Lecture Notes for STAT-F404, author: Marc Hallin ${ }^{1}$

2 Sufficiency

2.1 Dominated models

2.1.1 Measures

Denote by $(\mathcal{X}, \mathcal{A})$ a space equipped with a σ-field (a measurable space). Recall that a (positive) measure over $(\mathcal{X}, \mathcal{A})$ is a nonnegative set function $\mu: \mathcal{A} \longrightarrow \overline{\mathbb{R}}^{+}=\mathbb{R}^{+} \cup\{+\infty\}$ such that (σ-additivity)

$$
\mu\left(A_{1} \cup A_{2} \cup \ldots\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+\ldots
$$

as soon as $A_{1}, A_{2}, \ldots \in \mathcal{A}$ are pairwise disjoint. Note that this implies that $\mu(\emptyset)=0$.
Familiar examples are
(i) (Lebesgue measures) the Lebesgue measure defined over $\left(\mathbb{R}^{k}, \mathcal{B}^{k}\right)$, where \mathcal{B}^{k} is the Borel σ-field over \mathbb{R}^{k}, provides the Borel set's usual length for $k=1$, area for $k=2$, volume for $k=3$, etc.
(ii) (counting measures) denoting by $\left\{a_{i}\right\}$ a finite or countable subset of \mathcal{X}, the measure μ defined over $(\mathcal{X}, \mathcal{A})$ by

$$
\mu(A):=\#\left\{i: a_{i} \in A\right\}, \quad A \in \mathcal{A}
$$

(where $\# E$ stands for the possibly infinite cardinality of a set E) is called the counting measure associated with $\left\{a_{i}\right\}$. Examples are, over $(\mathbb{R}, \mathcal{B})$, the counting measures associated with $\{0,1, \ldots, k\}$, with the set of integers \mathbb{Z}, with the set of natural numbers \mathbb{N}, or with the set of rationals \mathbb{Q} (the latter yielding a rather weird measure under which all nonempty open intervals have measure ∞);

[^0](iii) (probability measures) a probability measure is a measure μ such that $\mu(\mathcal{X})=1$.

A measure over $(\mathcal{X}, \mathcal{A})$ is σ-finite if there exist A_{1}, A_{2}, \ldots in \mathcal{A} such that $\mu\left(A_{i}\right)<\infty$ and $\bigcup_{i=1}^{\infty} A_{i}=\mathcal{X}$. Examples are the Lebesgue measure over $\left(\mathbb{R}^{k}, \mathcal{B}^{k}\right)$, and the counting measures over $(\mathbb{R}, \mathcal{B})$ associated with \mathbb{Z}, \mathbb{N}, or \mathbb{Q}. A measure which is not σ-finite is μ defined over $(\mathcal{X}, \mathcal{A})$ by $\mu(\emptyset)=0, \mu(A)=\infty$ for all $A \neq \emptyset$.

In the sequel, when a measurable space $(\mathcal{X}, \mathcal{A})$ is equipped with the measure μ, we tacitly assume that \mathcal{A} has been completed for μ, that is, comprises all subsets of \mathcal{X} that are included in a set with μ-measure zero; the μ-measure of such subsets is automatically zero ${ }^{2}$.

2.1.2 Integrals

All integrals in the sequel are Lebesgue integrals. We will not attempt a rigorous definition of such integrals, for which we refer to measure theory or probability textbooks. Let f be a measurable function from $(\mathcal{X}, \mathcal{A})$ to $(\mathbb{R}, \mathcal{B})$. The Lebesgue integral of f, when it exists, is denoted as

$$
\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}) .
$$

Quite naturally, we let

$$
\int_{A} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}):=\int_{\mathcal{X}} I_{A}(\mathbf{x}) f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x})
$$

where

$$
I_{A}(\mathrm{x}):= \begin{cases}1 & \mathrm{x} \in A \\ 0 & \mathrm{x} \notin A\end{cases}
$$

is the indicator function of $A(\in \mathcal{A})$. For $f=1$, we get $\int_{A} \mathrm{~d} \mu=\mu(A)$.

[^1](i) If μ is the Lebesgue measure over $(\mathbb{R}, \mathcal{B})$ and f is a bounded Riemann-integrable function, then its Lebesgue and Riemann integrals over intervals coincide:
$$
\int_{[a, b]} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x})=\int_{[a, b)} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x})=\int_{(a, b]} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x})=\int_{(a, b)} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x})=\int_{a}^{b} f(\mathbf{x}) \mathrm{d} \mathbf{x}
$$
for all $a \leq b$, where the last integrable is the Riemann integral of f from a to b. Lebesgue-integrable functions, however, need not be Riemann-integrable. A classical counterexample is the indicator function $I_{\mathbb{Q}}$ of $\mathbb{Q}($ since \mathbb{Q} is a countable subset of \mathbb{R}, we have $\int_{[0,1]} I_{\mathbb{Q}}(x) \mathrm{d} \mu(x)=0$, but the corresponding Riemann integral does not exist).
(ii) If μ is the counting measure of $\left\{a_{i}, \ldots, a_{k}\right\}$, then
$$
\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x})=\sum_{i=1}^{k} f\left(a_{i}\right)
$$
whereas if μ is the counting measure of $\left\{a_{1}, a_{2}, \ldots\right\}$, then
$$
\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x})=\sum_{i=1}^{\infty} f\left(a_{i}\right) .
$$
(iii) If μ is a probability measure P , then the Lebesgue integral of f is nothing else than the expectation, under $\mathbf{X} \sim \mathrm{P}$, of $f(\mathbf{X})$:
$$
\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x})=\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{dP}(\mathbf{x})=\mathrm{E}_{\mathrm{P}}[f(\mathbf{X})] .
$$

In particular, when μ is a discrete probability measure P , with atoms x_{1}, x_{2}, \ldots and probability weights p_{1}, p_{2}, \ldots,

$$
\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x})=\sum_{i=1}^{\infty} f\left(x_{i}\right) p_{i}
$$

(obviously, this would just be a finite sum if P would have only finitely many atoms).

2.1.3 Radon-Nikodym derivatives

Let μ and ν be two measures defined over the same $(\mathcal{X}, \mathcal{A})$ space. We say that ν is dominated by μ or, equivalently, that ν is absolutely continuous with respect to μ (notation: $\nu \ll \mu$) if, for any $A \in \mathcal{A}, \mu(A)=0$ implies $\nu(A)=0$. When two (σ-finite) measures are mutually absolutely continuous, we say that they are equivalent. The following theorem then plays a central role in the definition of conditional expectations and conditional probabilities.

Theorem 1. (Radon-Nikodym) Let μ and ν be two measures over $(\mathcal{X}, \mathcal{A})$, with μ being σ-finite. Then, $\nu \ll \mu$ if and only if there exists a function $f: \mathcal{X} \longrightarrow \mathbb{R}^{+}$such that

$$
\begin{equation*}
(\nu(A)=) \int_{A} \mathrm{~d} \nu(\mathbf{x})=\int_{A} f(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}) \tag{2.1}
\end{equation*}
$$

for all $A \in \mathcal{A}$.
The function f in (2.1) is not uniquely defined; however it is essentially unique, in the sense that, if f_{1} and f_{2} are such that (2.1) holds, then

$$
\mu\left(\left\{\mathbf{x}: f_{1}(\mathbf{x}) \neq f_{2}(\mathbf{x})\right\}\right)=0
$$

that is, they coincide up to a set of μ-measure zero. The set of all μ-almost everywhere equal functions such that (2.1) holds is denoted as $\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$, and called the Radon-Nikodym derivative of ν with respect to μ. An arbitrary element (called a version of the Radon-Nikodym derivative) of $\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$, however, entirely characterizes the whole class; therefore, with a small abuse of notation, we also denote such a version by $\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$, taking at $\mathbf{x} \in \mathcal{X}$ value $\frac{\mathrm{d} \nu}{\mathrm{d} \mu}(\mathbf{x})$. The characteristic property (2.1) with that notation takes the form

$$
\nu(A)=\int_{A} \mathrm{~d} \nu(\mathbf{x})=\int_{A} \frac{\mathrm{~d} \nu}{\mathrm{~d} \mu}(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}) \quad \text { for all } A \in \mathcal{A}
$$

More generally, we have that, for any measurable function g,

$$
\int_{A} g(\mathbf{x}) \mathrm{d} \nu(\mathbf{x})=\int_{A} g(\mathbf{x}) \frac{\mathrm{d} \nu}{\mathrm{~d} \mu}(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}) \quad \text { for all } A \in \mathcal{A} .
$$

When $\mathrm{P} \ll \mu$, where μ is σ-finite and P is a probability measure, we say that $f_{\mathrm{P}}:=\frac{\mathrm{d}}{\mathrm{d} \mu}$ is the probability density of P with respect to μ, as (2.1) yields

$$
\begin{equation*}
\mathrm{P}[A]=\int f_{\mathrm{P}}(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}) \tag{2.2}
\end{equation*}
$$

for all $A \in \mathcal{A}$. Probability densities, thus, are by essence defined up to a set of measure zero in the reference measure.

