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3 Sufficiency and point estimation

3.1 The Rao-Blackwell theorem

Let (X ,A,P) be a statistical model, and let T = T(X) be a sufficient statistic for (X ,A,P).

Consider a decision space (D,BD), where D is a convex Borel set of Rk, equipped with the Borel

sub-σ-field BD = Bk
⋂
D. In this context, a pure decision rule δ : (X ,A) −→ (D,BD) is a statistic

with values in (D,BD). The typical example is point estimation for the value (at P ∈ P) of a real-

valued function φ(P): then, the decision space is D = φ(P). We henceforth use the terminology

associated with point estimation.

An estimator δ is called P-integrable if EP[δ(X)] exists and is finite for all P ∈ P (convexity

of D implies that EP[δ(X)] ∈ D for all P). If EP[δ(X)] = φ(P) for all P, then we say that δ is an

unbiased estimator of φ(P). Define the Rao-Blackwellization of δ with respect to T as

δT := E/P [δ(X)|T] ,

where independence on P follows from sufficiency of T (sufficiency indeed implies that there exists

a version of this conditional expectation that does not depend on P2). Thus, δT is still a statistic,

that, from convexity, takes its values in D. Note that if δ is an unbiased estimator of φ(P), then δT

is an unbiased estimator of φ(P), too, as

EP

[
δT(X)

]
= EP[EP [δ(X)|T]] = EP[δ(X)] = ψ(P)

for all P ∈ P. Now, denote by RδP and Rδ
T

P the risks at P associated with δ and δT, respectively,

for a given loss function (P, d) 7−→ LP(d).

Theorem 1. (Rao-Blackwell). Let T be sufficient for (X ,A,P). Consider a loss function (P, d) 7−→
LP(d) such that d 7−→ LP(d) is strictly convex for all P ∈ P. Then, for any P ∈ P at which the

risk RδP exists and is finite, RδP > Rδ
T

P unless δ = δT P-almost surely (in which case one obviously

has RδP = Rδ
T

P ).
1With slight modifications by Davy Paindaveine and Thomas Verdebout.
2This was actually established in the proof of the Halmos-Savage Theorem.
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Proof. The proof directly follows from an application of Jensen’s inequality. Recall that, for any

real-valued convex function g, any A-measurable random vector ξξξ and any sub-σ-field A0 of A,

E[g(ξξξ)|A0] ≥ g(E[ξξξ|A0]) (3.1)

provided that E[g(ξξξ)] exists and is finite; if the function g is strictly convex and ξξξ is notA0-measurable,

then inequality is strict. Here, for all P ∈ P, Jensen’s inequality yields

Rδ
T

P = EP

[
LP(δ

T)
]
= EP

[
LP

(
E/P[δ(X)|T]

)]
≤ EP

[
E/P[LP(δ(X)) |T]

]
= EP[LP(δ(X))] = RδP, (3.2)

where the inequality in (3.2) follows from (3.1), and is strict unless δ is T-measurable.

Conditioning with respect to a sufficient statistic thus uniformly improves any estimator δ which

is not T-measurable. If the loss function in convex, but not strictly convex, then the inequality

may become weak, RδP ≥ Rδ
T

P , even for a non T-measurable δ. In all cases, thus, the T-measurable

estimator δT is uniformly preferable to δ, irrespective of the convex loss function considered.

Example 1: Let X1, . . . , Xn be a sample of independent and identically distributed random

variables with E[Xi] = µ ∈ R but otherwise unspecified Lebesgue density f . The weighted mean

X̄w :=
∑n

i=1wiXi, with w1, . . . , wn ≥ 0 and
∑n

i=1wi = 1, is an unbiased estimator of µ. The order

statistic X(·) :=
(
X(1), . . . , X(n)

)
is sufficient. In view of the linearity properties of conditional

expectations, the Rao-Blackwellization X̄
X(·)
w of X̄w is X̄

X(·)
w =

∑n
i=1wiE[Xi|X(·)]. The distribution

of X conditional on X(·) = x(·) = (x(1), . . . , x(n)) is uniform over the n! permutations of x(·). Hence,

the distribution of Xi conditional on X(·) = x(·) is uniform over x(1), . . . , x(n), so that

E[Xi|X(·)] =
1

n

n∑
i=1

X(i) =
1

n

n∑
i=1

Xi =: X̄.

Therefore, Rao-Blackwellizing X̄w yields

X̄
X(·)
w =

n∑
i=1

wiE[Xi|X(·)] =
n∑
i=1

wiX̄ = X̄.

