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2 Sufficiency

2.1 Dominated models

2.1.1 Measures

Denote by (X ,A) a space equipped with a σ-field (a measurable space). Recall that a

(positive) measure over (X ,A) is a nonnegative set function µ : A −→ R̄+ = R+ ∪ {+∞}
such that (σ-additivity)

µ(A1 ∪ A2 ∪ . . .) = µ(A1) + µ(A2) + . . .

as soon as A1, A2, . . . ∈ A are pairwise disjoint. Note that this implies that µ(∅) = 0.

Familiar examples are

(i) (Lebesgue measures) the Lebesgue measure defined over (Rk,Bk), where Bk is the Borel

σ-field over Rk, provides the Borel set’s usual length for k = 1, area for k = 2, volume

for k = 3, etc.

(ii) (counting measures) denoting by {ai} a finite or countable subset of X , the measure µ

defined over (X ,A) by

µ(A) := # {i : ai ∈ A} , A ∈ A

(where #E stands for the possibly infinite cardinality of a set E) is called the counting

measure associated with {ai}. Examples are, over (R,B), the counting measures asso-

ciated with {0, 1, . . . , k}, with the set of integers Z, with the set of natural numbers N,
or with the set of rationals Q (the latter yielding a rather weird measure under which

all nonempty open intervals have measure ∞);

1With slight modifications by Davy Paindaveine and Thomas Verdebout.
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(iii) (probability measures) a probability measure is a measure µ such that µ(X ) = 1.

A measure over (X ,A) is σ-finite if there exist A1, A2, . . . in A such that µ(Ai) <∞ and⋃∞
i=1Ai = X . Examples are the Lebesgue measure over (Rk,Bk), and the counting measures

over (R,B) associated with Z, N, or Q. A measure which is not σ-finite is µ defined over

(X ,A) by µ(∅) = 0, µ(A) = ∞ for all A ̸= ∅.
In the sequel, when a measurable space (X ,A) is equipped with the measure µ, we tacitly

assume that A has been completed for µ, that is, comprises all subsets of X that are included

in a set with µ-measure zero; the µ-measure of such subsets is automatically zero2.

2.1.2 Integrals

All integrals in the sequel are Lebesgue integrals. We will not attempt a rigorous definition

of such integrals, for which we refer to measure theory or probability textbooks. Let f be

a measurable function from (X ,A) to (R,B). The Lebesgue integral of f , when it exists, is

denoted as ∫
X
f(x)dµ(x).

Quite naturally, we let ∫
A

f(x)dµ(x) :=

∫
X
IA(x)f(x)dµ(x),

where

IA(x) :=

{
1 x ∈ A

0 x /∈ A

is the indicator function of A(∈ A). For f = 1, we get
∫
A
dµ = µ(A).

2The Borel σ-field B for R, for instance, is not complete for the Lebesgue measure µ. The σ-field B0

generated by (B,Nµ), where Nµ is the collection of all subsets of Borel sets with Lebesgue measure zero, is
called the Lebesgue σ-field. The elements B of B0 are of the form A ∪ C, where C ∈ N and A ∩ C = ∅; the
Lebesgue measure µ then can be extended to B0 by putting µ(B) := µ(A). The Lebesgue σ-field is complete
for this extended Lebesgue measure.
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(i) If µ is the Lebesgue measure over (R,B) and f is a bounded Riemann-integrable

function, then its Lebesgue and Riemann integrals over intervals coincide:∫
[a,b]

f(x)dµ(x) =

∫
[a,b)

f(x)dµ(x) =

∫
(a,b]

f(x)dµ(x) =

∫
(a,b)

f(x)dµ(x) =

∫ b

a

f(x)dx

for all a ≤ b, where the last integrable is the Riemann integral of f from a to b.

Lebesgue-integrable functions, however, need not be Riemann-integrable. A classical

counterexample is the indicator function IQ of Q (since Q is a countable subset of R,
we have

∫
[0,1]

IQ(x)dµ(x) = 0, but the corresponding Riemann integral does not exist).

(ii) If µ is the counting measure of {ai, . . . , ak}, then

∫
X
f(x)dµ(x) =

k∑
i=1

f(ai),

whereas if µ is the counting measure of {a1, a2, . . .}, then∫
X
f(x)dµ(x) =

∞∑
i=1

f(ai).

(iii) If µ is a probability measure P, then the Lebesgue integral of f is nothing else than

the expectation, under X ∼ P, of f(X):∫
X
f(x)dµ(x) =

∫
X
f(x)dP(x) = EP[f(X)].