We now state two useful properties of Radon-Nikodym derivatives (we state these only for probability measures, although they extend to more general measures, which we will actually use in the sequel). Letting $\mathrm{P} \ll \mathrm{Q} \ll \mathrm{R}$ be probability measures over $(\mathcal{X}, \mathcal{A})$, we have the following:
(a) if $f \in \frac{\mathrm{dP}}{\mathrm{dQ}}$ and $g \in \frac{\mathrm{dQ}}{\mathrm{dR}}$, then $f g \in \frac{\mathrm{dP}}{\mathrm{dR}}$;
(b) if $f \in \frac{\mathrm{dP}}{\mathrm{dR}}$ and $g \in \frac{\mathrm{dQ}}{\mathrm{dR}}$, then $f / g \in \frac{\mathrm{dP}}{\mathrm{dQ}}$;

In (b), note that

$$
\mathrm{Q}(\{\mathbf{x}: g(\mathbf{x})=0\})=\int_{\{\mathbf{x}: g(\mathbf{x})=0\}} g(\mathbf{x}) d R(\mathbf{x})=0
$$

so that $f(\mathbf{x}) / g(\mathbf{x})$ is well-defined up to a set with Q-measure zero, hence can be given an arbitrary value at any \mathbf{x} such that $g(\mathbf{x})=0$; "dividing by zero" thus is not a problem there.

Let us give a few examples of probability densities.
(i) The $\mathcal{N}(0,1)$ probability measure over $(\mathbb{R}, \mathcal{B})$ has density

$$
f(x)=(2 \pi)^{-1 / 2} \exp \left(-\frac{1}{2} x^{2}\right), \quad x \in \mathbb{R}
$$

with respect to the Lebesgue measure. All probability distributions (over \mathbb{R} or \mathbb{R}^{k}) called absolutely continuous in elementary textbooks, with density f defined as the derivative of a cumulative distribution function, actually are absolutely continuous with respect to the Lebesgue measure, and have density f (in the sense of (2.2)) with respect to the same (more precisely, f is a version of that density).
(ii) The Bernoulli $\operatorname{Bin}(1, p)$ measure over $(\mathbb{R}, \mathcal{B})$, with $p \in(0,1)$, is defined by

$$
\mathrm{P}_{p}[A]= \begin{cases}0 & \text { if } 0,1 \notin A \\ p & \text { if } 0 \notin A \text { and } 1 \in A \\ 1-p & \text { if } 0 \in A \text { and } 1 \notin A \\ 1 & \text { if } 0,1 \in A\end{cases}
$$

for any $A \in \mathcal{B}$. That measure is absolutely continuous with respect to the counting measure associated with $\{0,1\}$, with density

$$
f_{p}(x)=p^{x}(1-p)^{1-x}, \quad x \in \mathbb{R}
$$

Note that any other function f such that

$$
f(x)= \begin{cases}p & \text { for } x=1 \\ 1-p & \text { for } x=0\end{cases}
$$

is another version of the same density.
(iii) Similarly, the binomial $\operatorname{Bin}(n, p)$ measure has density

$$
f_{n, p}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x \in \mathbb{R}
$$

with respect to the counting measure of $\{0,1, \ldots, n\}$, the $\operatorname{Poisson}(\lambda)$ measure has density

$$
f_{\lambda}(x)=\exp (-\lambda) \frac{\lambda^{x}}{x!}, \quad x \in \mathbb{R}
$$

with respect to the counting measure of \mathbb{N}, etc.
Denote by $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ a statistical model. That model is said to be dominated by the σ-finite measure μ if \mathcal{P} is dominated by μ (notation: $\mathcal{P} \ll \mu$), namely, if for every $\mathrm{P} \in \mathcal{P}$, $\mathrm{P} \ll \mu$. Then, \mathcal{P} can alternatively be described as a family of densities: $\left\{f_{\mathrm{P}}:=\frac{\mathrm{dP}}{\mathrm{d} \mu}: \mathrm{P} \in \mathcal{P}\right\}$.

A model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ (a family \mathcal{P}) is called a dominated model (a dominated family) if there exists a σ-finite measure μ such that $\mathcal{P} \ll \mu$. Halmos and Savage (1949) proved the
following lemma, showing that dominated families can be characterized without recurring to any "external" measure μ.

Lemma 1. (Halmos and Savage, 1949) A family of probability measures \mathcal{P} defined over the space $(\mathcal{X}, \mathcal{A})$ is a dominated family if and only if there exist a countable subset $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right\}$ of \mathcal{P} and a sequence $\left(c_{i}\right)$ of nonnegative real numbers satisfying $\sum_{i=1}^{\infty} c_{i}=1$ such that

$$
\begin{equation*}
\mathcal{P} \ll \mathrm{P}_{*}:=\sum_{i=1}^{\infty} c_{i} \mathrm{P}_{i} \tag{2.3}
\end{equation*}
$$

The probability measure P_{*} is called a privileged (dominating) measure.
Note that (2.3) actually states that $\mathrm{P}_{i}[A]=0$ for all i implies $\mathrm{P}[A]=0$ for all $\mathrm{P} \in \mathcal{P}$, while the converse is trivially true. That fact could be described as \mathcal{P} and the countable subfamily $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right\}$ being mutually absolutely continuous or equivalent. Lemma 1 then can be restated without mentioning any constants c_{i} nor any privileged P_{*} :

Lemma 1. A family of probability measures \mathcal{P} defined over the space $(\mathcal{X}, \mathcal{A})$ is a dominated family if and only if it is equivalent to one of its countable subsets.

Privileged measures are indeterminate to a very large extent: if $\mathrm{P}_{*}=\sum_{i=1}^{\infty} c_{i}^{*} \mathrm{P}_{i}$ is a privileged measure, then any $\mathrm{P}_{* *}=\sum_{i=1}^{\infty} c_{i}^{* *} \mathrm{P}_{i}$ such that $c_{i}^{* *}>0$ if and only if $c_{i}^{*}>0$ (with $\left.\sum_{i=1}^{\infty} c_{i}^{* *}=1=\sum_{i=1}^{\infty} c_{i}^{*}\right)$ also is a privileged measure.

2.2 Conditional expectations

Denote by \mathbf{T} a statistic defined over $(\mathcal{X}, \mathcal{A})$, with values in $\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}\right)$, i.e. a function $\mathbf{T}:(\mathcal{X}, \mathcal{A}) \longrightarrow\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}\right)$ mapping $\mathbf{x} \in \mathcal{X}$ onto $\mathbf{T}(\mathbf{x}) \in \mathcal{T}$ and such that $\mathbf{T}^{-1}(B) \in \mathcal{A}$ for every $B \in \mathcal{B}_{\mathcal{T}}$. Then $\mathcal{A}_{\mathbf{T}}:=\mathbf{T}^{-1}\left(\mathcal{B}_{\mathcal{T}}\right)$ is the smallest sub- σ-field of \mathcal{A} with respect to which \mathbf{T} is measurable. Call it the σ-field generated by \mathbf{T}. The statistic \mathbf{T} maps each probability measure P defined over $(\mathcal{X}, \mathcal{A})$ onto a probability measure $\mathrm{P}^{\mathbf{T}}$ over $\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}\right)$. Namely, for all $B \in \mathcal{B}_{\mathcal{T}}$, we have

$$
\mathrm{P}^{\mathbf{T}}[B]:=\mathrm{P}\left[\mathbf{T}^{-1}(B)\right] .
$$

That measure $\mathrm{P}^{\mathbf{T}}$ (the probability distribution of $\mathbf{T}(\mathbf{X})$ when $\mathbf{X} \sim \mathrm{P}$) is called an induced probability measure. Similarly, the family $\mathcal{P}^{\mathbf{T}}=\left\{\mathrm{P}^{\mathbf{T}}: \mathrm{P} \in \mathcal{P}\right\}$ is called an induced family and the statistical model $\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}, \mathcal{P}^{\mathbf{T}}\right)$ an induced model.

