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1 Statistical Inference: a decision theoretic approach

1.1 Anatomy of a statistical inference problem

Statistical inference is about making decisions, based on observed random variables, whose

distributions are not fully specified. What do we need in order to describe and then, hope-

fully, solve such decision problems? Basically, three constituents are required—four, if a

Bayesian approach is to be considered:

(i) a statistical model, describing the behavior of some observable random variable X,
called the observation;

(ii) a decision space, specifying a set of feasible decisions;

(iii) a loss function providing an evaluation of the various decisions, and

(iv) (Bayesian approach) a prior distribution.

1.1.1 Statistical models

A statistical model is a triple (X ,A,P), where X is a space equipped with a σ-field A (the

observation space) and P = {P} is a collection of probability measures P over (X ,A). This

triple characterizes the possible behaviors or the possible data-generating processes for an

observable random variable X called the observation. That random variable X, with values

in (X ,A), has probability distribution P, where P is an unspecified element of P .

When P is of the form P = {Pθθθ : θθθ ∈ Θ}, where Θ ⊆ Rk for some k ∈ N, we call it a

parametric family, yielding a parametric model, with parameter θθθ ranging over the parameter

space Θ. A family P that cannot be indexed by a finite-dimensional parameter is called a

nonparametric family, yielding a nonparametric model.

1With slight modifications by Davy Paindaveine and Thomas Verdebout.
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The notation x is used for a point in X (a possible value of X). As a random variable, X

is defined over some measurable space (Ω,AΩ), with elements ω. That space will seldom

appear here. One always can think of (Ω,AΩ) = (X ,A), with (for ω = x) X(ω) = X(x) := x

(the identity mapping).

1.1.2 Decision spaces and decision rules

The decision space D is the collection of all possible actions d, equipped with some σ-field BD.

Combining the decision space and the statistical model just described, one can define decision

rules or statistical procedures as follows.

A pure (non-randomized) decision rule is a measurable mapping

δ : x ∈ X 7−→ δ(x) ∈ D

from the observation space (X ,A) to the decision space (D,BD).

A randomized decision rule is a collection
{
Pδ
x|x ∈ X

}
of probability measures over

(D,BD) such that for all D ∈ BD the mapping x 7−→ Pδ
x(D) be measurable (from (X ,A)

to (R,B)). For any given D ∈ BD, thus, P
δ
X(D) is a correctly defined random variable,

and the probability, when X has distribution P, of the final decision, δ, say, falling into D

is P[δ ∈ D] = EP[P
δ
X(D)] =

∫
X Pδ

x(D)dP. In practice, under the randomized decision

rule
{
Pδ
x

}
, if the observation X takes the value x, a decision is randomly selected according

to the distribution Pδ
x, that is, in such a way that the probability (conditional on X = x)

that this decision falls into any D ∈ BD is Pδ
x(D). Conditionally on X = x, δ therefore can

be considered as a random variable taking values in D and distribution function Pδ
x. In the

sequel, with a slight abuse of notation, we will write δ for any decision rule, whether it be

pure or randomized.

Note that a pure decision rule is the particular case of a randomized decision rule for

which the probability measures in
{
Pδ
x

}
are all degenerate—namely, such that, for any x ∈ X ,

there exists a δ(x) ∈ D for which Pδ
x[δ = δ(x)] = 1.
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1.1.3 Loss functions

A loss function is a function mapping D × P onto the nonnegative real line:

(d,P) ∈ D × P 7−→ LP(d) ∈ R+,

such that for all P, the mapping d 7−→ LP(d) is measurable. If the decision d is taken and the

underlying distribution (the one that actually generatedX) is P, a loss LP(d) is incurred: the

loss function thus provides an evaluation of each possible decision d under each possible P.

In the parametric case with parameter θθθ, we will write Lθθθ(d) instead of LPθθθ
(d).

1.2 Risk functions and uniformly optimal decision rules

1.2.1 Risk functions

Combining constituents (i), (ii), and (iii) allows us to define, for any decision rule, a risk

function. The risk function associated with a decision rule is the corresponding expected

loss, considered as a function of P ∈ P . The risk function of a pure decision rule δ thus takes

the form

P 7−→ Rδ
P := EP [LP(δ(X))] =

∫
X
LP(δ(x)) dP(x), P ∈ P ,

whereas, for a randomized decision rule
{
Pδ
x|x ∈ X

}
, we have (for simplicity, we adopt the

same notation Rδ
P)

P 7−→ Rδ
P := EP

[∫
D
LP(d) dP

δ
X

]
=

∫
X

∫
D
LP(d) dP

δ
x dP(x), P ∈ P .