In particular, when µ is a discrete probability measure P, with atoms x1, x2, . . . and

probability weights p1, p2, . . .,∫
X
f(x)dµ(x) =

∞∑
i=1

f(xi)pi

(obviously, this would just be a finite sum if P would have only finitely many atoms).
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2.1.3 Radon-Nikodym derivatives

Let µ and ν be two measures defined over the same (X ,A) space. We say that ν is dominated

by µ or, equivalently, that ν is absolutely continuous with respect to µ (notation: ν << µ)

if, for any A ∈ A, µ(A) = 0 implies ν(A) = 0. When two (σ-finite) measures are mutually

absolutely continuous, we say that they are equivalent. The following theorem then plays a

central role in the definition of conditional expectations and conditional probabilities.

Theorem 1. (Radon-Nikodym) Let µ and ν be two measures over (X ,A), with µ being

σ-finite. Then, ν << µ if and only if there exists a function f : X −→ R+ such that(
ν(A) =

) ∫
A

dν(x) =

∫
A

f(x)dµ(x) (2.1)

for all A ∈ A.

The function f in (2.1) is not uniquely defined; however it is essentially unique, in the

sense that, if f1 and f2 are such that (2.1) holds, then

µ ({x : f1(x) ̸= f2(x)}) = 0,

that is, they coincide up to a set of µ-measure zero. The set of all µ-almost everywhere equal

functions such that (2.1) holds is denoted as dν
dµ
, and called the Radon-Nikodym derivative

of ν with respect to µ. An arbitrary element (called a version of the Radon-Nikodym

derivative) of dν
dµ
, however, entirely characterizes the whole class; therefore, with a small

abuse of notation, we also denote such a version by dν
dµ
, taking at x ∈ X value dν

dµ
(x). The

characteristic property (2.1) with that notation takes the form

ν(A) =

∫
A

dν(x) =

∫
A

dν

dµ
(x)dµ(x) for all A ∈ A.

More generally, we have that, for any measurable function g,∫
A

g(x)dν(x) =

∫
A

g(x)
dν

dµ
(x)dµ(x) for all A ∈ A.
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When P << µ, where µ is σ-finite and P is a probability measure, we say that fP := dP
dµ

is the probability density of P with respect to µ, as (2.1) yields

P[A] =

∫
fP(x)dµ(x) (2.2)

for all A ∈ A. Probability densities, thus, are by essence defined up to a set of measure zero

in the reference measure.

We now state two useful properties of Radon-Nikodym derivatives (we state these only

for probability measures, although they extend to more general measures, which we will

actually use in the sequel). Letting P << Q << R be probability measures over (X ,A), we

have the following:

(a) if f ∈ dP
dQ

and g ∈ dQ
dR

, then fg ∈ dP
dR

;

(b) if f ∈ dP
dR

and g ∈ dQ
dR

, then f/g ∈ dP
dQ

;

In (b), note that

Q ({x : g(x) = 0}) =
∫
{x:g(x)=0}

g(x)dR(x) = 0,

so that f(x)/g(x) is well-defined up to a set with Q-measure zero, hence can be given an

arbitrary value at any x such that g(x) = 0; “dividing by zero” thus is not a problem there.

Let us give a few examples of probability densities.

(i) The N (0, 1) probability measure over (R,B) has density

f(x) = (2π)−1/2 exp
(
− 1

2
x2
)
, x ∈ R,

with respect to the Lebesgue measure. All probability distributions (over R or Rk)

called absolutely continuous in elementary textbooks, with density f defined as the

derivative of a cumulative distribution function, actually are absolutely continuous

with respect to the Lebesgue measure, and have density f (in the sense of (2.2)) with

respect to the same (more precisely, f is a version of that density).
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(ii) The Bernoulli Bin(1, p) measure over (R,B), with p ∈ (0, 1), is defined by

Pp[A] =


0 if 0, 1 /∈ A

p if 0 /∈ A and 1 ∈ A

1− p if 0 ∈ A and 1 /∈ A

1 if 0, 1 ∈ A

for any A ∈ B. That measure is absolutely continuous with respect to the counting

measure associated with {0, 1}, with density

fp(x) = px(1− p)1−x, x ∈ R.

Note that any other function f such that

f(x) =

{
p for x = 1

1− p for x = 0

is another version of the same density.

(iii) Similarly, the binomial Bin(n, p) measure has density

fn,p(x) =

(
n

x

)
px(1− p)n−x, x ∈ R,

with respect to the counting measure of {0, 1, . . . , n}, the Poisson(λ) measure has

density

fλ(x) = exp(−λ)λ
x

x!
, x ∈ R,

with respect to the counting measure of N, etc.

Denote by (X ,A,P) a statistical model. That model is said to be dominated by the

σ-finite measure µ if P is dominated by µ (notation: P << µ), namely, if for every P ∈ P ,

P << µ. Then, P can alternatively be described as a family of densities: {fP := dP
dµ

: P ∈ P}.
A model (X ,A,P) (a family P) is called a dominated model (a dominated family) if

there exists a σ-finite measure µ such that P << µ. Halmos and Savage (1949) proved the
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following lemma, showing that dominated families can be characterized without recurring to

any “external” measure µ.

