Lecture Notes for STAT-F404, author: Marc Hallin¹

2 Sufficiency

2.1 Dominated models

2.1.1 Measures

Denote by $(\mathcal{X}, \mathcal{A})$ a space equipped with a σ -field (a measurable space). Recall that a (positive) measure over $(\mathcal{X}, \mathcal{A})$ is a nonnegative set function $\mu : \mathcal{A} \longrightarrow \mathbb{R}^+ = \mathbb{R}^+ \cup \{+\infty\}$ such that $(\sigma$ -additivity)

$$\mu(A_1 \cup A_2 \cup \ldots) = \mu(A_1) + \mu(A_2) + \ldots$$

as soon as $A_1, A_2, \ldots \in \mathcal{A}$ are pairwise disjoint. Note that this implies that $\mu(\emptyset) = 0$. Familiar examples are

- (i) (Lebesgue measures) the Lebesgue measure defined over $(\mathbb{R}^k, \mathcal{B}^k)$, where \mathcal{B}^k is the Borel σ -field over \mathbb{R}^k , provides the Borel set's usual length for k = 1, area for k = 2, volume for k = 3, etc.
- (ii) (counting measures) denoting by $\{a_i\}$ a finite or countable subset of \mathcal{X} , the measure μ defined over $(\mathcal{X}, \mathcal{A})$ by

$$\mu(A) := \# \{ i : a_i \in A \}, \qquad A \in \mathcal{A}$$

(where #E stands for the possibly infinite cardinality of a set E) is called the *counting* measure associated with $\{a_i\}$. Examples are, over $(\mathbb{R}, \mathcal{B})$, the counting measures associated with $\{0, 1, \ldots, k\}$, with the set of integers \mathbb{Z} , with the set of natural numbers \mathbb{N} , or with the set of rationals \mathbb{Q} (the latter yielding a rather weird measure under which all nonempty open intervals have measure ∞);

¹With slight modifications by Davy Paindaveine and Thomas Verdebout.

(iii) (probability measures) a probability measure is a measure μ such that $\mu(\mathcal{X}) = 1$.

A measure over $(\mathcal{X}, \mathcal{A})$ is σ -finite if there exist A_1, A_2, \ldots in \mathcal{A} such that $\mu(A_i) < \infty$ and $\bigcup_{i=1}^{\infty} A_i = \mathcal{X}$. Examples are the Lebesgue measure over $(\mathbb{R}^k, \mathcal{B}^k)$, and the counting measures over $(\mathbb{R}, \mathcal{B})$ associated with \mathbb{Z} , \mathbb{N} , or \mathbb{Q} . A measure which is not σ -finite is μ defined over $(\mathcal{X}, \mathcal{A})$ by $\mu(\emptyset) = 0, \ \mu(A) = \infty$ for all $A \neq \emptyset$.

In the sequel, when a measurable space $(\mathcal{X}, \mathcal{A})$ is equipped with the measure μ , we tacitly assume that \mathcal{A} has been *completed* for μ , that is, comprises all subsets of \mathcal{X} that are included in a set with μ -measure zero; the μ -measure of such subsets is automatically zero².

2.1.2 Integrals

All integrals in the sequel are *Lebesgue integrals*. We will not attempt a rigorous definition of such integrals, for which we refer to measure theory or probability textbooks. Let f be a measurable function from $(\mathcal{X}, \mathcal{A})$ to $(\mathbb{R}, \mathcal{B})$. The Lebesgue integral of f, when it exists, is denoted as

$$\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}).$$

Quite naturally, we let

$$\int_{A} f(\mathbf{x}) d\mu(\mathbf{x}) := \int_{\mathcal{X}} I_{A}(\mathbf{x}) f(\mathbf{x}) d\mu(\mathbf{x}),$$

where

$$I_A(\mathbf{x}) := \begin{cases} 1 & \mathbf{x} \in A \\ 0 & \mathbf{x} \notin A \end{cases}$$

is the indicator function of $A \in \mathcal{A}$. For f = 1, we get $\int_A d\mu = \mu(A)$.

²The Borel σ -field \mathcal{B} for \mathbb{R} , for instance, is not complete for the Lebesgue measure μ . The σ -field \mathcal{B}_0 generated by $(\mathcal{B}, \mathcal{N}_{\mu})$, where \mathcal{N}_{μ} is the collection of all subsets of Borel sets with Lebesgue measure zero, is called the *Lebesgue* σ -field. The elements B of \mathcal{B}_0 are of the form $A \cup C$, where $C \in \mathcal{N}$ and $A \cap C = \emptyset$; the Lebesgue measure μ then can be extended to \mathcal{B}_0 by putting $\mu(B) := \mu(A)$. The Lebesgue σ -field is complete for this extended Lebesgue measure.

(i) If μ is the Lebesgue measure over $(\mathbb{R}, \mathcal{B})$ and f is a bounded Riemann-integrable function, then its Lebesgue and Riemann integrals over intervals coincide:

$$\int_{[a,b]} f(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}) = \int_{[a,b]} f(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}) = \int_{(a,b]} f(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}) = \int_{(a,b)} f(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}) = \int_{a}^{b} f(\mathbf{x}) \mathrm{d}\mathbf{x}$$

for all $a \leq b$, where the last integrable is the Riemann integral of f from a to b. Lebesgue-integrable functions, however, need not be Riemann-integrable. A classical counterexample is the indicator function $I_{\mathbb{Q}}$ of \mathbb{Q} (since \mathbb{Q} is a countable subset of \mathbb{R} , we have $\int_{[0,1]} I_{\mathbb{Q}}(x) d\mu(x) = 0$, but the corresponding Riemann integral does not exist).

(ii) If μ is the counting measure of $\{a_i, \ldots, a_k\}$, then

$$\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}) = \sum_{i=1}^{k} f(a_i),$$

whereas if μ is the counting measure of $\{a_1, a_2, \ldots\}$, then

$$\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}) = \sum_{i=1}^{\infty} f(a_i).$$

(iii) If μ is a probability measure P, then the Lebesgue integral of f is nothing else than the expectation, under $\mathbf{X} \sim P$, of $f(\mathbf{X})$:

$$\int_{\mathcal{X}} f(\mathbf{x}) d\mu(\mathbf{x}) = \int_{\mathcal{X}} f(\mathbf{x}) dP(\mathbf{x}) = E_{P}[f(\mathbf{X})].$$

In particular, when μ is a discrete probability measure P, with atoms x_1, x_2, \ldots and probability weights p_1, p_2, \ldots ,

$$\int_{\mathcal{X}} f(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}) = \sum_{i=1}^{\infty} f(x_i) p_i$$

(obviously, this would just be a finite sum if P would have only finitely many atoms).

2.1.3 Radon-Nikodym derivatives

Let μ and ν be two measures defined over the same $(\mathcal{X}, \mathcal{A})$ space. We say that ν is dominated by μ or, equivalently, that ν is absolutely continuous with respect to μ (notation: $\nu \ll \mu$) if, for any $A \in \mathcal{A}$, $\mu(A) = 0$ implies $\nu(A) = 0$. When two (σ -finite) measures are mutually absolutely continuous, we say that they are *equivalent*. The following theorem then plays a central role in the definition of conditional expectations and conditional probabilities.

Theorem 1. (Radon-Nikodym) Let μ and ν be two measures over $(\mathcal{X}, \mathcal{A})$, with μ being σ -finite. Then, $\nu \ll \mu$ if and only if there exists a function $f : \mathcal{X} \longrightarrow \mathbb{R}^+$ such that

$$\left(\nu(A)=\right)\int_{A}\mathrm{d}\nu(\mathbf{x})=\int_{A}f(\mathbf{x})\mathrm{d}\mu(\mathbf{x})$$
 (2.1)

for all $A \in \mathcal{A}$.