In the parametric case, we write Rδ
θ instead of Rδ

Pθθθ
.

Risk functions are crucial in the comparison of decision rules. Actually, in order to

compare two decision rules, we compare their risk functions. Whether pure or randomized,

we say that a decision rule δ1 uniformly dominates (weakly) a decision rule δ2 (notation:

δ1 ⪰ δ2) if

Rδ1
P ≤ Rδ2

P for all P ∈ P .
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We say that a decision rule δ∗ is uniformly optimal or uniformly minimum risk (UMR)

within a class C of decision rules if

(i) δ∗ ∈ C, and

(ii) δ∗ ⪰ δ for all δ ∈ C.

The problem is that, given two decision rules δ1 and δ2, in general, we neither have δ1 ⪰ δ2

nor δ2 ⪰ δ1: risk functions are not well-ordered for the binary relation ⪰ . As a consequence,

for given C, a uniformly optimal decision rule δ∗ in general does not exist. As a rule, the

problem of finding an “optimal” statistical procedure δ is an ill-posed problem.

Faced with this ill-posed problem, the attitude of “classical” (also called “frequentist”)

and Bayesian statisticians differ. While classical statisticians will try to turn the problem

into a well-posed one by imposing sensible restrictions on the class C via statistical principles,

the Bayesian solution relies on an additional fourth constituent: the prior, the use of which

we now briefly describe.

1.2.2 The Bayesian approach

Bayesians, in addition to (i) a statistical model, (ii) a decision space, and (iii) a loss function

also consider a fourth constituent, (iv) a prior distribution.

A prior distribution or, simply, a prior, is a probability distribution Π over P , equipped

with an adequate σ-field—for simplicity, let us only consider the parametric case, where

the prior can be defined over the parameter space (Θ,BΘ), BΘ denoting the intersection

of the Borel σ-field on Rk and Θ. Such a prior associates with each decision function δ a

nonnegative real number—the Bayesian risk

Rδ :=

∫
Θ

Rδ(θθθ) dΠ(θθθ),

that is the expectation, under Π, of the risk Rδ(θθθ) considered as a measurable function of θθθ.

Contrary to ordinary risk functions, Bayesian risks, which are real numbers, are well-

ordered: for any δ1 and δ2, either R
δ1 ≥ Rδ2 (δ2 ⪰Π δ1), or R

δ1 ≤ Rδ2 (δ1 ⪰Π δ2), and optimal

solutions, minimizing the Bayesian risk, typically exist. The resulting (weak) ordering ⪰Π,
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however, depends on the choice of the prior Π. In a sense, the prior reduces the family P of

distributions to a unique element, the mixture
∫
Θ
Pθθθ dΠ(θθθ) (with mixing distribution Π) of

the elements Pθθθ of P .

We will not pursue along this way.

1.2.3 Statistical principles

If no optimal decision rule exists within a class C of decision rules, another solution consists

in reducing C by means of some arbitrary but well-accepted conditions: statistical principles,

such as the principles of sufficiency or unbiasedness (estimation and testing), the princi-

ples of equivariance (estimation) or invariance (testing), the Neyman principle (testing),

the principle of ancillarity (treatment of nuisances), etc. Many of those principles will be

considered in the subsequent chapters.

1.2.4 Other optimality concepts

Uniform dominance in some cases can be considered too strong a requirement. Other weaker

optimality concepts, such as stringency orminimaxity, still over some class C of decision rules,

can be considered. For instance, a decision rule δ∗ is called minimax over C if

(i) δ∗ ∈ C, and

(ii) maxP∈PR
δ∗
P ≤ maxP∈PR

δ
P for all δ ∈ C.

Minimaxity thus corresponds to a most “cautious” attitude consisting in evaluating each

decision rule via its worst performance.

1.3 Examples

Let us conclude with a brief description of the two most usual problems of statistical infer-

ence: point estimation and hypothesis testing.
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1.3.1 Point estimation

Consider a parametric model (X ,A,P = {Pθθθ : θθθ ∈ Θ}), and the problem of estimating θθθ.