Lemma 1. (Halmos and Savage, 1949) A family of probability measures P defined over the

space (X ,A) is a dominated family if and only if there exist a countable subset {P1,P2, . . .}
of P and a sequence (ci) of nonnegative real numbers satisfying

∑∞
i=1 ci = 1 such that

P << P∗ :=
∞∑
i=1

ciPi. (2.3)

The probability measure P∗ is called a privileged (dominating) measure.

Note that (2.3) actually states that Pi[A] = 0 for all i implies P[A] = 0 for all P ∈ P ,

while the converse is trivially true. That fact could be described as P and the countable

subfamily {P1,P2, . . .} being mutually absolutely continuous or equivalent. Lemma 1 then

can be restated without mentioning any constants ci nor any privileged P∗:

Lemma 1. A family of probability measures P defined over the space (X ,A) is a dominated

family if and only if it is equivalent to one of its countable subsets.

Privileged measures are indeterminate to a very large extent: if P∗ =
∑∞

i=1 c
∗
iPi is a

privileged measure, then any P∗∗ =
∑∞

i=1 c
∗∗
i Pi such that c∗∗i > 0 if and only if c∗i > 0 (with∑∞

i=1 c
∗∗
i = 1 =

∑∞
i=1 c

∗
i ) also is a privileged measure.

2.2 Conditional expectations

Denote by T a statistic defined over (X ,A), with values in (T ,BT ), i.e. a function

T : (X ,A) −→ (T ,BT ) mapping x ∈ X onto T(x) ∈ T and such that T−1(B) ∈ A for

every B ∈ BT . Then AT := T−1(BT ) is the smallest sub-σ-field of A with respect to

which T is measurable. Call it the σ-field generated by T. The statistic T maps each prob-

ability measure P defined over (X ,A) onto a probability measure PT over (T ,BT ). Namely,

for all B ∈ BT , we have

PT[B] := P[T−1(B)].
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That measure PT (the probability distribution of T(X) when X ∼ P) is called an induced

probability measure. Similarly, the family PT =
{
PT : P ∈ P

}
is called an induced family

and the statistical model
(
T ,BT ,PT

)
an induced model.

Such induced models typically are simpler than the original ones, sometimes much sim-

pler, hence more convenient to work with. Intuitively, they cannot provide more information

than the original ones: observing T(X) cannot be more informative than observing X itself.

Very clearly, however, they can provide less, and even much less information. A question then

naturally arises: is it possible to simplify, via a statistic T, a model (X ,A,P) into a model(
T ,BT ,PT

)
without losing any information on the data-generating process that generated

X? That question is the central one behind the concept of sufficiency : a statistic T will

be called sufficient if T(X) carries as much information as X itself on the data-generating

process that generated X.

The mathematical translation of that simple idea will require the concepts of conditional

expectation and conditional probability, which we now describe.

It can be shown that a measurable function g : (X ,A) 7−→ (R,B) is T-measurable

(equivalently, AT-measurable) if there exists a measurable mapping h : (T ,BT ) 7−→ (R,B)
such that g(x) = h(T(x)). Then, for all B ∈ BT , we have∫

B

h(t)dPT(t) =

∫
T−1(B)

h(T(x))︸ ︷︷ ︸
=g(x)

dP(x), (2.4)

meaning that, as soon as one of those integrals exists, so does the other one, and they

coincide (this is the transfer property of the Lebesgue integral).

In particular, for B = T , hence T−1(B) = X , with X ∼ P, hence T ∼ PT, adopting the

expectation notation of the integral, (2.4) takes the familiar form

E[h(T)] = E[h(T(X))]. (2.5)

Property (2.4) allows us to compute integrals of T-measurable functions either in T or in X ,

just as (2.5) tells us that expectations of T and T(X) are the same. Can that convenient

property be extended also to functions g that are not T-measurable? This is the purpose of
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conditional expectations.

Assume first that g is a nonnegative A-measurable and P-integrable function. Can we

define a T-measurable function h such that∫
B

h(t)dPT(t) =

∫
T−1(B)

g(x)dP(x) (2.6)

for all B ∈ BT ? Since g is nonnegative and P-integrable, the function νg from BT to R+

mapping B to

νg(B) :=

∫
T−1(B)

g(x)dP(x)

is a finite measure over (T ,BT ). That measure νg is dominated by PT, since PT[B] = 0

implies P[T−1(B)] = 0, hence νg(B) = 0. The Radon-Nikodym theorem then guarantees the

existence of an essentially unique function h = dνg
dPT such that

νg(B) =

∫
B

h(t)dPT(t),

so that (2.6) holds. The class of functions h = dνg
dPT is called the conditional expectation

of g(X) given T, and is denoted as EP[g(X)|T]. As usual, the same notation is used for

any of the elements of that class, which are PT-almost surely equal, T-measurable, random

variables; write EP[g(X)|T = t] for the value of EP[g(X)|T] at T = t. With that notation,

equation (2.6) takes the form∫
B

EP[g(X)|T = t]dPT(t) =

∫
T−1(B)

g(x)dP(x) for all B ∈ BT . (2.7)