Such induced models typically are simpler than the original ones, sometimes much simpler, hence more convenient to work with. Intuitively, they cannot provide more information than the original ones: observing $\mathbf{T}(\mathbf{X})$ cannot be more informative than observing \mathbf{X} itself. Very clearly, however, they can provide less, and even much less information. A question then naturally arises: is it possible to simplify, via a statistic \mathbf{T}, a model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ into a model $\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}, \mathcal{P}^{\mathbf{T}}\right)$ without losing any information on the data-generating process that generated \mathbf{X} ? That question is the central one behind the concept of sufficiency: a statistic \mathbf{T} will be called sufficient if $\mathbf{T}(\mathbf{X})$ carries as much information as \mathbf{X} itself on the data-generating process that generated \mathbf{X}.

The mathematical translation of that simple idea will require the concepts of conditional expectation and conditional probability, which we now describe.

It can be shown that a measurable function $g:(\mathcal{X}, \mathcal{A}) \longmapsto(\mathbb{R}, \mathcal{B})$ is \mathbf{T}-measurable (equivalently, $\mathcal{A}_{\mathbf{T}}$-measurable) if there exists a measurable mapping $h:\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}\right) \longmapsto(\mathbb{R}, \mathcal{B})$ such that $g(\mathbf{x})=h(\mathbf{T}(\mathbf{x}))$. Then, for all $B \in \mathcal{B}_{\mathcal{T}}$, we have

$$
\begin{equation*}
\int_{B} h(\mathbf{t}) \mathrm{dP}^{\mathbf{T}}(\mathbf{t})=\int_{\mathbf{T}^{-1}(B)} \underbrace{h(\mathbf{T}(\mathbf{x}))}_{=g(\mathbf{x})} \mathrm{dP}(\mathbf{x}), \tag{2.4}
\end{equation*}
$$

meaning that, as soon as one of those integrals exists, so does the other one, and they coincide (this is the transfer property of the Lebesgue integral).

In particular, for $B=\mathcal{T}$, hence $\mathbf{T}^{-1}(B)=\mathcal{X}$, with $\mathbf{X} \sim \mathrm{P}$, hence $\mathbf{T} \sim \mathrm{P}^{\mathbf{T}}$, adopting the expectation notation of the integral, (2.4) takes the familiar form

$$
\begin{equation*}
\mathrm{E}[h(\mathbf{T})]=\mathrm{E}[h(\mathbf{T}(\mathbf{X}))] . \tag{2.5}
\end{equation*}
$$

Property (2.4) allows us to compute integrals of \mathbf{T}-measurable functions either in \mathcal{T} or in \mathcal{X}, just as (2.5) tells us that expectations of \mathbf{T} and $\mathbf{T}(\mathbf{X})$ are the same. Can that convenient property be extended also to functions g that are not T-measurable? This is the purpose of
conditional expectations.
Assume first that g is a nonnegative \mathcal{A}-measurable and P -integrable function. Can we define a T-measurable function h such that

$$
\begin{equation*}
\int_{B} h(\mathbf{t}) \mathrm{dP}^{\mathbf{T}}(\mathbf{t})=\int_{\mathbf{T}^{-1}(B)} g(\mathbf{x}) \mathrm{dP}(\mathbf{x}) \tag{2.6}
\end{equation*}
$$

for all $B \in \mathcal{B}_{\mathcal{T}}$? Since g is nonnegative and P-integrable, the function ν_{g} from $\mathcal{B}_{\mathcal{T}}$ to \mathbb{R}^{+} mapping B to

$$
\nu_{g}(B):=\int_{\mathbf{T}^{-1}(B)} g(\mathbf{x}) \mathrm{dP}(\mathbf{x})
$$

is a finite measure over $\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}\right)$. That measure ν_{g} is dominated by $\mathrm{P}^{\mathbf{T}}$, since $\mathrm{P}^{\mathbf{T}}[B]=0$ implies $\mathrm{P}\left[\mathbf{T}^{-1}(B)\right]=0$, hence $\nu_{g}(B)=0$. The Radon-Nikodym theorem then guarantees the existence of an essentially unique function $h=\frac{\mathrm{d} \nu_{g}}{\mathrm{dPT}}$ such that

$$
\nu_{g}(B)=\int_{B} h(\mathbf{t}) \mathrm{dP}^{\mathbf{T}}(\mathbf{t}),
$$

so that (2.6) holds. The class of functions $h=\frac{\mathrm{d} \nu_{g}}{\mathrm{dPT}}$ is called the conditional expectation of $g(\mathbf{X})$ given \mathbf{T}, and is denoted as $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \mathbf{T}]$. As usual, the same notation is used for any of the elements of that class, which are $\mathrm{P}^{\mathbf{T}}$-almost surely equal, \mathbf{T}-measurable, random variables; write $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \mathbf{T}=\mathbf{t}]$ for the value of $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \mathbf{T}]$ at $\mathbf{T}=\mathbf{t}$. With that notation, equation (2.6) takes the form

$$
\begin{equation*}
\int_{B} \mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \mathbf{T}=\mathbf{t}] \mathrm{dP}^{\mathbf{T}}(\mathbf{t})=\int_{\mathbf{T}^{-1}(B)} g(\mathbf{x}) \mathrm{dP}(\mathbf{x}) \quad \text { for all } B \in \mathcal{B}_{\mathcal{T}} \tag{2.7}
\end{equation*}
$$

It remains to extend this construction to functions g that are not nonnegative: for an arbitrary \mathcal{A}-measurable, P-integrable, but not necessarily nonnegative g, we decompose g into $g^{+}-g^{-}$, with

$$
g^{+}(\mathbf{x}):=\left\{\begin{array}{ll}
|g(\mathbf{x})| & \text { if } g(\mathbf{x}) \geq 0 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad g^{-}(\mathbf{x}):= \begin{cases}|g(\mathbf{x})| & \text { if } g(\mathbf{x}) \leq 0 \\
0 & \text { otherwise }\end{cases}\right.
$$

and define $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \mathbf{T}]=\mathrm{E}_{\mathrm{P}}\left[g^{+}(\mathbf{X}) \mid \mathbf{T}\right]-\mathrm{E}_{\mathbf{P}}\left[g^{-}(\mathbf{X}) \mid \mathbf{T}\right]$.
Since (2.7) involves the statistic \mathbf{T} only through the σ-field $\mathcal{B}_{\mathbf{T}}$, the conditional expectation $\mathrm{E}_{\mathbf{P}}[g(\mathbf{X}) \mid \mathbf{T}]$ actually does only depend on \mathbf{T} through $\mathcal{B}_{\mathbf{T}}$, so that the notation $\mathrm{E}_{\mathrm{P}}\left[g(\mathbf{X}) \mid \mathcal{A}_{\mathbf{T}}\right]$ is also used for $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \mathbf{T}]$. This also implies that $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \ell(\mathbf{T})]=\mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \mathbf{T}]$ for any one-to-one mapping ℓ. In particular, for a real-valued T, the conditional expectations $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid T], \mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \exp (T)]$, and $\mathrm{E}_{\mathrm{P}}\left[g(\mathbf{X}) \mid T^{3}\right]$ always coincide.