The decision space here is D = Θ; the pure decision rules, the estimators δ : X −→ Θ (i.e.,

for any x ∈ X , δ(x) ∈ Θ). One also may be interested in estimating the value g(θθθ) of some

given function g at θθθ, in which case D = g(Θ). For simplicity, however, we concentrate on

the problem of estimating θθθ itself, and restrict to the scalar case θ ∈ Θ ⊆ R.
Loss functions, in this context, typically involve bowl-shaped functions ℓ of the differ-

ence (δ(x)− θ) satisfying ℓ(0) = 0. Examples are

– the quadratic loss function is Lθ (δ (x)) = (δ(x)− θ)2;

– the absolute deviation loss is Lθ (δ (x)) = |δ(x)− θ|;

– “robust” loss functions, of the form (Huber 1964)

Lθ (δ (x)) =


ℓ(δ(x)− θ) if | δ(x)− θ| ≤ c

ℓ(c) + ℓ′(c)(δ(x)− θ − c) if δ(x)− θ > c

ℓ(−c) + ℓ′(−c)(δ(x)− θ + c) if δ(x)− θ < −c

(where ℓ′ stands for the derivative of ℓ), or

– bounded loss functions, as

Lθ (δ (x)) =

{
ℓ(δ(x)− θ) if ℓ(δ(x)− θ) ≤ m

m if ℓ(δ(x)− θ) > m.
(1)

Most sensible loss functions, in this context, are convex functions of (δ(x)−θ), a property

bounded functions such as (1) cannot possess. The corresponding risks are

– the quadratic or L2 risk Rδ
θ = Eθ

[
(δ(x)− θ)2

]
– the expected absolute deviation or L1 risk Rδ

θ = Eθ[|δ(x)− θ|], etc.

As already mentioned, a uniformly optimal estimator in general does not exist unless we

put restrictions on the class C of estimators under consideration. Typically, an estimator
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having uniformly minimal (quadratic, absolute deviation,... ) risk within the class C of all

estimators of θ does not exist. Indeed, no δ can “beat” the degenerate estimator

δ(x) := θ0 for all x ∈ X (2)

uniformly over Θ: its L2 and L1 risks reduce to (θ − θ0)
2 and |θ − θ0|, respectively, taking

value zero at θ0. An estimator which has risk zero at θ = θ0 clearly is unbeatable at θ0, but

is extremely bad away from θ0, and does not exploit any of the information contained in X.

If we impose C = C0, the class of unbiased estimators or C = CG, the class of estimators that

are shift-equivariant (see a later chapter), such degenerate estimators as (2) are ruled out,

and uniformly optimal solutions may exist.

For instance, letX denote an i.i.d. sampleX1, . . . , Xn, with θ = E[X1]. It follows from the

Lehmann-Scheffé theorem (see a later chapter again) that the sample mean X := 1
n

∑
Xi has

uniformly minimum risk within the class of unbiased estimators (we say that it is uniformly

minimum risk unbiased (UMRU)), irrespective of the (convex) loss function ... This at first

sight is a very strong property. The condition of unbiasedness (under any distribution for

which E[X1] exists and is finite), however, puts a very severe restriction on the class C of X’s

competitors.

Another classical example is the optimality of the ordinary least squares (OLS) estimator

in the general linear model. The observation here, traditionally denoted as Y, is a n × 1

vector satisfying

Y = Xβββ + e,

where X is a n × k matrix of constants with maximal rank k ≤ n and e is an unobserved

n × 1 random error with mean 0 and covariance σ2I. The Gauss-Markov theorem tells us

that the OLS estimator β̂ββ = (X′X)−1X′Y is the best linear unbiased estimator (BLUE),

meaning that it achieves uniformly minimum quadratic risk within the class of linear (in Y)

unbiased estimators. Again, this optimality property perhaps is not as strong as it may look,

since the class of linear unbiased estimators essentially reduces to weighted means of Y.
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1.3.2 Hypothesis testing

Hypothesis testing problems, in a sense, are the simplest of all statistical inference problems,

as the decision space only contains two elements: rejection and non-rejection.

Consider a statistical model (X ,A,P), and assume that P has been divided into two

nonoverlapping parts, which we denote as P = H0⊕H1: H0 is called the null hypothesis, H1

the alternative. The decision space D = {RH0, /RH0} = {1, 0} contains two points: RH0

(rejectingH0) and /RH0 (not rejectingH0), which we conveniently will code as 1 and 0. In the

parametric case, the same partition of P into a null and an alternative is generally represented

as the corresponding partition of the parameter space: Θ = H0 ⊕H1. Whether H0 and H1

are subsets of P or Θ in general is clear from the context, and we will use both acceptions.