The function f in (2.1) is not uniquely defined; however it is essentially unique, in the sense that, if f_1 and f_2 are such that (2.1) holds, then

$$\mu\left(\{\mathbf{x}: f_1(\mathbf{x}) \neq f_2(\mathbf{x})\}\right) = 0,$$

that is, they coincide up to a set of μ -measure zero. The set of all μ -almost everywhere equal functions such that (2.1) holds is denoted as $\frac{d\nu}{d\mu}$, and called the *Radon-Nikodym derivative* of ν with respect to μ . An arbitrary element (called a *version* of the Radon-Nikodym derivative) of $\frac{d\nu}{d\mu}$, however, entirely characterizes the whole class; therefore, with a small abuse of notation, we also denote such a version by $\frac{d\nu}{d\mu}$, taking at $\mathbf{x} \in \mathcal{X}$ value $\frac{d\nu}{d\mu}(\mathbf{x})$. The characteristic property (2.1) with that notation takes the form

$$\nu(A) = \int_A d\nu(\mathbf{x}) = \int_A \frac{d\nu}{d\mu}(\mathbf{x}) d\mu(\mathbf{x}) \quad \text{for all } A \in \mathcal{A}.$$

More generally, we have that, for any measurable function g,

$$\int_{A} g(\mathbf{x}) d\nu(\mathbf{x}) = \int_{A} g(\mathbf{x}) \frac{d\nu}{d\mu}(\mathbf{x}) d\mu(\mathbf{x}) \quad \text{for all } A \in \mathcal{A}$$

When $P \ll \mu$, where μ is σ -finite and P is a probability measure, we say that $f_P := \frac{dP}{d\mu}$ is the *probability density* of P with respect to μ , as (2.1) yields

$$P[A] = \int f_{P}(\mathbf{x}) d\mu(\mathbf{x})$$
(2.2)

for all $A \in \mathcal{A}$. Probability densities, thus, are by essence defined up to a set of measure zero in the reference measure.

We now state two useful properties of Radon-Nikodym derivatives (we state these only for probability measures, although they extend to more general measures, which we will actually use in the sequel). Letting $P \ll Q \ll R$ be probability measures over $(\mathcal{X}, \mathcal{A})$, we have the following:

- (a) if $f \in \frac{dP}{dQ}$ and $g \in \frac{dQ}{dR}$, then $fg \in \frac{dP}{dR}$;
- (b) if $f \in \frac{dP}{dR}$ and $g \in \frac{dQ}{dR}$, then $f/g \in \frac{dP}{dQ}$;

In (b), note that

$$Q\left(\{\mathbf{x}:g(\mathbf{x})=0\}\right) = \int_{\{\mathbf{x}:g(\mathbf{x})=0\}} g(\mathbf{x}) dR(\mathbf{x}) = 0,$$

so that $f(\mathbf{x})/g(\mathbf{x})$ is well-defined up to a set with Q-measure zero, hence can be given an arbitrary value at any \mathbf{x} such that $g(\mathbf{x}) = 0$; "dividing by zero" thus is not a problem there.

Let us give a few examples of probability densities.

(i) The $\mathcal{N}(0,1)$ probability measure over (\mathbb{R},\mathcal{B}) has density

$$f(x) = (2\pi)^{-1/2} \exp\left(-\frac{1}{2}x^2\right), \qquad x \in \mathbb{R},$$

with respect to the Lebesgue measure. All probability distributions (over \mathbb{R} or \mathbb{R}^k) called *absolutely continuous* in elementary textbooks, with density f defined as the derivative of a cumulative distribution function, actually are absolutely continuous with respect to the Lebesgue measure, and have density f (in the sense of (2.2)) with respect to the same (more precisely, f is a version of that density).

(ii) The Bernoulli Bin(1, p) measure over $(\mathbb{R}, \mathcal{B})$, with $p \in (0, 1)$, is defined by

$$P_p[A] = \begin{cases} 0 & \text{if } 0, 1 \notin A \\ p & \text{if } 0 \notin A \text{ and } 1 \in A \\ 1 - p & \text{if } 0 \in A \text{ and } 1 \notin A \\ 1 & \text{if } 0, 1 \in A \end{cases}$$

for any $A \in \mathcal{B}$. That measure is absolutely continuous with respect to the counting measure associated with $\{0, 1\}$, with density

$$f_p(x) = p^x (1-p)^{1-x}, \qquad x \in \mathbb{R}.$$

Note that any other function f such that

$$f(x) = \begin{cases} p & \text{for } x = 1\\ 1 - p & \text{for } x = 0 \end{cases}$$

is another *version* of the same density.

(iii) Similarly, the binomial Bin(n, p) measure has density

$$f_{n,p}(x) = \binom{n}{x} p^x (1-p)^{n-x}, \qquad x \in \mathbb{R},$$

with respect to the counting measure of $\{0, 1, ..., n\}$, the Poisson (λ) measure has density

$$f_{\lambda}(x) = \exp(-\lambda) \frac{\lambda^x}{x!}, \qquad x \in \mathbb{R},$$

with respect to the counting measure of \mathbb{N} , etc.

Denote by $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ a statistical model. That model is said to be *dominated* by the σ -finite measure μ if \mathcal{P} is *dominated* by μ (notation: $\mathcal{P} \ll \mu$), namely, if for every $P \in \mathcal{P}$, $P \ll \mu$. Then, \mathcal{P} can alternatively be described as a family of densities: $\{f_P := \frac{dP}{d\mu} : P \in \mathcal{P}\}$.

A model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ (a family \mathcal{P}) is called a *dominated model* (a *dominated family*) if there exists a σ -finite measure μ such that $\mathcal{P} \ll \mu$. Halmos and Savage (1949) proved the following lemma, showing that dominated families can be characterized without recurring to any "external" measure μ .

Lemma 1. (Halmos and Savage, 1949) A family of probability measures \mathcal{P} defined over the space $(\mathcal{X}, \mathcal{A})$ is a dominated family if and only if there exist a countable subset $\{P_1, P_2, \ldots\}$ of \mathcal{P} and a sequence (c_i) of nonnegative real numbers satisfying $\sum_{i=1}^{\infty} c_i = 1$ such that

$$\mathcal{P} \ll \mathcal{P}_* := \sum_{i=1}^{\infty} c_i \mathcal{P}_i.$$
(2.3)

The probability measure P_* is called a privileged (dominating) measure.

Note that (2.3) actually states that $P_i[A] = 0$ for all i implies P[A] = 0 for all $P \in \mathcal{P}$, while the converse is trivially true. That fact could be described as \mathcal{P} and the countable subfamily $\{P_1, P_2, \ldots\}$ being *mutually absolutely continuous* or *equivalent*. Lemma 1 then can be restated without mentioning any constants c_i nor any privileged P_* :

Lemma 1. A family of probability measures \mathcal{P} defined over the space $(\mathcal{X}, \mathcal{A})$ is a dominated family if and only if it is equivalent to one of its countable subsets.

Privileged measures are indeterminate to a very large extent: if $P_* = \sum_{i=1}^{\infty} c_i^* P_i$ is a privileged measure, then any $P_{**} = \sum_{i=1}^{\infty} c_i^{**} P_i$ such that $c_i^{**} > 0$ if and only if $c_i^* > 0$ (with $\sum_{i=1}^{\infty} c_i^{**} = 1 = \sum_{i=1}^{\infty} c_i^*$) also is a privileged measure.