Conditional expectations enjoy most of the elementary properties of expectations:
(a) linearity: for any constants c_{i} and real-valued measurable functions $g_{i}: \mathcal{X} \longrightarrow \mathbb{R}$,

$$
\mathrm{E}_{\mathrm{P}}\left[\sum_{i} c_{i} g_{i}(\mathbf{X}) \mid \mathbf{T}\right]=\sum_{i} c_{i} \mathrm{E}_{\mathrm{P}}\left[g_{i}(\mathbf{X}) \mid \mathbf{T}\right]
$$

in the sense that if the right-hand side exists and is finite, so does the left-hand side;
(b) for any measurable function ℓ,

$$
\mathrm{E}_{\mathbf{P}}[\ell(\mathbf{T}) g(\mathbf{X}) \mid \mathbf{T}]=\ell(\mathbf{T}) \mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \mathbf{T}] .
$$

In particular, since it is easily checked that $\mathrm{E}_{\mathrm{P}}[1 \mid \mathbf{T}]=1$, we always have that

$$
\mathrm{E}_{\mathrm{P}}[\ell(\mathbf{T}) \mid \mathbf{T}]=\ell(\mathbf{T}) ;
$$

(c) $\mathrm{E}_{\mathrm{P} \mathbf{T}}\left[\mathrm{E}_{\mathrm{P}}[g(\mathbf{X}) \mid \mathbf{T}]\right]=\mathrm{E}_{\mathrm{P}}[g(\mathbf{X})]$ (this follows by taking $B=\mathcal{T}$ in (2.7)).

A simple and interesting geometric interpretation of conditional expectation is possible if we restrict to the L^{2} space of square-integrable functions, namely the space of all real-valued measurable functions $\mathbf{x} \longmapsto f(\mathbf{x})$ such that $\int_{\mathcal{X}} f^{2}(\mathbf{x}) \mathrm{dP}(\mathbf{x})<\infty$, with scalar product

$$
<f_{1}, f_{2}>=\int_{\mathcal{X}} f_{1}(\mathbf{x}) f_{2}(\mathbf{x}) d \mathrm{P}(\mathbf{x})
$$

Let g and ψ belong to L^{2}, and let ψ be \mathbf{T}-measurable, hence of the form $\ell(\mathbf{T}(\mathbf{x}))$. Then, the
squared L^{2}-distance between g and ψ is

$$
\begin{aligned}
& \mathrm{E}\left[\{g(\mathbf{X})-\psi(\mathbf{X})\}^{2}\right]=\mathrm{E}\left[\{g(\mathbf{X})-\ell(\mathbf{T})\}^{2}\right]=\mathrm{E}\left[\{g(\mathbf{X})-\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]+\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]-\ell(\mathbf{T})\}^{2}\right] \\
&=\mathrm{E}\left[\{g(\mathbf{X})-\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]\}^{2}\right] \\
&+2 \mathrm{E}[\{g(\mathbf{X})-\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]\}\{\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]-\ell(\mathbf{T})\}] \\
&+\mathrm{E}\left[\{\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]-\ell(\mathbf{T})\}^{2}\right]
\end{aligned}
$$

Quite obviously,
(a) the first term $\mathrm{E}\left[(g(\mathbf{X})-\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}])^{2}\right]$ does not depend on $\ell(\cdot)$;
(b) By the properties of conditional expectations, the second term is zero: indeed,

$$
\begin{aligned}
& \mathrm{E}[\{g(\mathbf{X})-\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]\}\{\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]-\ell(\mathbf{T})\}] \\
& \quad=\mathrm{E}[\mathrm{E}[\{g(\mathbf{X})-\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]\}\{\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]-\ell(\mathbf{T})\} \mid \mathbf{T}]] \\
& \quad=\mathrm{E}[\{\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]-\ell(\mathbf{T})\} \mathrm{E}[g(\mathbf{X})-\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}] \mid \mathbf{T}]] \\
& \quad=\mathrm{E}[\{\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]-\ell(\mathbf{T})\} \times 0]=0
\end{aligned}
$$

(c) the minimal value of the third term $\mathrm{E}\left[(\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]-\ell(\mathbf{T}))^{2}\right]$ over all possible choices of $\psi(\mathbf{X})=\ell(\mathbf{T})$ is zero, a minimum which is reached at $\psi(\mathbf{X})=\ell(\mathbf{T})=\mathrm{E}[g(\mathbf{X}) \mid \mathbf{T}]$.

It follows that the minimum, over all \mathbf{T}-measurable square-integrable functions ψ, of the squared L^{2}-distance $\mathrm{E}\left[\{g(\mathbf{X})-\psi(\mathbf{X})\}^{2}\right]$ is $\mathrm{E}\left[\{g(\mathbf{X})-E[g(\mathbf{X}) \mid \mathbf{T}]\}^{2}\right]$; in other words, $E[g(\mathbf{X}) \mid \mathbf{T}]$ is the L^{2}-projection of $g(\mathbf{X})$ onto the space of (square-integrable) T-measurable variables.

2.3 Conditional probabilities

For any $A \in \mathcal{A}$, we have, with $\mathbf{X} \sim \mathrm{P}$,

$$
\begin{equation*}
\mathrm{P}[A]=\int_{A} \mathrm{dP}=\int_{\mathcal{X}} I_{A}(\mathbf{x}) \mathrm{dP}(\mathbf{x})=\mathrm{E}\left[I_{A}(\mathbf{X})\right]: \tag{2.8}
\end{equation*}
$$

the probability of A is the expectation of the indicator of A. Therefore, it is natural to extend that characterization by defining the conditional probability $\mathrm{P}[A \mid \mathbf{T}]$ of A given \mathbf{T} as the \mathbf{T}-measurable random variable

$$
\begin{equation*}
\mathrm{P}[A \mid \mathbf{T}]:=\mathrm{E}_{\mathrm{P}}\left[I_{A}(\mathbf{X}) \mid \mathbf{T}\right] . \tag{2.9}
\end{equation*}
$$

While (2.8) is a property of expectations defined as integrals, (2.9) is the definition of a new concept: the conditional probability of A given T. From the properties of conditional expectations, we have the following properties for conditional probabilities:

- $\mathrm{P}[A]=\mathrm{E}_{\mathrm{P}}[\mathrm{P}[A \mid \mathbf{T}]]=\int_{\mathcal{T}} \mathrm{P}[A \mid \mathbf{T}=\mathbf{t}] \mathrm{dP}^{\mathbf{T}}(\mathbf{t})$
- $\mathrm{P}[A \mid \mathbf{T}=\mathbf{t}]$ is defined up to sets of $\mathrm{P}^{\mathbf{T}}$-measure zero.

Whereas for any fixed $A \in \mathcal{A}, \mathrm{P}[A \mid \mathbf{T}]$ is a class of \mathbf{T}-measurable random variables defined up to a set of $\mathrm{P}^{\mathbf{T}}$-measure zero, there is no guarantee that, for a given fixed value \mathbf{t}, there exists a collection of versions

$$
\{\mathrm{P}[A \mid \mathbf{T}=\mathbf{t}]: A \in \mathcal{A}\}
$$

constituting a probability measure over $(\mathcal{X}, \mathcal{A})$. If such a collection exists, it qualifies as being called the conditional distribution over $(\mathcal{X}, \mathcal{A})$ of \mathbf{X}, given $\mathbf{T}(\mathbf{X})=\mathbf{t}$. However, it can be shown that, in "usual cases", such conditional distributions do exist.

Theorem 2. Let \mathcal{X} be a Borel set in a Euclidean space and \mathcal{A} be the class of Borel subsets of \mathcal{X}. Then,
(i) one can select, for each $A \in \mathcal{A}$, a version $\mathrm{P}^{*}[A \mid \mathbf{T}]$ of $\mathrm{P}[A \mid \mathbf{T}]$ in such a way that, for any fixed $\mathbf{t}, A \longmapsto \mathrm{P}^{*}[A \mid \mathbf{T}=\mathbf{t}], A \in \mathcal{A}$ constitutes a probability measure over $(\mathcal{X}, \mathcal{A})$ (notation: $\mathrm{P}^{\mathbf{X} \mid \mathbf{T}=\mathbf{t}}$), and
(ii) $\mathbf{t} \longmapsto \int_{\mathcal{X}} f(\mathbf{x}) \mathrm{dP}^{\mathbf{X}} \mid \mathbf{T}=\mathbf{t}$ constitutes a version of $\mathrm{E}_{\mathrm{P}}[f \mid \mathbf{T}]$ (with f a P -integrable, possibly vector-valued random variable).

