)

ϑϑϑn,f

(1),

and that

(A.5) EP
(n)

ϑϑϑn,f

[
n(ℓ̇

(n)
ϑϑϑn,τττn

(Xn1))
2I
[
n(ℓ̇

(n)
ϑϑϑn,τττn

(Xn1))
2 ≥ nε2

]]
= o(1)

for any ε > 0. Then,

(A.6) log
dP

(n)
ϑϑϑn+νnτττn,f

dP
(n)
ϑϑϑn,f

=

n∑
i=1

ℓ̇
(n)
ϑϑϑn,τττn

(Xni)−
1

2
I(n)
ϑϑϑn,τττn

+ oP(1)

under P(n)
ϑϑϑn,f

.

By taking ϑϑϑn := (θθθ,ηηηn), the result in (A.6) provides an asymptotic representation of local
log-likelihood ratios in a general triangular array framework. In regular situations, Propo-
sition A.1 extends to triangular arrays the well-known result stating that quadratic mean
differentiability of an absolutely continuous distribution Pϑϑϑ,f with respect to some dom-
inating measure µ implies LAN of the corresponding sequence of experiments; see, e.g.,
Theorem 7.2 in van der Vaart (1998). In such cases, (A.6) is a standard locally asymptotically
quadratic (LAQ) expansion, in which the random term ℓ̇

(n)
ϑϑϑn,τττn

(Xni) is linear in τττn and the

deterministic term I(n)
ϑϑϑn,τττn

is quadratic in τττn. Proposition A.1 may lead to non-standard ex-
pansions, that are incompatible with LAN: applying the result in the PCA context described
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in the introduction led to both LAN and non-LAN structures, depending on the severity of
the involved weak identifiability; see Theorem 3.1.

Now, in a semiparametric sequence of probability measures P(n)
ϑϑϑ,f , indexed by ϑϑϑ= (θθθ,ηηη) ∈

ΘΘΘ and g ∈ F , the testing problem

(A.7) H0 : θθθ = θθθ0 against H1 : θθθ ̸= θθθ0,

in the standard asymptotic scenario where the finite-dimensional nuisance parameter ηηη does
not depend on n, can classically be tackled in the following two ways. A first strategy is to use
pseudo- or quasi-likelihood methods, that robustify to the present semiparametric framework
parametric procedures associated with some fixed f ∈ F ; usually, f is Gaussian, and one
then speaks of pseudo-Gaussian procedures. Such pseudo- or quasi-likelihood methods have
been used, e.g., in Muirhead and Waternaux (1980), Shapiro and Browne (1987), Hallin and
Paindaveine (2009), and Hallin, Paindaveine and Verdebout (2010b) to cite only a few. If
the parametric submodel obtained by taking g = f is LAN, with central sequence ∆∆∆(n)

θθθ,ηηη,f say
(LAN is the rule in the above standard asymptotic scenario where ηηη does not depend on n),
the resulting tests reject H0 for large values of

(A.8) (∆∆∆
(n)
θθθ0,η̂ηη,f

)′Γ̂ΓΓ
−
∆∆∆

(n)
θθθ0,η̂ηη,f

where η̂ηη is a suitable estimator of ηηη and Γ̂ΓΓ is a consistent estimator of the covariance matrix
in the Gaussian weak limit of ∆∆∆(n)

θθθ0,ηηη,f
under P(n)

θθθ0,ηηη,g
; here, A− stands for the Moore–Penrose

generalized inverse of A. Usually, the “studentization” in (A.8) makes such tests valid under
a broad class of nuisances g, yet asymptotic parametric efficiency is achieved at f only. Such
tests can then be said to be “somewhere parametrically efficient”.