It remains to extend this construction to functions g that are not nonnegative: for an

arbitrary A-measurable, P-integrable, but not necessarily nonnegative g, we decompose g

into g+ − g−, with

g+(x) :=

{
|g(x)| if g(x) ≥ 0

0 otherwise
and g−(x) :=

{
|g(x)| if g(x) ≤ 0

0 otherwise,
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and define EP[g(X)|T] = EP[g
+(X)|T]− EP[g

−(X)|T].

Since (2.7) involves the statistic T only through the σ-field BT, the conditional ex-

pectation EP[g(X)|T] actually does only depend on T through BT, so that the notation

EP[g(X)|AT] is also used for EP[g(X)|T]. This also implies that EP[g(X)|ℓ(T)] = EP[g(X)|T]

for any one-to-one mapping ℓ. In particular, for a real-valued T , the conditional expectations

EP[g(X)|T ], EP[g(X)| exp(T )], and EP[g(X)|T 3] always coincide.

Conditional expectations enjoy most of the elementary properties of expectations:

(a) linearity : for any constants ci and real-valued measurable functions gi : X −→ R,

EP

[∑
i

cigi(X)

∣∣∣∣T
]
=

∑
i

ciEP[gi(X)|T],

in the sense that if the right-hand side exists and is finite, so does the left-hand side;

(b) for any measurable function ℓ,

EP[ℓ(T)g(X)|T] = ℓ(T)EP[g(X)|T].

In particular, since it is easily checked that EP[1|T] = 1, we always have that

EP[ℓ(T)|T] = ℓ(T);

(c) EPT

[
EP[g(X)|T]

]
= EP[g(X)] (this follows by taking B = T in (2.7)).

A simple and interesting geometric interpretation of conditional expectation is possible if

we restrict to the L2 space of square-integrable functions, namely the space of all real-valued

measurable functions x 7−→ f(x) such that
∫
X f

2(x)dP(x) <∞, with scalar product

< f1, f2 >=

∫
X
f1(x)f2(x)dP(x).

Let g and ψ belong to L2, and let ψ be T-measurable, hence of the form ℓ(T(x)). Then, the
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squared L2-distance between g and ψ is

E
[
{g(X)− ψ(X)}2

]
= E

[
{g(X)− ℓ(T)}2

]
= E

[
{g(X)− E[g(X)|T] + E[g(X)|T]− ℓ(T)}2

]
= E

[
{g(X)− E[g(X)|T]}2

]
+2E[{g(X)− E[g(X)|T]} {E[g(X)|T]− ℓ(T)}]

+E
[
{E[g(X)|T]− ℓ(T)}2

]
.

Quite obviously,

(a) the first term E
[
(g(X)− E[g(X)|T])2

]
does not depend on ℓ(·);

(b) By the properties of conditional expectations, the second term is zero: indeed,

E[{g(X)− E[g(X)|T]} {E[g(X)|T]− ℓ(T)}]

= E
[
E[{g(X)− E[g(X)|T]} {E[g(X)|T]− ℓ(T)} |T]

]
= E

[
{E[g(X)|T]− ℓ(T)}E[g(X)− E[g(X)|T]|T]

]
= E

[
{E[g(X)|T]− ℓ(T)} × 0

]
= 0;

(c) the minimal value of the third term E
[
(E[g(X)|T]− ℓ(T))2

]
over all possible choices

of ψ(X) = ℓ(T) is zero, a minimum which is reached at ψ(X) = ℓ(T) = E[g(X)|T].

It follows that the minimum, over all T-measurable square-integrable functions ψ, of the

squared L2-distance E[{g(X)−ψ(X)}2] is E[{g(X)−E[g(X)|T]}2]; in other words, E[g(X)|T]

is the L2-projection of g(X) onto the space of (square-integrable) T-measurable variables.

2.3 Conditional probabilities

For any A ∈ A, we have, with X ∼ P,

P[A] =

∫
A

dP =

∫
X
IA(x)dP(x) = E[IA(X)] : (2.8)
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the probability of A is the expectation of the indicator of A. Therefore, it is natural to

extend that characterization by defining the conditional probability P[A|T] of A given T as

the T-measurable random variable

P[A|T] := EP[IA(X)|T]. (2.9)

While (2.8) is a property of expectations defined as integrals, (2.9) is the definition of a

new concept: the conditional probability of A given T. From the properties of conditional

expectations, we have the following properties for conditional probabilities:

• P[A] = EP[P[A|T]] =
∫
T P[A|T = t]dPT(t)

• P[A|T = t] is defined up to sets of PT-measure zero.