2.4 Sufficiency

We are now able to provide a precise definition of the concept of a sufficient statistic.
Definition 1. A statistic $\mathbf{T}:(\mathcal{X}, \mathcal{A}) \longrightarrow\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}\right)$ is sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ if, for all $A \in \mathcal{A}$, there exists a version of $\mathrm{P}[A \mid \mathbf{T}]$ that does not depend on P , i.e. if, for all $A \in \mathcal{A}$,

$$
\bigcap_{\mathrm{P} \in \mathcal{P}} \mathrm{P}[A \mid \mathbf{T}] \neq \emptyset
$$

Intuitively, if a sufficient statistic \mathbf{T} is known, then the (conditional) probability of any event $A \in \mathcal{A}$ does not depend on which particular $\mathrm{P} \in \mathcal{P}$ is generating the observation. Hence, once \mathbf{T} is known, the observation \mathbf{X} does not carry any additional information about P . All information on P in \mathbf{X} is contained in \mathbf{T}, which justifies the terminology sufficiency.

Since $\mathrm{P}[A \mid \mathbf{T}]$ actually depends on \mathbf{T} only through $\mathcal{A}_{\mathbf{T}}$, sufficiency is a property of $\mathcal{A}_{\mathbf{T}}$ rather than \mathbf{T}, which will allow us to sometimes write that $\mathcal{A}_{\mathbf{T}}$ itself is sufficient.

2.5 The Halmos-Savage theorem

The following theorem provides, in a dominated model, a necessary and sufficient condition for a statistic \mathbf{T} being sufficient.

Theorem 3. (Halmos and Savage, 1949) Let $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ be a dominated model. The following three statements are equivalent:
(i) \mathbf{T} is sufficient;
(ii) for any $\mathrm{P} \in \mathcal{P}$, there exists a \mathbf{T}-measurable version of $\frac{\mathrm{dP}}{\mathrm{d} \mathrm{P}_{*}}$, where P_{*} is a specific privileged probability measure;
(iii) for any $\mathrm{P} \in \mathcal{P}$, there exists a T -measurable version of $\frac{\mathrm{dP}}{\mathrm{dP}}$, where P_{*} is an arbitrary privileged probability measure.

Conditions (ii) and (iii) both are necessary and sufficient for sufficiency. Since (iii) obviously implies (ii), Condition (ii) is stronger than (iii) as a sufficient condition, and weaker as a necessary one.

Proof. (i) \Rightarrow (iii) Assume that \mathbf{T} is sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ and let $\mathrm{P}_{*}=\sum_{i} c_{i} \mathrm{P}_{i}$ be an arbitrary privileged measure. Then, for any $\mathrm{P} \in \mathcal{P}$, we have $\mathrm{P} \ll \mathrm{P}_{*}$, hence $\mathrm{P}^{\mathbf{T}} \ll \mathrm{P}_{*}^{\mathbf{T}}$. Thus, $\frac{\mathrm{dP}^{\mathrm{T}}}{\mathrm{dP}_{*}^{\mathrm{T}}}$ exists: arbitrarily pick one of its versions, and denote it as $\mathbf{t} \longmapsto g_{\mathrm{P}}(\mathbf{t})$. The proof then consists in showing that $\mathbf{x} \longmapsto g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))$ is a version of $\frac{\mathrm{dP}}{\mathrm{dP}_{*}}$. For any $A \in \mathcal{A}$, sufficiency of \mathbf{T} implies that there exists a version of $\mathrm{P}[A \mid \mathbf{T}]$ that does not depend on P , hence is also a version of each of the $\mathrm{P}_{i}[A \mid \mathbf{T}]$'s and, therefore, a version of $\mathrm{P}_{*}[A \mid \mathbf{T}]$. Taking that fact into account and applying repeatedly the characteristic property of conditional expectations, we have, for any $A \in \mathcal{A}$,

$$
\begin{aligned}
\mathrm{P}[A] & =\int_{\mathcal{X}} \mathrm{I}_{A}(\mathbf{x}) \mathrm{dP}(\mathbf{x})=\int_{\mathcal{T}} \mathrm{P}[A \mid \mathbf{T}=\mathbf{t}] \mathrm{dP}^{\mathbf{T}}(\mathbf{t}) \\
& =\int_{\mathcal{T}} \mathrm{P}_{*}[A \mid \mathbf{T}=\mathbf{t}] \mathrm{dP}^{\mathbf{T}}(\mathbf{t})=\int_{\mathcal{T}} \mathrm{E}_{\mathrm{P}_{*}}\left[\mathrm{I}_{A}(\mathbf{X}) \mid \mathbf{T}=\mathbf{t}\right] g_{\mathrm{P}}(\mathbf{t}) \mathrm{dP}_{*}^{\mathbf{T}}(\mathbf{t}) \\
& =\int_{\mathcal{T}} \mathrm{E}_{\mathrm{P}_{*}}\left[g_{\mathrm{P}}(\mathbf{T}) \mathrm{I}_{A}(\mathbf{X}) \mid \mathbf{T}=\mathbf{t}\right] \mathrm{dP}_{*}^{\mathbf{T}}(\mathbf{t})=\int_{\mathcal{X}} g_{\mathrm{P}}(\mathbf{T}(\mathbf{x})) \mathrm{I}_{A}(\mathbf{x}) \mathrm{dP}_{*}(\mathbf{x}) \\
& =\int_{A} g_{\mathrm{P}}(\mathbf{T}(\mathbf{x})) \mathrm{dP}_{*}(\mathbf{x})
\end{aligned}
$$

This establishes that $\mathbf{x} \mapsto g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))$ is indeed a version of $\frac{\mathrm{dP}}{\mathrm{dP}{ }_{*}}$. Since it is obviously T-measurable, the result follows.
(iii) \Rightarrow (ii) Trivial.
(ii) \Rightarrow (i) Fix the privileged measure P_{*} mentioned in Condition (ii). For any P , let then $\mathbf{x} \longmapsto g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))$ be a \mathbf{T}-measurable version of $\frac{\mathrm{dP}}{\mathrm{dP}}$. First note that, for any $B \in \mathcal{B}_{\mathcal{T}}$,

$$
\begin{aligned}
\mathrm{P}^{\mathbf{T}}[B] & =\mathrm{P}\left[\mathbf{T}^{-1}(B)\right]=\int_{\mathbf{T}^{-1}(B)} g_{\mathrm{P}}(\mathbf{T}(\mathbf{x})) \mathrm{dP}_{*}(\mathbf{x}) \\
& =\int_{B} \mathrm{E}_{\mathrm{P}_{*}}\left[g_{\mathrm{P}}(\mathbf{T}) \mid \mathbf{T}=\mathbf{t}\right] \mathrm{dP}_{*}^{\mathbf{T}}(\mathbf{t})=\int_{B} g_{\mathrm{P}}(\mathbf{t}) \mathrm{dP}_{*}^{\mathbf{T}}(\mathbf{t}),
\end{aligned}
$$

which shows that $\mathbf{t} \longmapsto g_{\mathrm{P}}(\mathbf{t})$ is a version of $\frac{\mathrm{dP}^{\mathrm{T}}}{\mathrm{dP}_{*}^{\top}}$. Thus, for any $B \in \mathcal{B}_{\mathcal{T}}, \mathrm{P} \in \mathcal{P}$ and any real-valued measurable function ψ, we have

$$
\begin{align*}
\int_{\mathbf{T}^{-1}(B)} \psi(\mathbf{x}) \mathrm{dP}(\mathbf{x}) & =\int_{\mathbf{T}^{-1}(B)} \psi(\mathbf{x}) g_{\mathrm{P}}(\mathbf{T}(\mathbf{x})) \mathrm{dP}_{*}(\mathbf{x}) \\
& =\int_{B} \mathrm{E}_{\mathrm{P}_{*}}\left[\psi(\mathbf{X}) g_{\mathrm{P}}(\mathbf{T}) \mid \mathbf{T}=\mathbf{t}\right] \mathrm{dP}_{*}^{\mathbf{T}}(\mathbf{t}) \\
& =\int_{B} \mathrm{E}_{\mathrm{P}_{*}}[\psi(\mathbf{X}) \mid \mathbf{T}=\mathbf{t}] g_{\mathrm{P}}(\mathbf{t}) \mathrm{dP}_{*}^{\mathbf{T}}(\mathbf{t}) \\
& =\int_{B} \mathrm{E}_{\mathrm{P}_{*}}[\psi(\mathbf{X}) \mid \mathbf{T}=\mathbf{t}] \mathrm{dP}^{\mathbf{T}}(\mathbf{t}) . \tag{2.10}
\end{align*}
$$

Thus, for any measurable real-valued function ψ, any version of $\mathrm{E}_{\mathrm{P}_{*}}[\psi(\mathbf{X}) \mid \mathbf{T}]$ is a version of $\mathrm{E}_{\mathrm{P}}[\psi(\mathbf{X}) \mid \mathbf{T}]$ that does not depend on P . Sufficiency of \mathbf{T} follows by choosing $\psi=\mathrm{I}_{A}$.