A second strategy to define tests in a large class of semiparametric models consists in
eliminating the infinite-dimensional nuisance g through invariance arguments. If the test-
ing problem is invariant with respect to some group G of transformations and if this group
generates the nonparametric submodels obtained by fixing a value (θθθ,ηηη) of the finite-
dimensional parameter, then an important quantity is the maximal invariant M(n)(θθθ,ηηη) asso-
ciated with G. Indeed, tests that are measurable with respect to M(n)(θθθ,ηηη) will be automati-
cally distribution-free with respect to g. Moreover, Hallin and Werker (2003) showed that, in
LAN experiments, tests based on the invariant central sequence at f , namely

∆∆∆˜ (n)
θθθ0,ηηη,f

:= EP
(n)

ϑϑϑn,g

[∆∆∆
(n)
θθθ0,ηηη,f

|M(n)(θθθ0,ηηη)],

are semiparametrically efficient at f (from invariance, this new central sequence does not
depend on the value of g under which the expectation is computed). For the testing problem
above, these invariant tests reject H0 for large values of

(A.9) (∆∆∆˜ (n)
θθθ0,η̂ηη,f

)′ΓΓΓ˜−∆∆∆˜ (n)
θθθ0,η̂ηη,f

,

where ΓΓΓ˜ is a consistent estimator of the covariance matrix in the Gaussian weak limit of

∆∆∆˜ (n)
θθθ0,η̂ηη,f

under P(n)
θθθ0,ηηη,g

(from invariance, this covariance matrix again does not depend on g).

Such tests are “somewhere semiparametrically efficient”, in the sense that they achieve semi-
parametric efficiency at f . From invariance, they are (at least asymptotically) distribution-free
with respect to g, which ensures validity under any g. For many problems, including the PCA
testing problem considered in this paper, the maximal invariant is a vector of ranks (or, more
precisely, of signed ranks), and the resulting invariant tests (that is, the resulting rank tests,
or, more precisely, signed-rank tests), compared to pseudo-Gaussian tests, are valid under a
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broader class of nuisances g (see (b1) in the introduction) and they also may be more pow-
erful away from the target density f (see (c1) in the introduction); in particular, for many
problems, van der Waerden—that is, Gaussian score—rank tests are strictly more powerful
than pseudo-Gaussian tests away from the Gaussian target densities.

The tests in (A.8) and (A.9) both require the estimation of the finite-dimensional nuisance
parameter ηηη to be feasible tests. It is therefore needed to control the replacement of the true
unknown value of ηηη by an estimator η̂ηη, which may be challenging and is typically done by
deriving a suitable asymptotic linearity result. In a triangular array framework, the situation is
even more challenging since the value ηηηn of the finite-dimensional nuisance parameter to be
estimated depends on the sample size n. To tackle this problem, we give here a second general
result, that provides an asymptotic linearity result for triangular arrays. The result requires
a reinforcement of the ULAN (Uniformly Locally Asymptotically Normal) structure. Like
Proposition A.1, this new general result is of independent interest and may find applications
outside the PCA problem we consider in this paper (see Section S.4 of the supplement for a
proof).

PROPOSITION A.2. Let Xni, i= 1, . . . , n, n= 1,2, . . . be a triangular array of p-variate
observations such that, for any n, Xn1, . . . ,Xnn form a random sample from the distribu-
tion Pϑϑϑn,f . Denote as P

(n)
ϑϑϑn,f

the corresponding joint distribution of Xn1, . . . ,Xnn. Assume

that the sequence of models {P(n)
ϑϑϑ,f : ϑϑϑ ∈ΘΘΘ} is “super-ULAN” in the following sense: there

exist a positive real sequence (νn) that is o(1) and k × k matrices ΓΓΓϑϑϑ,f for any ϑϑϑ ∈ΘΘΘ such
that, for any ϑϑϑ0 ∈ΘΘΘ, any sequence (ϑϑϑn) in ΘΘΘ converging to ϑϑϑ0, and any bounded sequence
(τττn) in Rk, we have that, under P(n)

ϑϑϑn,f
,

log
dP

(n)
ϑϑϑn+νnτττn,f

dP
(n)
ϑϑϑn,f

= τττ ′n∆∆∆
(n)
ϑϑϑn,f

− 1

2
τττ ′nΓΓΓϑϑϑ0,fτττn + oP(1)(A.10)