Whereas for any fixed A ∈ A, P[A|T] is a class of T-measurable random variables defined

up to a set of PT-measure zero, there is no guarantee that, for a given fixed value t, there

exists a collection of versions

{P[A|T = t] : A ∈ A}

constituting a probability measure over (X ,A). If such a collection exists, it qualifies as

being called the conditional distribution over (X ,A) of X, given T(X) = t. However, it can

be shown that, in “usual cases”, such conditional distributions do exist.

Theorem 2. Let X be a Borel set in a Euclidean space and A be the class of Borel subsets

of X . Then,

(i) one can select, for each A ∈ A, a version P∗[A|T] of P[A|T] in such a way that, for

any fixed t, A 7−→ P∗[A|T = t], A ∈ A constitutes a probability measure over (X ,A)

(notation: PX|T=t), and

(ii) t 7−→
∫
X f(x)dP

X|T=t constitutes a version of EP[f |T] (with f a P-integrable, possibly

vector-valued random variable).
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2.4 Sufficiency

We are now able to provide a precise definition of the concept of a sufficient statistic.

Definition 1. A statistic T : (X ,A) −→ (T ,BT ) is sufficient for (X ,A,P) if, for all A ∈ A,

there exists a version of P[A|T] that does not depend on P, i.e. if, for all A ∈ A,⋂
P∈P

P[A|T] ̸= ∅.

Intuitively, if a sufficient statistic T is known, then the (conditional) probability of any

event A ∈ A does not depend on which particular P ∈ P is generating the observation.

Hence, once T is known, the observation X does not carry any additional information

about P. All information on P in X is contained in T, which justifies the terminology

sufficiency.

Since P[A|T] actually depends on T only through AT, sufficiency is a property of AT

rather than T, which will allow us to sometimes write that AT itself is sufficient.

2.5 The Halmos-Savage theorem

The following theorem provides, in a dominated model, a necessary and sufficient condition

for a statistic T being sufficient.

Theorem 3. (Halmos and Savage, 1949) Let (X ,A,P) be a dominated model. The following

three statements are equivalent:

(i) T is sufficient;

(ii) for any P ∈ P, there exists a T-measurable version of dP
dP∗

, where P∗ is a specific

privileged probability measure;

(iii) for any P ∈ P, there exists a T-measurable version of dP
dP∗

, where P∗ is an arbitrary

privileged probability measure.
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Conditions (ii) and (iii) both are necessary and sufficient for sufficiency. Since (iii) obvi-

ously implies (ii), Condition (ii) is stronger than (iii) as a sufficient condition, and weaker

as a necessary one.

Proof. (i) ⇒ (iii) Assume that T is sufficient for (X ,A,P) and let P∗ =
∑

i ciPi be an

arbitrary privileged measure. Then, for any P ∈ P , we have P << P∗, hence PT << PT
∗ .

Thus, dPT

dPT
∗
exists: arbitrarily pick one of its versions, and denote it as t 7−→ gP(t). The proof

then consists in showing that x 7−→ gP(T(x)) is a version of dP
dP∗

. For any A ∈ A, sufficiency

of T implies that there exists a version of P[A|T] that does not depend on P, hence is also

a version of each of the Pi[A|T]’s and, therefore, a version of P∗[A|T]. Taking that fact into

account and applying repeatedly the characteristic property of conditional expectations, we

have, for any A ∈ A,

P[A] =

∫
X
IA(x)dP(x) =

∫
T
P[A|T = t] dPT(t)

=

∫
T
P∗[A|T = t] dPT(t) =

∫
T
EP∗ [IA(X)|T = t] gP(t)dP

T
∗ (t)

=

∫
T
EP∗ [gP(T)IA(X)|T = t] dPT

∗ (t) =

∫
X
gP(T(x))IA(x)dP∗(x)

=

∫
A

gP(T(x))dP∗(x).

This establishes that x 7→ gP(T(x)) is indeed a version of dP
dP∗

. Since it is obviously

T-measurable, the result follows.

(iii) ⇒ (ii) Trivial.

(ii) ⇒ (i) Fix the privileged measure P∗ mentioned in Condition (ii). For any P, let then

x 7−→ gP(T(x)) be a T-measurable version of dP
dP∗

. First note that, for any B ∈ BT ,

PT[B] = P[T−1(B)] =

∫
T−1(B)

gP(T(x))dP∗(x)

=

∫
B

EP∗ [gP(T)|T = t] dPT
∗ (t) =

∫
B

gP(t)dP
T
∗ (t),
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which shows that t 7−→ gP(t) is a version of dPT

dPT
∗
. Thus, for any B ∈ BT , P ∈ P and any

real-valued measurable function ψ, we have∫
T−1(B)

ψ(x)dP(x) =

∫
T−1(B)

ψ(x)gP(T(x))dP∗(x)

=

∫
B

EP∗ [ψ(X)gP(T)|T = t] dPT
∗ (t)

=

∫
B

EP∗ [ψ(X)|T = t] gP(t)dP
T
∗ (t)

=

∫
B

EP∗ [ψ(X)|T = t] dPT(t). (2.10)

Thus, for any measurable real-valued function ψ, any version of EP∗ [ψ(X)|T] is a version of

EP[ψ(X)|T] that does not depend on P. Sufficiency of T follows by choosing ψ = IA.