In view of (2.10), the definition of sufficiency could have been taken as the existence of a version of conditional expectations not depending on P , instead of that of a version of conditional probabilities not depending on P .

2.6 The Neyman-Fisher factorization criterion

In practice, the Halmos-Savage theorem is not convenient for checking sufficiency. Provided that a dominating measure is well identified, a much simpler method is based on the following result, which goes back to Neyman and Fisher. ${ }^{3}$

Proposition 1. (The Neyman-Fisher factorization criterion) Let the model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ be dominated by the σ-finite measure μ. A statistic \mathbf{T} is sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ if and only if, for any $\mathrm{P} \in \mathcal{P}$, there exists a version of $\frac{\mathrm{dP}}{\mathrm{d} \mu}, f_{\mathrm{P}}$ say, factorizing μ-a.e. into

$$
f_{\mathrm{P}}(\mathbf{x})=g_{\mathrm{P}}(\mathbf{T}(\mathbf{x})) h(\mathbf{x}),
$$

where h does not depend on P .

[^2]Proof. (\Rightarrow) Assume that \mathbf{T} is sufficient. The Halmos-Savage theorem then guarantees existence, for any $\mathrm{P} \in \mathcal{P}$, of a \mathbf{T}-measurable version of $\frac{\mathrm{dP}}{\mathrm{dP}}$, where P_{*} is an arbitrary privileged measure; denote it as $\mathbf{x} \mapsto g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))$. Noting that, for any P , we have $\mathrm{P} \ll \mathrm{P}_{*} \ll \mu$, let h be an arbitrary version of $\frac{\mathrm{dP}_{*}}{\mathrm{~d} \mu}$. The elementary properties of Radon-Nikodym derivatives then ensure that

$$
f_{\mathrm{P}}(\mathbf{x}):=g_{\mathrm{P}}(\mathbf{T}(\mathbf{x})) h(\mathbf{x})
$$

is a version of $\frac{\mathrm{dP}}{\mathrm{d} \mu}$, as was to be proved. (\Leftarrow) Assume that, for any $\mathrm{P} \in \mathcal{P}$, there exist some g_{P} and h (which, without loss of generality, can be assumed to be nonnegative) such that

$$
f_{\mathrm{P}}(\mathbf{x})=g_{\mathrm{P}}(\mathbf{T}(\mathbf{x})) h(\mathbf{x}) \quad \mu \text {-а.е. }
$$

Fix then an arbitrary privileged measure $\mathrm{P}_{*}=\sum_{i=1}^{\infty} c_{i} \mathrm{P}_{i}$ and note that

$$
f_{\mathrm{P}_{*}}:=\sum_{i=1}^{\infty} c_{i} f_{\mathrm{P}_{i}} \in \frac{\mathrm{dP}_{*}}{\mathrm{~d} \mu}
$$

indeed, we have

$$
\mathrm{P}_{*}[A]=\sum_{i=1}^{\infty} c_{i} \mathrm{P}_{i}[A]=\sum_{i=1}^{\infty} c_{i} \int_{A} f_{\mathrm{P}_{i}}(\mathbf{x}) d \mu(\mathbf{x})=\int_{A} f_{\mathrm{P}_{*}}(\mathbf{x}) d \mu(\mathbf{x})
$$

Since $\mathrm{P} \ll \mathrm{P}_{*} \ll \mu$, the elementary properties of Radon-Nikodym derivatives ensure that a version of $\frac{d \mathrm{P}}{\mathrm{dP}_{*}}$ is given by

$$
\frac{f_{\mathrm{P}}(\mathbf{x})}{f_{\mathrm{P}_{*}}(\mathbf{x})}=\frac{f_{\mathrm{P}}(\mathbf{x})}{\sum_{i=1}^{\infty} c_{i} f_{\mathrm{P}_{i}}(\mathbf{x})}=\frac{g_{\mathrm{P}}(\mathbf{T}(\mathbf{x})) h(\mathbf{x})}{\sum_{i=1}^{\infty} c_{i} g_{\mathrm{P}_{i}}(\mathbf{T}(\mathbf{x})) h(\mathbf{x})}=\frac{g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))}{\sum_{i=1}^{\infty} c_{i} g_{\mathrm{P}_{i}}(\mathbf{T}(\mathbf{x}))}
$$

Since this version of $\frac{d P}{d P_{*}}$ is \mathbf{T}-measurable, sufficiency of \mathbf{T} follows from the Halmos-Savage theorem.

As an example, let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ collect independently and identically distributed random variables that admit density f with respect to the Lebesgue measure on \mathbb{R}. This is thus a nonparametric model involving the family $\mathcal{P}=\left\{\mathrm{P}_{f}: f \in \mathcal{F}\right\}$, where \mathcal{F} is the
collection of all densities with respect to the Lebesgue measure on the real line. The density of \mathbf{X} (in \mathbb{R}^{n}, with respect to the Lebesgue measure on \mathbb{R}^{n}), is, at $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$,

$$
f^{\mathbf{x}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right)=\underbrace{\left(\prod_{i=1}^{n} f\left(x_{(i)}\right)\right)}_{g_{f}\left(\mathbf{x}_{(.)}\right)} \times \underbrace{1}_{h(\mathbf{x})}
$$

where $\mathbf{x}_{(.)}=\left(x_{(1)}, \ldots, x_{(n)}\right)$ is the order statistic. The factorization criterion thus entails that $\mathbf{x}_{(.)}$is a sufficient statistic.

2.7 Minimal sufficiency (in dominated models)

Let \mathbf{S} and \mathbf{T} be two statistics, with values in $\left(\mathcal{S}, \mathcal{B}_{\mathcal{S}}\right)$ and $\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}\right)$, respectively. We say that \mathbf{T} is \mathbf{S}-measurable if and only if \mathbf{T} is $\mathcal{A}_{\mathbf{S}}$-measurable, in the sense that $\mathcal{A}_{\mathbf{T}}:=\mathbf{T}^{-1}\left(\mathcal{B}_{\mathcal{T}}\right) \subseteq \mathcal{A}_{\mathbf{S}}$. It can be shown that this happens if and only if there exists a measurable function ℓ from \mathcal{S} to \mathcal{T} such that $T(\mathbf{x})=\ell(\mathbf{S}(\mathbf{x}))$, or if and only if $S(\mathbf{x})=S(\mathbf{y})$ implies that $T(\mathbf{x})=T(\mathbf{y})$. Obviously, if \mathbf{T} is \mathbf{S}-measurable and \mathbf{S} is \mathbf{T}-measurable, then $\mathcal{A}_{\mathbf{S}}=\mathcal{A}_{\mathbf{T}}, T(\mathbf{x})=\ell(\mathbf{S}(\mathbf{x}))$ for a one-to-one mapping ℓ, and $S(\mathbf{x})=S(\mathbf{y})$ if and only if $T(\mathbf{x})=T(\mathbf{y})$; in this framework, both statistics provide the exact same reduction of information.

In the sequel, we assume that $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ is a dominated model. If \mathbf{T} is sufficient and S-measurable (that is, if $\mathcal{A}_{\mathbf{T}} \subseteq \mathcal{A}_{\mathbf{S}}$), then \mathbf{S} is also sufficient. Intuitively, if \mathbf{T} is a function of \mathbf{S}, then all information carried by \mathbf{T} is also carried by \mathbf{S}, whereas, mathematically, this readily follows from the Halmos-Savage theorem (since T-measurability implies S-measurability). Thus, many sufficient statistics may be available for a given model.