2.2 Conditional expectations

Denote by **T** a *statistic* defined over $(\mathcal{X}, \mathcal{A})$, with values in $(\mathcal{T}, \mathcal{B}_{\mathcal{T}})$, i.e. a function **T** : $(\mathcal{X}, \mathcal{A}) \longrightarrow (\mathcal{T}, \mathcal{B}_{\mathcal{T}})$ mapping $\mathbf{x} \in \mathcal{X}$ onto $\mathbf{T}(\mathbf{x}) \in \mathcal{T}$ and such that $\mathbf{T}^{-1}(B) \in \mathcal{A}$ for every $B \in \mathcal{B}_{\mathcal{T}}$. Then $\mathcal{A}_{\mathbf{T}} := \mathbf{T}^{-1}(\mathcal{B}_{\mathcal{T}})$ is the smallest sub- σ -field of \mathcal{A} with respect to which **T** is measurable. Call it the σ -field generated by **T**. The statistic **T** maps each probability measure P defined over $(\mathcal{X}, \mathcal{A})$ onto a probability measure P^{**T**} over $(\mathcal{T}, \mathcal{B}_{\mathcal{T}})$. Namely, for all $B \in \mathcal{B}_{\mathcal{T}}$, we have

$$\mathbf{P}^{\mathbf{T}}[B] := \mathbf{P}[\mathbf{T}^{-1}(B)]$$

That measure $P^{\mathbf{T}}$ (the probability distribution of $\mathbf{T}(\mathbf{X})$ when $\mathbf{X} \sim P$) is called an *induced* probability measure. Similarly, the family $\mathcal{P}^{\mathbf{T}} = \{P^{\mathbf{T}} : P \in \mathcal{P}\}$ is called an *induced* family and the statistical model $(\mathcal{T}, \mathcal{B}_{\mathcal{T}}, \mathcal{P}^{\mathbf{T}})$ an *induced* model.

Such induced models typically are simpler than the original ones, sometimes much simpler, hence more convenient to work with. Intuitively, they cannot provide more information than the original ones: observing $\mathbf{T}(\mathbf{X})$ cannot be more informative than observing \mathbf{X} itself. Very clearly, however, they can provide less, and even much less information. A question then naturally arises: is it possible to simplify, via a statistic \mathbf{T} , a model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ into a model $(\mathcal{T}, \mathcal{B}_{\mathcal{T}}, \mathcal{P}^{\mathbf{T}})$ without losing any information on the data-generating process that generated \mathbf{X} ? That question is the central one behind the concept of *sufficiency*: a statistic \mathbf{T} will be called *sufficient* if $\mathbf{T}(\mathbf{X})$ carries as much information as \mathbf{X} itself on the data-generating process that generating process that generated \mathbf{X} .

The mathematical translation of that simple idea will require the concepts of conditional expectation and conditional probability, which we now describe.

It can be shown that a measurable function $g : (\mathcal{X}, \mathcal{A}) \longmapsto (\mathbb{R}, \mathcal{B})$ is **T**-measurable (equivalently, $\mathcal{A}_{\mathbf{T}}$ -measurable) if there exists a measurable mapping $h : (\mathcal{T}, \mathcal{B}_{\mathcal{T}}) \longmapsto (\mathbb{R}, \mathcal{B})$ such that $g(\mathbf{x}) = h(\mathbf{T}(\mathbf{x}))$. Then, for all $B \in \mathcal{B}_{\mathcal{T}}$, we have

$$\int_{B} h(\mathbf{t}) \mathrm{dP}^{\mathbf{T}}(\mathbf{t}) = \int_{\mathbf{T}^{-1}(B)} \underbrace{h(\mathbf{T}(\mathbf{x}))}_{=g(\mathbf{x})} \mathrm{dP}(\mathbf{x}), \qquad (2.4)$$

meaning that, as soon as one of those integrals exists, so does the other one, and they coincide (this is the *transfer property* of the Lebesgue integral).

In particular, for $B = \mathcal{T}$, hence $\mathbf{T}^{-1}(B) = \mathcal{X}$, with $\mathbf{X} \sim \mathbf{P}$, hence $\mathbf{T} \sim \mathbf{P}^{\mathbf{T}}$, adopting the expectation notation of the integral, (2.4) takes the familiar form

$$\mathbf{E}[h(\mathbf{T})] = \mathbf{E}[h(\mathbf{T}(\mathbf{X}))]. \tag{2.5}$$

Property (2.4) allows us to compute integrals of **T**-measurable functions either in \mathcal{T} or in \mathcal{X} , just as (2.5) tells us that expectations of **T** and **T**(**X**) are the same. Can that convenient property be extended also to functions g that are not **T**-measurable? This is the purpose of

conditional expectations.

Assume first that g is a *nonnegative* \mathcal{A} -measurable and P-integrable function. Can we define a **T**-measurable function h such that

$$\int_{B} h(\mathbf{t}) \mathrm{dP}^{\mathbf{T}}(\mathbf{t}) = \int_{\mathbf{T}^{-1}(B)} g(\mathbf{x}) \mathrm{dP}(\mathbf{x})$$
(2.6)

for all $B \in \mathcal{B}_{\mathcal{T}}$? Since g is nonnegative and P-integrable, the function ν_g from $\mathcal{B}_{\mathcal{T}}$ to \mathbb{R}^+ mapping B to

$$\nu_g(B) := \int_{\mathbf{T}^{-1}(B)} g(\mathbf{x}) \mathrm{dP}(\mathbf{x})$$

is a finite measure over $(\mathcal{T}, \mathcal{B}_{\mathcal{T}})$. That measure ν_g is dominated by P^T, since P^T[B] = 0 implies P[T⁻¹(B)] = 0, hence $\nu_g(B) = 0$. The Radon-Nikodym theorem then guarantees the existence of an essentially unique function $h = \frac{\mathrm{d}\nu_g}{\mathrm{dP}^{\mathrm{T}}}$ such that

$$\nu_g(B) = \int_B h(\mathbf{t}) \mathrm{dP}^{\mathbf{T}}(\mathbf{t}),$$

so that (2.6) holds. The class of functions $h = \frac{d\nu_g}{d\mathbf{P}^T}$ is called the *conditional expectation* of $g(\mathbf{X})$ given \mathbf{T} , and is denoted as $\mathbf{E}_{\mathbf{P}}[g(\mathbf{X})|\mathbf{T}]$. As usual, the same notation is used for any of the elements of that class, which are \mathbf{P}^T -almost surely equal, \mathbf{T} -measurable, random variables; write $\mathbf{E}_{\mathbf{P}}[g(\mathbf{X})|\mathbf{T} = \mathbf{t}]$ for the value of $\mathbf{E}_{\mathbf{P}}[g(\mathbf{X})|\mathbf{T}]$ at $\mathbf{T} = \mathbf{t}$. With that notation, equation (2.6) takes the form

$$\int_{B} \mathcal{E}_{\mathcal{P}}[g(\mathbf{X})|\mathbf{T} = \mathbf{t}] d\mathcal{P}^{\mathbf{T}}(\mathbf{t}) = \int_{\mathbf{T}^{-1}(B)} g(\mathbf{x}) d\mathcal{P}(\mathbf{x}) \quad \text{for all } B \in \mathcal{B}_{\mathcal{T}}.$$
 (2.7)