In view of (2.10), the definition of sufficiency could have been taken as the existence of

a version of conditional expectations not depending on P, instead of that of a version of

conditional probabilities not depending on P.

2.6 The Neyman-Fisher factorization criterion

In practice, the Halmos-Savage theorem is not convenient for checking sufficiency. Provided

that a dominating measure is well identified, a much simpler method is based on the following

result, which goes back to Neyman and Fisher.3

Proposition 1. (The Neyman-Fisher factorization criterion) Let the model (X ,A,P) be

dominated by the σ-finite measure µ. A statistic T is sufficient for (X ,A,P) if and only if,

for any P ∈ P, there exists a version of dP
dµ
, fP say, factorizing µ-a.e. into

fP(x) = gP(T(x))h(x),

where h does not depend on P.

3Neyman and Fisher, however, essentially took this result as a definition of sufficiency.
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Proof. (⇒) Assume that T is sufficient. The Halmos-Savage theorem then guarantees exis-

tence, for any P ∈ P , of a T-measurable version of dP
dP∗

, where P∗ is an arbitrary privileged

measure; denote it as x 7→ gP(T(x)). Noting that, for any P, we have P << P∗ << µ, let h

be an arbitrary version of dP∗
dµ

. The elementary properties of Radon-Nikodym derivatives

then ensure that

fP(x) := gP(T(x))h(x)

is a version of dP
dµ
, as was to be proved. (⇐) Assume that, for any P ∈ P , there exist some gP

and h (which, without loss of generality, can be assumed to be nonnegative) such that

fP(x) = gP(T(x))h(x) µ-a.e.

Fix then an arbitrary privileged measure P∗ =
∑∞

i=1 ciPi and note that

fP∗ :=
∞∑
i=1

cifPi
∈ dP∗

dµ
;

indeed, we have

P∗[A] =
∞∑
i=1

ciPi[A] =
∞∑
i=1

ci

∫
A

fPi
(x)dµ(x) =

∫
A

fP∗(x)dµ(x).

Since P << P∗ << µ, the elementary properties of Radon-Nikodym derivatives ensure that

a version of dP
dP∗

is given by

fP(x)

fP∗(x)
=

fP(x)∑∞
i=1 cifPi

(x)
=

gP(T(x))h(x)∑∞
i=1 cigPi

(T(x))h(x)
=

gP(T(x))∑∞
i=1 cigPi

(T(x))
·

Since this version of dP
dP∗

is T-measurable, sufficiency of T follows from the Halmos-Savage

theorem.

As an example, let X = (X1, . . . , Xn) collect independently and identically distributed

random variables that admit density f with respect to the Lebesgue measure on R. This

is thus a nonparametric model involving the family P = {Pf : f ∈ F}, where F is the
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collection of all densities with respect to the Lebesgue measure on the real line. The density

of X (in Rn, with respect to the Lebesgue measure on Rn), is, at x = (x1, . . . , xn),

fX(x1, . . . , xn) =
n∏

i=1

f(xi) =

( n∏
i=1

f(x(i))

)
︸ ︷︷ ︸

gf (x(.))

× 1︸︷︷︸
h(x)

,

where x(.) = (x(1), . . . , x(n)) is the order statistic. The factorization criterion thus entails

that x(.) is a sufficient statistic.

2.7 Minimal sufficiency (in dominated models)

Let S andT be two statistics, with values in (S,BS) and (T ,BT ), respectively. We say thatT

is S-measurable if and only if T is AS-measurable, in the sense that AT := T−1(BT ) ⊆ AS.

It can be shown that this happens if and only if there exists a measurable function ℓ from S
to T such that T (x) = ℓ(S(x)), or if and only if S(x) = S(y) implies that T (x) = T (y).

Obviously, if T is S-measurable and S is T-measurable, then AS = AT, T (x) = ℓ(S(x)) for

a one-to-one mapping ℓ, and S(x) = S(y) if and only if T (x) = T (y); in this framework,

both statistics provide the exact same reduction of information.

In the sequel, we assume that (X ,A,P) is a dominated model. If T is sufficient and

S-measurable (that is, if AT ⊆ AS), then S is also sufficient. Intuitively, if T is a func-

tion of S, then all information carried by T is also carried by S, whereas, mathemati-

cally, this readily follows from the Halmos-Savage theorem (since T-measurability implies

S-measurability). Thus, many sufficient statistics may be available for a given model.