Suppose, for example, that $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ collects independently and identically distributed $\mathcal{N}\left(0, \sigma^{2}\right)$ variables, and consider the resulting model parametrized by $\sigma^{2} \in \mathbb{R}_{0}^{+}$. Then, the factorization criterion easily yields that the statistics

$$
\begin{aligned}
& \mathbf{T}_{1}(\mathbf{X})=\left(X_{1}, \ldots, X_{n}\right) \\
& \mathbf{T}_{2}(\mathbf{X})=\left(X_{(1)}, \ldots, X_{(n)}\right) \text { (the order statistic) } \\
& \mathbf{T}_{3}(\mathbf{X})=\left(X_{(1)}^{2}, \ldots, X_{(n)}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{T}_{4}(\mathbf{X})=\left(X_{(1)}^{2}+X_{(2)}^{2}, X_{(3)}^{2}+\ldots+X_{(n)}^{2}\right) \\
& \mathbf{T}_{5}(\mathbf{X})=X_{1}^{2}+\ldots+X_{n}^{2}
\end{aligned}
$$

are all sufficient, with $\mathcal{A}_{\mathbf{T}_{5}} \subseteq \ldots \subseteq \mathcal{A}_{\mathbf{T}_{1}} \subseteq \mathcal{A}$. The smaller $\mathcal{A}_{\mathbf{T}}$, the larger the reduction associated with \mathbf{T}, and the simpler the model induced by \mathbf{T} : in this respect, \mathbf{T}_{5} does a better job than \mathbf{T}_{4}, and a much better one than \mathbf{T}_{1}, which is trivially sufficient (no reduction at all). As we will be show later, \mathbf{T}_{5} actually is minimal sufficient, in the sense that no further reduction is possible without losing sufficiency.

Definition 2. A statistic \mathbf{T} is minimal sufficient (equivalently, the σ-field $\mathcal{A}_{\mathbf{T}}$ is minimal sufficient) if it is sufficient and if it is \mathbf{S}-measurable for any sufficient statistic \mathbf{S} (equivalently, if $\mathcal{A}_{\mathbf{T}}$ is sufficient and if $\left.\mathcal{A}_{\mathbf{T}}=\bigcap_{\mathbf{S} \text { sufficient }} \mathcal{A}_{\mathbf{S}}\right)$.

As an example, let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ collect independent and identically distributed random variables whose common distribution is the uniform distribution over the interval $\left[\theta-\frac{1}{2}, \theta+\frac{1}{2}\right]$. Denote by $\mathcal{P}=\left\{\mathrm{P}_{\theta}: \theta \in \mathbb{R}\right\}$ the family of joint distributions of such \mathbf{X} 's. Writing $\mathbb{I}[C]$ for the indicator function of Condition C (which takes value one if C is satisfied and value zero otherwise), the density of P_{θ} with respect to the Lebesgue measure in \mathbb{R}^{n}, at $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, is then

$$
\begin{aligned}
f_{\theta}(\mathbf{x})=f_{\theta}\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} \mathbb{I}\left[\theta-\frac{1}{2} \leq x_{i} \leq \theta+\frac{1}{2}\right] \\
= & \mathbb{I}\left[\theta-\frac{1}{2} \leq x_{(1)}, x_{(n)} \leq \theta+\frac{1}{2}\right]=\mathbb{I}\left[x_{(n)}-\frac{1}{2} \leq \theta \leq x_{(1)}+\frac{1}{2}\right]
\end{aligned}
$$

The factorization criterion thus implies that $\mathbf{T}:=\left(X_{(1)}, X_{(n)}\right)$ is sufficient. In order to establish minimal sufficiency, let \mathbf{S} be sufficient. From the factorization criterion, we have that, for all $\theta \in \mathbb{R}$, the density f_{θ} factorizes into

$$
f_{\theta}(\mathbf{x})=g_{\theta}(\mathbf{S}(\mathbf{x})) h(\mathbf{x}) \quad \mathrm{P}_{\theta^{-}} \text {-a.s. }
$$

Now, note that $h(\mathbf{X})>0 \mathrm{P}_{\theta}$-a.s. for all $\theta \in \mathbb{R}$. Therefore, P_{θ}-a.s. for all $\theta \in \mathbb{R}$,

$$
\begin{align*}
X_{(1)} & =\inf \left\{t \in \mathbb{R}: f_{\theta}(\mathbf{X})=0 \text { for all } \theta \in(t, \infty)\right\}-\frac{1}{2} \\
& =\inf \left\{t \in \mathbb{R}: g_{\theta}(\mathbf{S}(\mathbf{X}))=0 \text { for all } \theta \in(t, \infty)\right\}-\frac{1}{2} \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
X_{(n)} & =\sup \left\{t \in \mathbb{R}: f_{\theta}(\mathbf{X})=0 \text { for all } \theta \in(-\infty, t)\right\}+\frac{1}{2} \\
& =\sup \left\{t \in \mathbb{R}: g_{\theta}(\mathbf{S}(\mathbf{X}))=0 \text { for all } \theta \in(-\infty, t)\right\}+\frac{1}{2} \tag{2.12}
\end{align*}
$$

It follows from (2.11)-(2.12) that \mathbf{T} is \mathbf{S}-measurable, hence is minimal sufficient.
It remains rare that we can establish minimal sufficiency by using Definition 2 as we could do in the example above. We now present two results that together allow one to establish minimal sufficiency in many cases.

Proposition 2. Let $\left(\mathcal{X}, \mathcal{A}, \mathcal{P}_{0}\right)$ and $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ be two dominated models involving the same observation space \mathcal{X}, with $\mathcal{P}_{0} \subset \mathcal{P}$. If \mathbf{T} is minimal sufficient for $\left(\mathcal{X}, \mathcal{A}, \mathcal{P}_{0}\right)$ and sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$, then \mathbf{T} is minimal sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$.

Proof. Let \mathbf{S} be a sufficient statistic for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$. Then, \mathbf{S} is sufficient for $\left(\mathcal{X}, \mathcal{A}, \mathcal{P}_{0}\right)$ (this follows, e.g., from the Halmos-Savage theorem). Since \mathbf{T} is minimal sufficient for $\left(\mathcal{X}, \mathcal{A}, \mathcal{P}_{0}\right)$, we thus have, by definition, that \mathbf{T} is \mathbf{S}-measurable, which was to be shown.

Proposition 3. Let $\mathcal{P}=\left\{\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{K}\right\}$ and assume that $\mathrm{P}_{k} \ll \mathrm{P}_{0}$ for $k=1, \ldots, K$. Then, $\mathbf{T}:=\left(T_{1}, \ldots, T_{K}\right)$, with $T_{k}:=\frac{\mathrm{P}_{k}}{\mathrm{dP}_{0}}$, is minimal sufficient.

Proof. Obviously, the family \mathcal{P} is dominated by P_{0}, and $\frac{\mathrm{dP}_{0}}{\mathrm{dP}_{0}}=1$. It directly follows from the Halmos-Savage theorem (applied with $\mathrm{P}_{*}=\mathrm{P}_{0}$) that $\mathbf{T}:=\left(T_{1}, \ldots, T_{K}\right)$ is sufficient. Let then \mathbf{S} be an arbitrary sufficient statistic. From the Halmos-Savage theorem (still applied
with $\mathrm{P}_{*}=\mathrm{P}_{0}$), there must exist, for any $k=1, \ldots, K$, a function ℓ_{k} such that

$$
\frac{\mathrm{dP}_{k}}{\mathrm{dP}_{0}}=\ell_{k}(\mathbf{S})
$$

This shows that \mathbf{T} is \mathbf{S}-measurable, hence minimal sufficient.
Let us provide some applications of Propositions 2-3.
$\underline{\text { Example 1: Let } \mathbf{X}=\left(X_{1}, \ldots, X_{n}\right) \text { collect independent and identically distributed } \mathcal{N}(\mu, 1), ~(1) ~}$ random variables, with $\mu \in \mathbb{R}$. The density of \mathbf{X} with respect to the Lebesgue measure on \mathbb{R}^{n} is, at $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{aligned}
f_{\mu}\left(x_{1}, \ldots, x_{n}\right) & =(2 \pi)^{-n / 2} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) \\
& =\underbrace{\exp \left(\mu \sum_{i=1}^{n} x_{i}-\frac{n}{2} \mu^{2}\right)}_{g_{\mu}\left(\sum_{i=1}^{n} x_{i}\right)} \times \underbrace{(2 \pi)^{-n / 2} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}\right)}_{h(\mathbf{x})} .
\end{aligned}
$$