It remains to extend this construction to functions g that are not nonnegative: for an arbitrary \mathcal{A} -measurable, P-integrable, but not necessarily nonnegative g, we decompose g into $g^+ - g^-$, with

$$g^{+}(\mathbf{x}) := \begin{cases} |g(\mathbf{x})| & \text{if } g(\mathbf{x}) \ge 0\\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad g^{-}(\mathbf{x}) := \begin{cases} |g(\mathbf{x})| & \text{if } g(\mathbf{x}) \le 0\\ 0 & \text{otherwise,} \end{cases}$$

and define $E_P[g(\mathbf{X})|\mathbf{T}] = E_P[g^+(\mathbf{X})|\mathbf{T}] - E_P[g^-(\mathbf{X})|\mathbf{T}].$

Since (2.7) involves the statistic \mathbf{T} only through the σ -field $\mathcal{B}_{\mathbf{T}}$, the conditional expectation $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X})|\mathbf{T}]$ actually does only depend on \mathbf{T} through $\mathcal{B}_{\mathbf{T}}$, so that the notation $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X})|\mathcal{A}_{\mathbf{T}}]$ is also used for $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X})|\mathbf{T}]$. This also implies that $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X})|\ell(\mathbf{T})] = \mathrm{E}_{\mathrm{P}}[g(\mathbf{X})|\mathbf{T}]$ for any one-to-one mapping ℓ . In particular, for a real-valued T, the conditional expectations $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X})|T]$, $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X})|\exp(T)]$, and $\mathrm{E}_{\mathrm{P}}[g(\mathbf{X})|T^{3}]$ always coincide.

Conditional expectations enjoy most of the elementary properties of expectations:

(a) *linearity*: for any constants c_i and real-valued measurable functions $g_i : \mathcal{X} \longrightarrow \mathbb{R}$,

$$\mathbf{E}_{\mathbf{P}}\left[\sum_{i}c_{i}g_{i}(\mathbf{X})\middle|\mathbf{T}\right] = \sum_{i}c_{i}\mathbf{E}_{\mathbf{P}}[g_{i}(\mathbf{X})|\mathbf{T}],$$

in the sense that if the right-hand side exists and is finite, so does the left-hand side;

(b) for any measurable function ℓ ,

$$E_{P}[\ell(\mathbf{T})g(\mathbf{X})|\mathbf{T}] = \ell(\mathbf{T})E_{P}[g(\mathbf{X})|\mathbf{T}].$$

In particular, since it is easily checked that $E_P[1|\mathbf{T}] = 1$, we always have that

$$\mathrm{E}_{\mathrm{P}}[\ell(\mathbf{T})|\mathbf{T}] = \ell(\mathbf{T});$$

(c) $\operatorname{E}_{\operatorname{PT}}\left[\operatorname{E}_{\operatorname{P}}[g(\mathbf{X})|\mathbf{T}]\right] = \operatorname{E}_{\operatorname{P}}[g(\mathbf{X})]$ (this follows by taking $B = \mathcal{T}$ in (2.7)).

A simple and interesting geometric interpretation of conditional expectation is possible if we restrict to the L^2 space of square-integrable functions, namely the space of all real-valued measurable functions $\mathbf{x} \mapsto f(\mathbf{x})$ such that $\int_{\mathcal{X}} f^2(\mathbf{x}) dP(\mathbf{x}) < \infty$, with scalar product

$$\langle f_1, f_2 \rangle = \int_{\mathcal{X}} f_1(\mathbf{x}) f_2(\mathbf{x}) d\mathbf{P}(\mathbf{x}).$$

Let g and ψ belong to L^2 , and let ψ be **T**-measurable, hence of the form $\ell(\mathbf{T}(\mathbf{x}))$. Then, the

squared L^2 -distance between g and ψ is

$$\begin{split} \mathbf{E} \big[\{g(\mathbf{X}) - \psi(\mathbf{X})\}^2 \big] &= \mathbf{E} \big[\{g(\mathbf{X}) - \ell(\mathbf{T})\}^2 \big] = \mathbf{E} \big[\{g(\mathbf{X}) - \mathbf{E}[g(\mathbf{X})|\mathbf{T}] + \mathbf{E}[g(\mathbf{X})|\mathbf{T}] - \ell(\mathbf{T})\}^2 \big] \\ &= \mathbf{E} \big[\{g(\mathbf{X}) - \mathbf{E}[g(\mathbf{X})|\mathbf{T}]\}^2 \big] \\ &+ 2\mathbf{E} [\{g(\mathbf{X}) - \mathbf{E}[g(\mathbf{X})|\mathbf{T}]\} \{\mathbf{E}[g(\mathbf{X})|\mathbf{T}] - \ell(\mathbf{T})\}] \\ &+ \mathbf{E} \big[\{\mathbf{E}[g(\mathbf{X})|\mathbf{T}] - \ell(\mathbf{T})\}^2 \big] \,. \end{split}$$

Quite obviously,

- (a) the first term $E[(g(\mathbf{X}) E[g(\mathbf{X})|\mathbf{T}])^2]$ does not depend on $\ell(\cdot)$;
- (b) By the properties of conditional expectations, the second term is zero: indeed,

$$\begin{split} \mathbf{E}[\{g(\mathbf{X}) - \mathbf{E}[g(\mathbf{X})|\mathbf{T}]\} \{\mathbf{E}[g(\mathbf{X})|\mathbf{T}] - \ell(\mathbf{T})\}] \\ &= \mathbf{E}\big[\mathbf{E}[\{g(\mathbf{X}) - \mathbf{E}[g(\mathbf{X})|\mathbf{T}]\} \{\mathbf{E}[g(\mathbf{X})|\mathbf{T}] - \ell(\mathbf{T})\} |\mathbf{T}]\big] \\ &= \mathbf{E}\big[\{\mathbf{E}[g(\mathbf{X})|\mathbf{T}] - \ell(\mathbf{T})\} \mathbf{E}[g(\mathbf{X}) - \mathbf{E}[g(\mathbf{X})|\mathbf{T}]|\mathbf{T}]\big] \\ &= \mathbf{E}\big[\{\mathbf{E}[g(\mathbf{X})|\mathbf{T}] - \ell(\mathbf{T})\} \times 0\big] = 0; \end{split}$$

(c) the minimal value of the third term $E[(E[g(\mathbf{X})|\mathbf{T}] - \ell(\mathbf{T}))^2]$ over all possible choices of $\psi(\mathbf{X}) = \ell(\mathbf{T})$ is zero, a minimum which is reached at $\psi(\mathbf{X}) = \ell(\mathbf{T}) = E[g(\mathbf{X})|\mathbf{T}]$.

It follows that the minimum, over all **T**-measurable square-integrable functions ψ , of the squared L^2 -distance $E[\{g(\mathbf{X})-\psi(\mathbf{X})\}^2]$ is $E[\{g(\mathbf{X})-E[g(\mathbf{X})|\mathbf{T}]\}^2]$; in other words, $E[g(\mathbf{X})|\mathbf{T}]$ is the L^2 -projection of $g(\mathbf{X})$ onto the space of (square-integrable) **T**-measurable variables.