Suppose, for example, that X = (X1, . . . , Xn) collects independently and identically

distributed N (0, σ2) variables, and consider the resulting model parametrized by σ2 ∈ R+
0 .

Then, the factorization criterion easily yields that the statistics

T1(X) = (X1, . . . , Xn)

T2(X) = (X(1), . . . , X(n)) (the order statistic)

T3(X) = (X2
(1), . . . , X

2
(n))
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T4(X) = (X2
(1) +X2

(2), X
2
(3) + . . .+X2

(n))

T5(X) = X2
1 + . . .+X2

n

are all sufficient, with AT5 ⊆ . . . ⊆ AT1 ⊆ A. The smaller AT, the larger the reduction

associated with T, and the simpler the model induced by T: in this respect, T5 does a better

job than T4, and a much better one than T1, which is trivially sufficient (no reduction at

all). As we will be show later, T5 actually is minimal sufficient, in the sense that no further

reduction is possible without losing sufficiency.

Definition 2. A statistic T is minimal sufficient (equivalently, the σ-field AT is minimal

sufficient) if it is sufficient and if it is S-measurable for any sufficient statistic S (equivalently,

if AT is sufficient and if AT =
⋂

S sufficientAS).

As an example, let X = (X1, . . . , Xn) collect independent and identically distributed

random variables whose common distribution is the uniform distribution over the interval

[θ − 1
2
, θ + 1

2
]. Denote by P = {Pθ : θ ∈ R} the family of joint distributions of such X’s.

Writing I[C] for the indicator function of Condition C (which takes value one if C is satisfied

and value zero otherwise), the density of Pθ with respect to the Lebesgue measure in Rn,

at x = (x1, . . . , xn) ∈ Rn, is then

fθ(x) = fθ(x1, . . . , xn) =
n∏

i=1

I
[
θ − 1

2
≤ xi ≤ θ +

1

2

]

= I
[
θ − 1

2
≤ x(1), x(n) ≤ θ +

1

2

]
= I

[
x(n) −

1

2
≤ θ ≤ x(1) +

1

2

]
.

The factorization criterion thus implies that T := (X(1), X(n)) is sufficient. In order to

establish minimal sufficiency, let S be sufficient. From the factorization criterion, we have

that, for all θ ∈ R, the density fθ factorizes into

fθ(x) = gθ(S(x))h(x) Pθ-a.s.
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Now, note that h(X) > 0 Pθ-a.s. for all θ ∈ R. Therefore, Pθ-a.s. for all θ ∈ R,

X(1) = inf
{
t ∈ R : fθ(X) = 0 for all θ ∈ (t,∞)

}
− 1

2

= inf
{
t ∈ R : gθ(S(X)) = 0 for all θ ∈ (t,∞)

}
− 1

2
(2.11)

and

X(n) = sup
{
t ∈ R : fθ(X) = 0 for all θ ∈ (−∞, t)

}
+

1

2

= sup
{
t ∈ R : gθ(S(X)) = 0 for all θ ∈ (−∞, t)

}
+

1

2
· (2.12)

It follows from (2.11)–(2.12) that T is S-measurable, hence is minimal sufficient.

It remains rare that we can establish minimal sufficiency by using Definition 2 as we could

do in the example above. We now present two results that together allow one to establish

minimal sufficiency in many cases.

Proposition 2. Let (X ,A,P0) and (X ,A,P) be two dominated models involving the same

observation space X , with P0 ⊂ P. If T is minimal sufficient for (X ,A,P0) and sufficient

for (X ,A,P), then T is minimal sufficient for (X ,A,P).

Proof. Let S be a sufficient statistic for (X ,A,P). Then, S is sufficient for (X ,A,P0) (this

follows, e.g., from the Halmos-Savage theorem). Since T is minimal sufficient for (X ,A,P0),

we thus have, by definition, that T is S-measurable, which was to be shown.

Proposition 3. Let P = {P0,P1, . . . ,PK} and assume that Pk << P0 for k = 1, . . . , K.

Then, T := (T1, . . . , TK), with Tk :=
dPk

dP0
, is minimal sufficient.

Proof. Obviously, the family P is dominated by P0, and
dP0

dP0
= 1. It directly follows from

the Halmos-Savage theorem (applied with P∗ = P0) that T := (T1, . . . , TK) is sufficient. Let

then S be an arbitrary sufficient statistic. From the Halmos-Savage theorem (still applied
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with P∗ = P0), there must exist, for any k = 1, . . . , K, a function ℓk such that

dPk

dP0

= ℓk(S).

This shows that T is S-measurable, hence minimal sufficient.

Let us provide some applications of Propositions 2–3.