∆∆∆
(n)
ϑϑϑn,f

L→N (0,ΓΓΓϑϑϑ0,f ),(A.11)

where L→ denotes weak convergence. Now, consider a sequence of random m-vectors

T
(n)
ϑϑϑ :=

1√
n

n∑
i=1

Tϑϑϑ(Xni),

involving measurable functions Tϑϑϑ :Rp →Rm such that, for any ϑϑϑ0 ∈ΘΘΘ, any sequence (ϑϑϑn)

in ΘΘΘ converging to ϑϑϑ0, and any bounded sequence (τττn) in Rk, we have that, under P(n)
ϑϑϑn,f

,

(a) E[Tϑϑϑn
(Xn1)] = 0,

(b) E[∥Tϑϑϑn+νnτττn
(Xn1)−Tϑϑϑn

(Xn1)∥2] = o(1), and that
(c) ((T

(n)
ϑϑϑn

)′, (∆∆∆
(n)
ϑϑϑn,f

)′)′ is asymptotically normal with mean zero and covariance matrix(
ΣΣΣϑϑϑ0,f Cϑϑϑ0,f

C′
ϑϑϑ0,f

ΓΓΓϑϑϑ0,f

)
.

Then, for any ϑϑϑ0 ∈ ΘΘΘ, any sequence (ϑϑϑn) in ΘΘΘ converging to ϑϑϑ0, and any bounded se-
quence (τττn) in Rk,

T
(n)
ϑϑϑn+νnτττn

−T
(n)
ϑϑϑn

+Cϑϑϑ0,fτττn = oP(1)

under P(n)
ϑϑϑn,f

.
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When testing H0 : θθθ = θθθ0 against H1 : θθθ ̸= θθθ0 in a triangular array framework, this asymp-
totic linearity result will typically be applied to parameter sequences of the form ϑϑϑn :=
(θθθ0,ηηηn), where (ηηηn) will converge to a fixed value ηηη0. Note that although θθθ0 will not depend
on n below, our general results in Propositions A.1–A.2 above would also us to consider a
sequence of null hypotheses associated with a sequence of null values (θθθ0n) that would con-
verge to θθθ0. In this context, classical assumptions on estimators η̂ηηn of ηηηn allow one to replace
the deterministic local perturbation ϑϑϑn + νnτττn = (θθθ0,ηηηn + νntn) by a ν−1

n -consistent esti-
mator ϑ̂ϑϑn = (θθθ0, η̂ηηn); see, e.g., Lemma 4.4 in Kreiss (1987). It is important to note that, in
Proposition A.2, ϑϑϑn may converge to ϑϑϑ at an arbitrary rate—when applying this result to the
PCA context, this will allow us to consider arbitrarily weak identifiability. The price to pay
to obtain the asymptotic linearity result in such a general asymptotic scheme is that we need
to assume the “super-ULAN” structure in (A.10)–(A.11): having a fixed value ϑϑϑ0 in (A.10)–
(A.11) would correspond to LAN, whereas having (A.10)–(A.11) for any sequence (ϑϑϑn)
satisfying ϑϑϑn = ϑϑϑ0 + O(νn) would correspond to ULAN (again, this super-ULAN allows
for any sequence (ϑϑϑn) such that ϑϑϑn = ϑϑϑ0 + o(1)). In this regard, it may seem surprising at
first that Proposition A.2 requires such a strong reinforcement of the LAN property given
that, as already mentioned, even the usual LAN structure may fail under weak identifiabil-
ity. In the PCA framework we considered in the paper, the way out is that while the LAN
structure fails in the (θθθ,ηηη)-parametrization that corresponds to the eigenvalues-eigenvectors
parametrization in the PCA context, its super-ULAN reinforcement holds in the scatter/shape
matrix parametrization2, which will be enough for our purposes.
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Supplement to “Rank-based inference for PCA under weak identifiability"
In the supplement, we prove all theoretical results of the present paper.
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