2.3 Conditional probabilities

For any $A \in \mathcal{A}$, we have, with $\mathbf{X} \sim \mathbf{P}$,

$$P[A] = \int_{A} dP = \int_{\mathcal{X}} I_A(\mathbf{x}) dP(\mathbf{x}) = E[I_A(\mathbf{X})]:$$
(2.8)

the probability of A is the expectation of the indicator of A. Therefore, it is natural to extend that characterization by defining the *conditional probability* $P[A|\mathbf{T}]$ of A given \mathbf{T} as the \mathbf{T} -measurable random variable

$$P[A|\mathbf{T}] := E_P[I_A(\mathbf{X})|\mathbf{T}].$$
(2.9)

While (2.8) is a property of expectations defined as integrals, (2.9) is the definition of a new concept: the conditional probability of A given **T**. From the properties of conditional expectations, we have the following properties for conditional probabilities:

- $P[A] = E_P[P[A|\mathbf{T}]] = \int_{\mathcal{T}} P[A|\mathbf{T} = \mathbf{t}] dP^{\mathbf{T}}(\mathbf{t})$
- P[A|T = t] is defined up to sets of P^{T} -measure zero.

Whereas for any fixed $A \in \mathcal{A}$, $P[A|\mathbf{T}]$ is a class of **T**-measurable random variables defined up to a set of P^{**T**}-measure zero, there is no guarantee that, for a given fixed value **t**, there exists a collection of versions

$$\{ \mathbf{P}[A|\mathbf{T} = \mathbf{t}] : A \in \mathcal{A} \}$$

constituting a *probability measure* over $(\mathcal{X}, \mathcal{A})$. If such a collection exists, it qualifies as being called the *conditional distribution* over $(\mathcal{X}, \mathcal{A})$ of **X**, given $\mathbf{T}(\mathbf{X}) = \mathbf{t}$. However, it can be shown that, in "usual cases", such conditional distributions do exist.

Theorem 2. Let \mathcal{X} be a Borel set in a Euclidean space and \mathcal{A} be the class of Borel subsets of \mathcal{X} . Then,

- (i) one can select, for each $A \in \mathcal{A}$, a version $P^*[A|\mathbf{T}]$ of $P[A|\mathbf{T}]$ in such a way that, for any fixed $\mathbf{t}, A \mapsto P^*[A|\mathbf{T} = \mathbf{t}], A \in \mathcal{A}$ constitutes a probability measure over $(\mathcal{X}, \mathcal{A})$ (notation: $P^{\mathbf{X}|\mathbf{T}=\mathbf{t}}$), and
- (ii) $\mathbf{t} \mapsto \int_{\mathcal{X}} f(\mathbf{x}) d\mathbf{P}^{\mathbf{X}|\mathbf{T}=\mathbf{t}}$ constitutes a version of $\mathbf{E}_{\mathbf{P}}[f|\mathbf{T}]$ (with f a P-integrable, possibly vector-valued random variable).

2.4 Sufficiency

We are now able to provide a precise definition of the concept of a *sufficient statistic*.

Definition 1. A statistic $\mathbf{T} : (\mathcal{X}, \mathcal{A}) \longrightarrow (\mathcal{T}, \mathcal{B}_{\mathcal{T}})$ is sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ if, for all $A \in \mathcal{A}$, there exists a version of $P[A|\mathbf{T}]$ that does not depend on P, i.e. if, for all $A \in \mathcal{A}$,

$$\bigcap_{\mathbf{P}\in\mathcal{P}}\mathbf{P}[A|\mathbf{T}]\neq\emptyset.$$

Intuitively, if a sufficient statistic \mathbf{T} is known, then the (conditional) probability of any event $A \in \mathcal{A}$ does not depend on which particular $P \in \mathcal{P}$ is generating the observation. Hence, once \mathbf{T} is known, the observation \mathbf{X} does not carry any additional information about P. All information on P in \mathbf{X} is contained in \mathbf{T} , which justifies the terminology sufficiency.

Since $P[A|\mathbf{T}]$ actually depends on \mathbf{T} only through $\mathcal{A}_{\mathbf{T}}$, sufficiency is a property of $\mathcal{A}_{\mathbf{T}}$ rather than \mathbf{T} , which will allow us to sometimes write that $\mathcal{A}_{\mathbf{T}}$ itself is sufficient.

2.5 The Halmos-Savage theorem

The following theorem provides, in a *dominated model*, a necessary and sufficient condition for a statistic \mathbf{T} being sufficient.

Theorem 3. (Halmos and Savage, 1949) Let $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ be a dominated model. The following three statements are equivalent:

- (i) \mathbf{T} is sufficient;
- (ii) for any $P \in \mathcal{P}$, there exists a **T**-measurable version of $\frac{dP}{dP_*}$, where P_* is a specific privileged probability measure;
- (iii) for any $P \in \mathcal{P}$, there exists a **T**-measurable version of $\frac{dP}{dP_*}$, where P_* is an arbitrary privileged probability measure.

Conditions (ii) and (iii) both are necessary and sufficient for sufficiency. Since (iii) obviously implies (ii), Condition (ii) is stronger than (iii) as a sufficient condition, and weaker as a necessary one.

Proof. $(i) \Rightarrow (iii)$ Assume that **T** is sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ and let $P_* = \sum_i c_i P_i$ be an arbitrary privileged measure. Then, for any $P \in \mathcal{P}$, we have $P \ll P_*$, hence $P^{\mathbf{T}} \ll P_*^{\mathbf{T}}$. Thus, $\frac{\mathrm{d}P^{\mathbf{T}}}{\mathrm{d}P_*^{\mathbf{T}}}$ exists: arbitrarily pick one of its versions, and denote it as $\mathbf{t} \longmapsto g_P(\mathbf{t})$. The proof then consists in showing that $\mathbf{x} \longmapsto g_P(\mathbf{T}(\mathbf{x}))$ is a version of $\frac{\mathrm{d}P}{\mathrm{d}P_*}$. For any $A \in \mathcal{A}$, sufficiency of **T** implies that there exists a version of $P[A|\mathbf{T}]$ that does not depend on P, hence is also a version of each of the $P_i[A|\mathbf{T}]$'s and, therefore, a version of $P_*[A|\mathbf{T}]$. Taking that fact into account and applying repeatedly the characteristic property of conditional expectations, we have, for any $A \in \mathcal{A}$,

$$P[A] = \int_{\mathcal{X}} I_A(\mathbf{x}) dP(\mathbf{x}) = \int_{\mathcal{T}} P[A|\mathbf{T} = \mathbf{t}] dP^{\mathbf{T}}(\mathbf{t})$$

$$= \int_{\mathcal{T}} P_*[A|\mathbf{T} = \mathbf{t}] dP^{\mathbf{T}}(\mathbf{t}) = \int_{\mathcal{T}} E_{P_*}[I_A(\mathbf{X})|\mathbf{T} = \mathbf{t}] g_P(\mathbf{t}) dP_*^{\mathbf{T}}(\mathbf{t})$$

$$= \int_{\mathcal{T}} E_{P_*}[g_P(\mathbf{T})I_A(\mathbf{X})|\mathbf{T} = \mathbf{t}] dP_*^{\mathbf{T}}(\mathbf{t}) = \int_{\mathcal{X}} g_P(\mathbf{T}(\mathbf{x}))I_A(\mathbf{x}) dP_*(\mathbf{x})$$

$$= \int_A g_P(\mathbf{T}(\mathbf{x})) dP_*(\mathbf{x}).$$

This establishes that $\mathbf{x} \mapsto g_{\mathbf{P}}(\mathbf{T}(\mathbf{x}))$ is indeed a version of $\frac{d\mathbf{P}}{d\mathbf{P}_*}$. Since it is obviously **T**-measurable, the result follows.

 $(iii) \Rightarrow (ii)$ Trivial.