Example 1: LetX = (X1, . . . , Xn) collect independent and identically distributedN (µ, 1)

random variables, with µ ∈ R. The density of X with respect to the Lebesgue measure on

Rn is, at x = (x1, . . . , xn),

fµ(x1, . . . , xn) = (2π)−n/2 exp

(
− 1

2

n∑
i=1

(xi − µ)2
)

= exp

(
µ

n∑
i=1

xi −
n

2
µ2

)
︸ ︷︷ ︸

gµ(
∑n

i=1 xi)

× (2π)−n/2 exp

(
− 1

2

n∑
i=1

x2i

)
︸ ︷︷ ︸

h(x)

.

The factorization criterion thus implies that
∑n

i=1Xi is a sufficient statistic. Now, denote

as P the family of all N (µ, 1) distributions associated with µ ∈ R, and by P0 a subfamily

consisting of the N (µ0, 1) and N (µ1, 1) distributions associated with two arbitrary values

µ0 ̸= µ1. In view of Proposition 3,

T :=
fµ1(x1, . . . , xn)

fµ0(x1, . . . , xn)

=
exp

(
µ1

∑n
i=1 xi −

n
2
µ2
1

)
(2π)−n/2 exp

(
−1

2

∑n
i=1 x

2
i

)
exp

(
µ0

∑n
i=1 xi −

n
2
µ2
0

)
(2π)−n/2 exp

(
−1

2

∑n
i=1 x

2
i

)
= exp

(
(µ1 − µ0)

n∑
i=1

xi +
n

2
(µ2

0 − µ2
1)

)

is minimal sufficient for P0. Since
∑n

i=1Xi generate the same σ-field as T , it is also

minimal sufficient for P0, hence (from Proposition 2) minimal sufficient for P . Clearly,
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X̄ := 1
n

∑n
i=1Xi, which generates the same σ-field as

∑n
i=1Xi, is then also minimal sufficient

for P .

Example 2: Let X = (X1, . . . , Xn) be an n-tuple of independent and identically dis-

tributed random variables, being logistic with location θ. More precisely, each Xi has density

fθ(x) =
exp (−(x− θ))

{1 + exp (−(x− θ))}2
, x ∈ R.

Then, for the finite subfamily P0 corresponding to the (K +1)-tuple of pairwise distinct pa-

rameter values {θ0 = 0, θ1, . . . , θK}, a minimal sufficient statistic is, in view of Proposition 3,

T = (T1, . . . , TK) , with Tj := exp(nθj)
n∏

i=1

(
1 + exp(−Xi)

1 + exp(−Xi + θj)

)2

.

Let us show that, forK = n+1, T(x1, . . . , xn) = T(y1, . . . , yn) if and only if (x(1), . . . ,x(n)) =

(y(1), . . . ,y(n)). This would then imply that T generates the same σ-field as the order

statistic (X(1), . . . ,X(n)) ofX, so that the order statistic would then also be minimal sufficient

for P0. Since the factorization criterion implies that the order statistic is sufficient for the

whole family P obtained for θ ∈ R, it would then be minimal sufficient for P , too (from

Proposition 2).

If (x(1), . . . ,x(n)) = (y(1), . . . ,y(n)), then obviously T(x1, . . . , xn) = T(y1, . . . , yn). As-

sume then that T(x1, . . . , xn) = T(y1, . . . , yn). Let ξj = exp(θj) and ui = exp(−xi),
vi = exp(−yi). Since T(x1, . . . , xn) = T(y1, . . . , yn), we have

ξnj

n∏
i=1

(
1 + ui
1 + ξui

)2

= ξnj

n∏
i=1

(
1 + vi
1 + ξvi

)2

for ξ = ξ1, . . . , ξn+1

(recall we took K = n+ 1), hence also

p(ξ) :=
n∏

i=1

1 + ξui
1 + ui

=
n∏

i=1

1 + ξvi
1 + vi

=: q(ξ) for ξ = ξ1, . . . , ξn+1.

This last equation requires that two polynomials of degree n in ξ, namely p(ξ) and q(ξ),
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be equal at n + 1 distinct values of ξ. This implies that these polynomials are identical,

hence that they share the same roots. Since the roots of p(ξ) are −1/u1, . . . ,−1/un and

those of q(ξ) are −1/v1, . . . ,−1/vn, it follows that u(i) = v(i) for all i = 1, . . . , n, hence

that x(i) = y(i) for all i = 1, . . . , n, as was to be proved.

Example 3: Semiparametric location model: X1, . . . , Xn are independently and identi-

cally distributed with density fθ (with respect to the Lebesgue measure on (R,B)), with
fθ(x) = f0(x − θ) and f0 ∈ F0 :=

{
f(x) :

∫
xf(x)dµ(x) = 0

}
. That class F0 contains the

centered logistic, so that the logistic family of Example 2 is a subfamily P0 of P . Clearly,

the order statistic is sufficient for P (this readily follows from the factorization criterion),

while we have shown it is minimal sufficient for P0. Hence, the order statistic is minimal

sufficient for P .
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