Decision rules in this context are denoted by ϕ instead of δ. By definition, pure decision

rules are measurable functions from (X ,A) to {0, 1}: call them (pure or nonrandomized)

tests. A test ϕ is thus a statistic with values in {0, 1}, hence the indicator of the region

{x : ϕ(x) = 1} ∈ A of all observation values leading to rejection, also called the critical

region of ϕ.

We also will consider randomized decision rules. Since a distribution over the two-point

set D = {0, 1} is entirely characterized by the probability it puts on the value 1, a random-

ized decision rule or randomized test associates such a probability will each point x in the

observation space X : the probability of rejecting H0 when x has been observed. The same

notation ϕ is conveniently used for that mapping, and we henceforth define a randomized

test as a measurable mapping ϕ from (X ,A) to the interval [0, 1]. This is coherent, as it

redefines a pure test as the special case of a randomized test taking only the values ϕ(x) = 0

(rejection with probability zero) and ϕ(x) = 1 (rejection with probability 1).

In practice, thus, a test ϕ, conditional on X = x, rejects H0 with probability ϕ(x). Then,

EP[ϕ(X)] is the probability that ϕ leads to rejection of the null hypothesis under P.
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Loss functions, since D has only two points, 0 and 1, are fully characterized by

LP(0) =

{
0 if P ∈ H0 (the cost of not rejecting H0 when it is true is zero)

a > 0 if P ∈ H1 (the cost of not rejecting H0 when it is false is a)

LP(1) =

{
b > 0 if P ∈ H0 (the cost of rejecting H0 when it is true is b)

0 if P ∈ H1 (the cost of rejecting H0 when it is false is zero),

with a > 0 and b > 0. The resulting risk (for a test ϕ, be it pure or randomized) is

Rϕ
P =

{
bEP[ϕ(X)] if P ∈ H0 (called the type I risk)

aEP[1− ϕ(X)] if P ∈ H1 (called the type II risk).

Minimizing type I risk implies minimizing the size EP[ϕ(X)] of ϕ under P ∈ H0, whereas

minimizing type II risk implies maximizing the power EP[ϕ(X)] of ϕ under P ∈ H1.

A test ϕ∗ is uniformly optimal within the class C of all tests if its risk is uniformly

minimal, that is, if, for all ϕ ∈ C,{
bEP[ϕ

∗(X)] ≤ bEP[ϕ(X)] for all P ∈ H0

aEP[1− ϕ∗(X)] ≤ aEP[1− ϕ(X)] for all P ∈ H1,

or, equivalently, since the constants a and b obviously play no role,{
EP[ϕ

∗] ≤ EP[ϕ] for all P ∈ H0 (3a)

EP[ϕ
∗] ≥ EP[ϕ] for all P ∈ H1. (3b)

In particular, (3a) should hold for the test ϕ(x) = 0 (the test that rejects with probability

zero, irrespective of x), and (3b) for the test ϕ(x) = 1 (the test that rejects with probability

one, irrespective of x), so that ϕ∗ should satisfy EP[ϕ
∗] = 0 for all P ∈ H0 and EP[ϕ

∗] = 1

for all P ∈ H1, that is, achieve risk zero uniformly. Such a test clearly does not exist, unless

the problem is degenerate (for instance, distributions in H0 and H1 have disjoint supports).

If an optimal solution is to be found, the class C thus should be restricted via some

statistical principle. The most classical one is the Neyman principle, under which an upper

bound α is imposed on the size. More precisely, consider the class Cα of α-level tests, namely,
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the tests satisfying the probability level condition

EP[ϕ
∗] ≤ α for all P ∈ H0, (3)

where the predefined level α ∈ (0, 1) takes conventional values of 1%, 5%, 10%, etc. Along

with this restriction to Cα, the cost a of type I error is put to zero, and the problem (without

loss of generality, one can take b = 1) consists in maximizing the power within Cα. A

uniformly most powerful (UMP) α-level test ϕ∗ then is such that

(i) ϕ∗ ∈ Cα, that is, EP[ϕ
∗] ≤ α for all P ∈ H0, and

(ii) EP[ϕ
∗] ≥ EP[ϕ] for all ϕ ∈ Cα and all P ∈ H1.

Under such an approach, optimal tests can be found for simple problems; further re-

strictions of the class Cα, however, may be needed, based on the principles of unbiasedness,

invariance, etc.
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