 $(ii) \Rightarrow (i)$ Fix the privileged measure P_* mentioned in Condition (ii). For any P, let then $\mathbf{x} \mapsto g_P(\mathbf{T}(\mathbf{x}))$ be a **T**-measurable version of $\frac{dP}{dP_*}$. First note that, for any $B \in \mathcal{B}_{\mathcal{T}}$,

$$P^{\mathbf{T}}[B] = P[\mathbf{T}^{-1}(B)] = \int_{\mathbf{T}^{-1}(B)} g_{P}(\mathbf{T}(\mathbf{x})) dP_{*}(\mathbf{x})$$
$$= \int_{B} E_{P_{*}}[g_{P}(\mathbf{T})|\mathbf{T} = \mathbf{t}] dP_{*}^{\mathbf{T}}(\mathbf{t}) = \int_{B} g_{P}(\mathbf{t}) dP_{*}^{\mathbf{T}}(\mathbf{t}),$$

which shows that $\mathbf{t} \mapsto g_{\mathbf{P}}(\mathbf{t})$ is a version of $\frac{d\mathbf{P}^{\mathbf{T}}}{d\mathbf{P}_{*}^{\mathbf{T}}}$. Thus, for any $B \in \mathcal{B}_{\mathcal{T}}$, $\mathbf{P} \in \mathcal{P}$ and any real-valued measurable function ψ , we have

$$\int_{\mathbf{T}^{-1}(B)} \psi(\mathbf{x}) dP(\mathbf{x}) = \int_{\mathbf{T}^{-1}(B)} \psi(\mathbf{x}) g_{P}(\mathbf{T}(\mathbf{x})) dP_{*}(\mathbf{x})$$

$$= \int_{B} E_{P_{*}}[\psi(\mathbf{X})g_{P}(\mathbf{T})|\mathbf{T} = \mathbf{t}] dP_{*}^{\mathbf{T}}(\mathbf{t})$$

$$= \int_{B} E_{P_{*}}[\psi(\mathbf{X})|\mathbf{T} = \mathbf{t}] g_{P}(\mathbf{t}) dP_{*}^{\mathbf{T}}(\mathbf{t})$$

$$= \int_{B} E_{P_{*}}[\psi(\mathbf{X})|\mathbf{T} = \mathbf{t}] dP^{\mathbf{T}}(\mathbf{t}). \qquad (2.10)$$

Thus, for any measurable real-valued function ψ , any version of $E_{P_*}[\psi(\mathbf{X})|\mathbf{T}]$ is a version of $E_P[\psi(\mathbf{X})|\mathbf{T}]$ that does not depend on P. Sufficiency of **T** follows by choosing $\psi = I_A$. \Box

In view of (2.10), the definition of sufficiency could have been taken as the existence of a version of conditional *expectations* not depending on P, instead of that of a version of conditional *probabilities* not depending on P.

2.6 The Neyman-Fisher factorization criterion

In practice, the Halmos-Savage theorem is not convenient for checking sufficiency. Provided that a dominating measure is well identified, a much simpler method is based on the following result, which goes back to Neyman and Fisher.³

Proposition 1. (The Neyman-Fisher factorization criterion) Let the model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ be dominated by the σ -finite measure μ . A statistic **T** is sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ if and only if, for any $P \in \mathcal{P}$, there exists a version of $\frac{dP}{d\mu}$, f_P say, factorizing μ -a.e. into

$$f_{\mathrm{P}}(\mathbf{x}) = g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))h(\mathbf{x}),$$

where h does not depend on P.

³Neyman and Fisher, however, essentially took this result as a definition of sufficiency.

Proof. (\Rightarrow) Assume that **T** is sufficient. The Halmos-Savage theorem then guarantees existence, for any $P \in \mathcal{P}$, of a **T**-measurable version of $\frac{dP}{dP_*}$, where P_* is an arbitrary privileged measure; denote it as $\mathbf{x} \mapsto g_P(\mathbf{T}(\mathbf{x}))$. Noting that, for any P, we have $P \ll P_* \ll \mu$, let h be an arbitrary version of $\frac{dP_*}{d\mu}$. The elementary properties of Radon-Nikodym derivatives then ensure that

$$f_{\mathrm{P}}(\mathbf{x}) := g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))h(\mathbf{x})$$

is a version of $\frac{dP}{d\mu}$, as was to be proved. (\Leftarrow) Assume that, for any $P \in \mathcal{P}$, there exist some g_P and h (which, without loss of generality, can be assumed to be nonnegative) such that

$$f_{\mathrm{P}}(\mathbf{x}) = g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))h(\mathbf{x})$$
 μ -a.e.

Fix then an arbitrary privileged measure $P_* = \sum_{i=1}^{\infty} c_i P_i$ and note that

$$f_{\mathbf{P}_*} := \sum_{i=1}^{\infty} c_i f_{\mathbf{P}_i} \in \frac{\mathrm{d}\mathbf{P}_*}{\mathrm{d}\mu};$$

indeed, we have

$$P_*[A] = \sum_{i=1}^{\infty} c_i P_i[A] = \sum_{i=1}^{\infty} c_i \int_A f_{P_i}(\mathbf{x}) d\mu(\mathbf{x}) = \int_A f_{P_*}(\mathbf{x}) d\mu(\mathbf{x}).$$

Since $P \ll P_* \ll \mu$, the elementary properties of Radon-Nikodym derivatives ensure that a version of $\frac{dP}{dP_*}$ is given by

$$\frac{f_{\mathrm{P}}(\mathbf{x})}{f_{\mathrm{P}_*}(\mathbf{x})} = \frac{f_{\mathrm{P}}(\mathbf{x})}{\sum_{i=1}^{\infty} c_i f_{\mathrm{P}_i}(\mathbf{x})} = \frac{g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))h(\mathbf{x})}{\sum_{i=1}^{\infty} c_i g_{\mathrm{P}_i}(\mathbf{T}(\mathbf{x}))h(\mathbf{x})} = \frac{g_{\mathrm{P}}(\mathbf{T}(\mathbf{x}))}{\sum_{i=1}^{\infty} c_i g_{\mathrm{P}_i}(\mathbf{T}(\mathbf{x}))}$$

Since this version of $\frac{dP}{dP_*}$ is **T**-measurable, sufficiency of **T** follows from the Halmos-Savage theorem.

As an example, let $\mathbf{X} = (X_1, \ldots, X_n)$ collect independently and identically distributed random variables that admit density f with respect to the Lebesgue measure on \mathbb{R} . This is thus a nonparametric model involving the family $\mathcal{P} = \{\mathbf{P}_f : f \in \mathcal{F}\}$, where \mathcal{F} is the collection of all densities with respect to the Lebesgue measure on the real line. The density of **X** (in \mathbb{R}^n , with respect to the Lebesgue measure on \mathbb{R}^n), is, at $\mathbf{x} = (x_1, \ldots, x_n)$,

$$f^{\mathbf{X}}(x_1,\ldots,x_n) = \prod_{i=1}^n f(x_i) = \underbrace{\left(\prod_{i=1}^n f(x_{(i)})\right)}_{g_f(\mathbf{x}_{(.)})} \times \underbrace{1}_{h(\mathbf{x})},$$

where $\mathbf{x}_{(.)} = (x_{(1)}, \ldots, x_{(n)})$ is the order statistic. The factorization criterion thus entails that $\mathbf{x}_{(.)}$ is a sufficient statistic.