The factorization criterion thus implies that $\sum_{i=1}^{n} X_{i}$ is a sufficient statistic. Now, denote as \mathcal{P} the family of all $\mathcal{N}(\mu, 1)$ distributions associated with $\mu \in \mathbb{R}$, and by \mathcal{P}_{0} a subfamily consisting of the $\mathcal{N}\left(\mu_{0}, 1\right)$ and $\mathcal{N}\left(\mu_{1}, 1\right)$ distributions associated with two arbitrary values $\mu_{0} \neq \mu_{1}$. In view of Proposition 3,

$$
\begin{aligned}
T & :=\frac{f_{\mu_{1}}\left(x_{1}, \ldots, x_{n}\right)}{f_{\mu_{0}}\left(x_{1}, \ldots, x_{n}\right)} \\
& =\frac{\exp \left(\mu_{1} \sum_{i=1}^{n} x_{i}-\frac{n}{2} \mu_{1}^{2}\right)(2 \pi)^{-n / 2} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}\right)}{\exp \left(\mu_{0} \sum_{i=1}^{n} x_{i}-\frac{n}{2} \mu_{0}^{2}\right)(2 \pi)^{-n / 2} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}\right)} \\
& =\exp \left(\left(\mu_{1}-\mu_{0}\right) \sum_{i=1}^{n} x_{i}+\frac{n}{2}\left(\mu_{0}^{2}-\mu_{1}^{2}\right)\right)
\end{aligned}
$$

is minimal sufficient for \mathcal{P}_{0}. Since $\sum_{i=1}^{n} X_{i}$ generate the same σ-field as T, it is also minimal sufficient for \mathcal{P}_{0}, hence (from Proposition 2) minimal sufficient for \mathcal{P}. Clearly,
$\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, which generates the same σ-field as $\sum_{i=1}^{n} X_{i}$, is then also minimal sufficient for \mathcal{P}.

Example 2: Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be an n-tuple of independent and identically distributed random variables, being logistic with location θ. More precisely, each X_{i} has density

$$
f_{\theta}(x)=\frac{\exp (-(x-\theta))}{\{1+\exp (-(x-\theta))\}^{2}}, \quad x \in \mathbb{R}
$$

Then, for the finite subfamily \mathcal{P}_{0} corresponding to the $(K+1)$-tuple of pairwise distinct parameter values $\left\{\theta_{0}=0, \theta_{1}, \ldots, \theta_{K}\right\}$, a minimal sufficient statistic is, in view of Proposition 3,

$$
\mathbf{T}=\left(T_{1}, \ldots, T_{K}\right), \text { with } T_{j}:=\exp \left(n \theta_{j}\right) \prod_{i=1}^{n}\left(\frac{1+\exp \left(-X_{i}\right)}{1+\exp \left(-X_{i}+\theta_{j}\right)}\right)^{2}
$$

Let us show that, for $K=n+1, \mathbf{T}\left(x_{1}, \ldots, x_{n}\right)=\mathbf{T}\left(y_{1}, \ldots, y_{n}\right)$ if and only if $\left(\mathbf{x}_{(1)}, \ldots, \mathbf{x}_{(n)}\right)=$ $\left(\mathbf{y}_{(1)}, \ldots, \mathbf{y}_{(n)}\right)$. This would then imply that \mathbf{T} generates the same σ-field as the order statistic $\left(\mathbf{X}_{(1)}, \ldots, \mathbf{X}_{(n)}\right)$ of \mathbf{X}, so that the order statistic would then also be minimal sufficient for \mathcal{P}_{0}. Since the factorization criterion implies that the order statistic is sufficient for the whole family \mathcal{P} obtained for $\theta \in \mathbb{R}$, it would then be minimal sufficient for \mathcal{P}, too (from Proposition 2).

If $\left(\mathbf{x}_{(1)}, \ldots, \mathbf{x}_{(n)}\right)=\left(\mathbf{y}_{(1)}, \ldots, \mathbf{y}_{(n)}\right)$, then obviously $\mathbf{T}\left(x_{1}, \ldots, x_{n}\right)=\mathbf{T}\left(y_{1}, \ldots, y_{n}\right)$. Assume then that $\mathbf{T}\left(x_{1}, \ldots, x_{n}\right)=\mathbf{T}\left(y_{1}, \ldots, y_{n}\right)$. Let $\xi_{j}=\exp \left(\theta_{j}\right)$ and $u_{i}=\exp \left(-x_{i}\right)$, $v_{i}=\exp \left(-y_{i}\right)$. Since $\mathbf{T}\left(x_{1}, \ldots, x_{n}\right)=\mathbf{T}\left(y_{1}, \ldots, y_{n}\right)$, we have

$$
\xi_{j}^{n} \prod_{i=1}^{n}\left(\frac{1+u_{i}}{1+\xi u_{i}}\right)^{2}=\xi_{j}^{n} \prod_{i=1}^{n}\left(\frac{1+v_{i}}{1+\xi v_{i}}\right)^{2} \quad \text { for } \xi=\xi_{1}, \ldots, \xi_{n+1}
$$

(recall we took $K=n+1$), hence also

$$
p(\xi):=\prod_{i=1}^{n} \frac{1+\xi u_{i}}{1+u_{i}}=\prod_{i=1}^{n} \frac{1+\xi v_{i}}{1+v_{i}}=: q(\xi) \quad \text { for } \xi=\xi_{1}, \ldots, \xi_{n+1} .
$$

This last equation requires that two polynomials of degree n in ξ, namely $p(\xi)$ and $q(\xi)$,
be equal at $n+1$ distinct values of ξ. This implies that these polynomials are identical, hence that they share the same roots. Since the roots of $p(\xi)$ are $-1 / u_{1}, \ldots,-1 / u_{n}$ and those of $q(\xi)$ are $-1 / v_{1}, \ldots,-1 / v_{n}$, it follows that $u_{(i)}=v_{(i)}$ for all $i=1, \ldots, n$, hence that $x_{(i)}=y_{(i)}$ for all $i=1, \ldots, n$, as was to be proved.

Example 3: Semiparametric location model: X_{1}, \ldots, X_{n} are independently and identically distributed with density f_{θ} (with respect to the Lebesgue measure on $(\mathbb{R}, \mathcal{B})$), with $f_{\theta}(x)=f_{0}(x-\theta)$ and $f_{0} \in \mathcal{F}_{0}:=\left\{f(x): \int x f(x) \mathrm{d} \mu(x)=0\right\}$. That class \mathcal{F}_{0} contains the centered logistic, so that the logistic family of Example 2 is a subfamily \mathcal{P}_{0} of \mathcal{P}. Clearly, the order statistic is sufficient for \mathcal{P} (this readily follows from the factorization criterion), while we have shown it is minimal sufficient for \mathcal{P}_{0}. Hence, the order statistic is minimal sufficient for \mathcal{P}.

[^0]: ${ }^{1}$ With slight modifications by Davy Paindaveine and Thomas Verdebout.

[^1]: ${ }^{2}$ The Borel σ-field \mathcal{B} for \mathbb{R}, for instance, is not complete for the Lebesgue measure μ. The σ-field \mathcal{B}_{0} generated by $\left(\mathcal{B}, \mathcal{N}_{\mu}\right)$, where \mathcal{N}_{μ} is the collection of all subsets of Borel sets with Lebesgue measure zero, is called the Lebesgue σ-field. The elements B of \mathcal{B}_{0} are of the form $A \cup C$, where $C \in \mathcal{N}$ and $A \cap C=\emptyset$; the Lebesgue measure μ then can be extended to \mathcal{B}_{0} by putting $\mu(B):=\mu(A)$. The Lebesgue σ-field is complete for this extended Lebesgue measure.

[^2]: ${ }^{3}$ Neyman and Fisher, however, essentially took this result as a definition of sufficiency.