2.7 Minimal sufficiency (in dominated models)

Let **S** and **T** be two statistics, with values in (S, \mathcal{B}_S) and $(\mathcal{T}, \mathcal{B}_T)$, respectively. We say that **T** is **S**-measurable if and only if **T** is $\mathcal{A}_{\mathbf{S}}$ -measurable, in the sense that $\mathcal{A}_{\mathbf{T}} := \mathbf{T}^{-1}(\mathcal{B}_T) \subseteq \mathcal{A}_{\mathbf{S}}$. It can be shown that this happens if and only if there exists a measurable function ℓ from Sto \mathcal{T} such that $T(\mathbf{x}) = \ell(\mathbf{S}(\mathbf{x}))$, or if and only if $S(\mathbf{x}) = S(\mathbf{y})$ implies that $T(\mathbf{x}) = T(\mathbf{y})$. Obviously, if **T** is **S**-measurable and **S** is **T**-measurable, then $\mathcal{A}_{\mathbf{S}} = \mathcal{A}_{\mathbf{T}}$, $T(\mathbf{x}) = \ell(\mathbf{S}(\mathbf{x}))$ for a *one-to-one* mapping ℓ , and $S(\mathbf{x}) = S(\mathbf{y})$ if and only if $T(\mathbf{x}) = T(\mathbf{y})$; in this framework, both statistics provide the exact same reduction of information.

In the sequel, we assume that $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ is a dominated model. If **T** is sufficient and **S**-measurable (that is, if $\mathcal{A}_{\mathbf{T}} \subseteq \mathcal{A}_{\mathbf{S}}$), then **S** is also sufficient. Intuitively, if **T** is a function of **S**, then all information carried by **T** is also carried by **S**, whereas, mathematically, this readily follows from the Halmos-Savage theorem (since **T**-measurability implies **S**-measurability). Thus, many sufficient statistics may be available for a given model.

Suppose, for example, that $\mathbf{X} = (X_1, \ldots, X_n)$ collects independently and identically distributed $\mathcal{N}(0, \sigma^2)$ variables, and consider the resulting model parametrized by $\sigma^2 \in \mathbb{R}_0^+$. Then, the factorization criterion easily yields that the statistics

$$\mathbf{T}_1(\mathbf{X}) = (X_1, \dots, X_n)$$
$$\mathbf{T}_2(\mathbf{X}) = (X_{(1)}, \dots, X_{(n)}) \text{ (the order statistic)}$$
$$\mathbf{T}_3(\mathbf{X}) = (X_{(1)}^2, \dots, X_{(n)}^2)$$

$$\mathbf{T}_4(\mathbf{X}) = (X_{(1)}^2 + X_{(2)}^2, X_{(3)}^2 + \ldots + X_{(n)}^2)$$
$$\mathbf{T}_5(\mathbf{X}) = X_1^2 + \ldots + X_n^2$$

are all sufficient, with $\mathcal{A}_{\mathbf{T}_5} \subseteq \ldots \subseteq \mathcal{A}_{\mathbf{T}_1} \subseteq \mathcal{A}$. The smaller $\mathcal{A}_{\mathbf{T}}$, the larger the reduction associated with \mathbf{T} , and the simpler the model induced by \mathbf{T} : in this respect, \mathbf{T}_5 does a better job than \mathbf{T}_4 , and a much better one than \mathbf{T}_1 , which is trivially sufficient (no reduction at all). As we will be show later, \mathbf{T}_5 actually is *minimal sufficient*, in the sense that no further reduction is possible without losing sufficiency.

Definition 2. A statistic **T** is *minimal sufficient* (equivalently, the σ -field $\mathcal{A}_{\mathbf{T}}$ is *minimal sufficient*) if it is sufficient and if it is **S**-measurable for any sufficient statistic **S** (equivalently, if $\mathcal{A}_{\mathbf{T}}$ is sufficient and if $\mathcal{A}_{\mathbf{T}} = \bigcap_{\mathbf{S} \text{ sufficient}} \mathcal{A}_{\mathbf{S}}$).

As an example, let $\mathbf{X} = (X_1, \ldots, X_n)$ collect independent and identically distributed random variables whose common distribution is the uniform distribution over the interval $[\theta - \frac{1}{2}, \theta + \frac{1}{2}]$. Denote by $\mathcal{P} = \{\mathbf{P}_{\theta} : \theta \in \mathbb{R}\}$ the family of joint distributions of such \mathbf{X} 's. Writing $\mathbb{I}[C]$ for the indicator function of Condition C (which takes value one if C is satisfied and value zero otherwise), the density of \mathbf{P}_{θ} with respect to the Lebesgue measure in \mathbb{R}^n , at $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, is then

$$f_{\theta}(\mathbf{x}) = f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n \mathbb{I}\left[\theta - \frac{1}{2} \le x_i \le \theta + \frac{1}{2}\right]$$
$$= \mathbb{I}\left[\theta - \frac{1}{2} \le x_{(1)}, x_{(n)} \le \theta + \frac{1}{2}\right] = \mathbb{I}\left[x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}\right].$$

The factorization criterion thus implies that $\mathbf{T} := (X_{(1)}, X_{(n)})$ is sufficient. In order to establish minimal sufficiency, let **S** be sufficient. From the factorization criterion, we have that, for all $\theta \in \mathbb{R}$, the density f_{θ} factorizes into

$$f_{\theta}(\mathbf{x}) = g_{\theta}(\mathbf{S}(\mathbf{x}))h(\mathbf{x})$$
 P_{\theta}-a.s.

Now, note that $h(\mathbf{X}) > 0$ P_{θ} -a.s. for all $\theta \in \mathbb{R}$. Therefore, P_{θ} -a.s. for all $\theta \in \mathbb{R}$,

$$X_{(1)} = \inf \left\{ t \in \mathbb{R} : f_{\theta}(\mathbf{X}) = 0 \text{ for all } \theta \in (t, \infty) \right\} - \frac{1}{2}$$
$$= \inf \left\{ t \in \mathbb{R} : g_{\theta}(\mathbf{S}(\mathbf{X})) = 0 \text{ for all } \theta \in (t, \infty) \right\} - \frac{1}{2}$$
(2.11)

and

$$X_{(n)} = \sup \left\{ t \in \mathbb{R} : f_{\theta}(\mathbf{X}) = 0 \text{ for all } \theta \in (-\infty, t) \right\} + \frac{1}{2}$$
$$= \sup \left\{ t \in \mathbb{R} : g_{\theta}(\mathbf{S}(\mathbf{X})) = 0 \text{ for all } \theta \in (-\infty, t) \right\} + \frac{1}{2}.$$
(2.12)

It follows from (2.11)–(2.12) that **T** is **S**-measurable, hence is minimal sufficient.

It remains rare that we can establish minimal sufficiency by using Definition 2 as we could do in the example above. We now present two results that together allow one to establish minimal sufficiency in many cases.

Proposition 2. Let $(\mathcal{X}, \mathcal{A}, \mathcal{P}_0)$ and $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ be two dominated models involving the same observation space \mathcal{X} , with $\mathcal{P}_0 \subset \mathcal{P}$. If **T** is minimal sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P}_0)$ and sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$, then **T** is minimal sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$.

Proof. Let **S** be a sufficient statistic for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$. Then, **S** is sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P}_0)$ (this follows, e.g., from the Halmos-Savage theorem). Since **T** is minimal sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P}_0)$, we thus have, by definition, that **T** is **S**-measurable, which was to be shown.

Proposition 3. Let $\mathcal{P} = \{P_0, P_1, \dots, P_K\}$ and assume that $P_k \ll P_0$ for $k = 1, \dots, K$. Then, $\mathbf{T} := (T_1, \dots, T_K)$, with $T_k := \frac{\mathrm{d}P_k}{\mathrm{d}P_0}$, is minimal sufficient.

Proof. Obviously, the family \mathcal{P} is dominated by P_0 , and $\frac{dP_0}{dP_0} = 1$. It directly follows from the Halmos-Savage theorem (applied with $P_* = P_0$) that $\mathbf{T} := (T_1, \ldots, T_K)$ is sufficient. Let then **S** be an arbitrary sufficient statistic. From the Halmos-Savage theorem (still applied

with $P_* = P_0$), there must exist, for any k = 1, ..., K, a function ℓ_k such that

$$\frac{\mathrm{dP}_k}{\mathrm{dP}_0} = \ell_k(\mathbf{S})$$

This shows that \mathbf{T} is \mathbf{S} -measurable, hence minimal sufficient.

Let us provide some applications of Propositions 2–3.

Example 1: Let $\mathbf{X} = (X_1, \ldots, X_n)$ collect independent and identically distributed $\mathcal{N}(\mu, 1)$ random variables, with $\mu \in \mathbb{R}$. The density of \mathbf{X} with respect to the Lebesgue measure on \mathbb{R}^n is, at $\mathbf{x} = (x_1, \ldots, x_n)$,

$$f_{\mu}(x_1, \dots, x_n) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2\right)$$
$$= \underbrace{\exp\left(\mu \sum_{i=1}^n x_i - \frac{n}{2}\mu^2\right)}_{g_{\mu}(\sum_{i=1}^n x_i)} \times \underbrace{(2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^n x_i^2\right)}_{h(\mathbf{x})}.$$

The factorization criterion thus implies that $\sum_{i=1}^{n} X_i$ is a sufficient statistic. Now, denote as \mathcal{P} the family of all $\mathcal{N}(\mu, 1)$ distributions associated with $\mu \in \mathbb{R}$, and by \mathcal{P}_0 a subfamily consisting of the $\mathcal{N}(\mu_0, 1)$ and $\mathcal{N}(\mu_1, 1)$ distributions associated with two arbitrary values $\mu_0 \neq \mu_1$. In view of Proposition 3,

$$T := \frac{f_{\mu_1}(x_1, \dots, x_n)}{f_{\mu_0}(x_1, \dots, x_n)}$$
$$= \frac{\exp\left(\mu_1 \sum_{i=1}^n x_i - \frac{n}{2}\mu_1^2\right)(2\pi)^{-n/2}\exp\left(-\frac{1}{2}\sum_{i=1}^n x_i^2\right)}{\exp\left(\mu_0 \sum_{i=1}^n x_i - \frac{n}{2}\mu_0^2\right)(2\pi)^{-n/2}\exp\left(-\frac{1}{2}\sum_{i=1}^n x_i^2\right)}$$
$$= \exp\left((\mu_1 - \mu_0)\sum_{i=1}^n x_i + \frac{n}{2}(\mu_0^2 - \mu_1^2)\right)$$

is minimal sufficient for \mathcal{P}_0 . Since $\sum_{i=1}^n X_i$ generate the same σ -field as T, it is also minimal sufficient for \mathcal{P}_0 , hence (from Proposition 2) minimal sufficient for \mathcal{P} . Clearly,

 $\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$, which generates the same σ -field as $\sum_{i=1}^{n} X_i$, is then also minimal sufficient for \mathcal{P} .

Example 2: Let $\mathbf{X} = (X_1, \ldots, X_n)$ be an *n*-tuple of independent and identically distributed random variables, being logistic with location θ . More precisely, each X_i has density

$$f_{\theta}(x) = \frac{\exp\left(-(x-\theta)\right)}{\left\{1 + \exp\left(-(x-\theta)\right)\right\}^2}, \qquad x \in \mathbb{R}.$$

Then, for the finite subfamily \mathcal{P}_0 corresponding to the (K+1)-tuple of pairwise distinct parameter values $\{\theta_0 = 0, \theta_1, \ldots, \theta_K\}$, a minimal sufficient statistic is, in view of Proposition 3,

$$\mathbf{T} = (T_1, \dots, T_K), \text{ with } T_j := \exp(n\theta_j) \prod_{i=1}^n \left(\frac{1 + \exp(-X_i)}{1 + \exp(-X_i + \theta_j)}\right)^2$$

Let us show that, for K = n+1, $\mathbf{T}(x_1, \ldots, x_n) = \mathbf{T}(y_1, \ldots, y_n)$ if and only if $(\mathbf{x}_{(1)}, \ldots, \mathbf{x}_{(n)}) = (\mathbf{y}_{(1)}, \ldots, \mathbf{y}_{(n)})$. This would then imply that \mathbf{T} generates the same σ -field as the order statistic $(\mathbf{X}_{(1)}, \ldots, \mathbf{X}_{(n)})$ of \mathbf{X} , so that the order statistic would then also be minimal sufficient for \mathcal{P}_0 . Since the factorization criterion implies that the order statistic is sufficient for the whole family \mathcal{P} obtained for $\theta \in \mathbb{R}$, it would then be minimal sufficient for \mathcal{P} , too (from Proposition 2).

If $(\mathbf{x}_{(1)}, \ldots, \mathbf{x}_{(n)}) = (\mathbf{y}_{(1)}, \ldots, \mathbf{y}_{(n)})$, then obviously $\mathbf{T}(x_1, \ldots, x_n) = \mathbf{T}(y_1, \ldots, y_n)$. Assume then that $\mathbf{T}(x_1, \ldots, x_n) = \mathbf{T}(y_1, \ldots, y_n)$. Let $\xi_j = \exp(\theta_j)$ and $u_i = \exp(-x_i)$, $v_i = \exp(-y_i)$. Since $\mathbf{T}(x_1, \ldots, x_n) = \mathbf{T}(y_1, \ldots, y_n)$, we have

$$\xi_j^n \prod_{i=1}^n \left(\frac{1+u_i}{1+\xi u_i}\right)^2 = \xi_j^n \prod_{i=1}^n \left(\frac{1+v_i}{1+\xi v_i}\right)^2 \quad \text{for } \xi = \xi_1, \dots, \xi_{n+1}$$

(recall we took K = n + 1), hence also

$$p(\xi) := \prod_{i=1}^{n} \frac{1+\xi u_i}{1+u_i} = \prod_{i=1}^{n} \frac{1+\xi v_i}{1+v_i} =: q(\xi) \quad \text{for } \xi = \xi_1, \dots, \xi_{n+1}.$$

This last equation requires that two polynomials of degree n in ξ , namely $p(\xi)$ and $q(\xi)$,

be equal at n + 1 distinct values of ξ . This implies that these polynomials are identical, hence that they share the same roots. Since the roots of $p(\xi)$ are $-1/u_1, \ldots, -1/u_n$ and those of $q(\xi)$ are $-1/v_1, \ldots, -1/v_n$, it follows that $u_{(i)} = v_{(i)}$ for all $i = 1, \ldots, n$, hence that $x_{(i)} = y_{(i)}$ for all $i = 1, \ldots, n$, as was to be proved.

Example 3: Semiparametric location model: X_1, \ldots, X_n are independently and identically distributed with density f_{θ} (with respect to the Lebesgue measure on $(\mathbb{R}, \mathcal{B})$), with $f_{\theta}(x) = f_0(x - \theta)$ and $f_0 \in \mathcal{F}_0 := \{f(x) : \int xf(x)d\mu(x) = 0\}$. That class \mathcal{F}_0 contains the centered logistic, so that the logistic family of Example 2 is a subfamily \mathcal{P}_0 of \mathcal{P} . Clearly, the order statistic is sufficient for \mathcal{P} (this readily follows from the factorization criterion), while we have shown it is minimal sufficient for \mathcal{P}_0 . Hence, the order statistic is minimal sufficient for \mathcal{P} .