Unweighted means, thus, in this respect are preferable to weighted means (which is quite plausible
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in view of the symmetry of the problem). Note that, in particular, Rao-Blackwellization of X1

provides X̄ (this is the particular case associated with w = (1, 0, . . . , 0)).

Example 2: let X = (X1, . . . , Xn) collect independent and identically distributed random vari-

ables whose common distribution is the uniform distribution over the interval [0, θ]. Denote

by P = {Pθ : θ ∈ R} the family of joint distributions of such X’s. We consider the prob-

lem of estimating φ(P ) = θ. The density of Pθ with respect to the Lebesgue measure in Rn,
at x = (x1, . . . , xn) ∈ Rn, is then

fθ(x) =

n∏
i=1

I
[
0 ≤ xi ≤ θ

]
= I

[
0 ≤ x(1), x(n) ≤ θ

]
= I

[
0 ≤ x(1)

]
I
[
x(n) ≤ θ

]
.

The factorization criterion thus implies that T := X(n) is sufficient. An unbiased estimator for θ

is δ = 2X1. Its Rao-Blackwellization using T = X(n) is given by

δX(n) = 2E[X1|X(n)] = 2

{
X(n) ×

1

n
+ E[Z|X(n)]×

(
1− 1

n

)}
,

where Z, conditional on X(n), is uniformly distributed over [0, X(n)]. Therefore,

δX(n) = 2

{
X(n)

n
+
X(n)

2

(
1− 1

n

)}
=
n+ 1

n
X(n).

It is easy to check explicitly that this is indeed an unbiased estimator of θ.

3.2 Distribution-freeness and ancillarity

We now turn to the concept of distribution-freeness, which, in a sense, is exactly the opposite of

sufficiency: whereas a sufficient statistic carries all the available information, a distribution-free

statistic does not carry any information at all. As we shall see, however, things are more subtle.

As usual, let (X ,A,P) be a statistical model.

Definition 1. A statistic S is distribution-free (under (X ,A,P) or under P) if its distribution is

the same under any P ∈ P, that is, if PS
1 = PS

2 for all P1,P2 ∈ P.

Note that distribution-freeness, like sufficiency, is a property of σ-fields: if S is distribution-free, so

is any AS-measurable statistic. Hence, we may also speak of distribution-free σ-fields in the sequel.
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Definition 2. A distribution-free statistic S measurable with respect to any sufficient statistic is

called ancillary for (X ,A,P).

Example 3: Let X = (N,Y ), where N − 1 ∼ Bin(1, 12) and, conditionally on N = n, Y ∼
Bin(n, p), with p ∈ (0, 1), which characterizes the distribution PX

p of X. Denoting as µ the counting

measure of {(1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}, the family P = {Pp : p ∈ (0, 1)} is a one-parameter

family dominated by µ; it is easy to check that the density of Pp with respect to µ is, at x = (n, y),

fp(x) =
1

2

(
n

y

)
py(1− p)n−y.

One can show that X = (N,Y ) is minimal sufficient, while N ∼ Bin(1, 12) is obviously distribution-

free, and X-measurable. Hence, N is ancillary. Although N does not carry any information on p,

it is needed in interpreting the information contained in Y .

Example 4: In the logistic location family (Example 2 of Chapter 2), the order statistic X(·) is

minimal sufficient. Since the spacings X(i+1) −X(i) are distribution-free (indeed, X(i+1) −X(i) =

(X(i+1) − θ)− (X(i) − θ)) and X(·)-measurable, each of them is ancillary.

The principle of ancillarity consists in getting rid of ancillary statistics/σ-fields. This prin-

ciple, in the presence of S, distribution-free and measurable with respect to a minimal suffi-

cient statistic T, consists in reducing the original model (X ,A,P) by conditioning on S, yielding(
T ,BT ,PT|S=s

)
, where (T ,BT ) is T’s observation space, and PT|S=s is the collection of conditional

distributions of T conditional on S = s (provided that such conditional distributions exist).

Example 3 (continued): Observe N = n, then treat it as a constant, with a model which is

either binomial with exponent 1, or binomial with exponent 2.

3.3 Completeness and the Lehmann-Scheffé theorem

Reduction of the data via sufficiency is most effective when there is no ancillary statistic except for

the trivial case—the almost sure constants. Characterizing such an absence is difficult, and an even

stronger requirement, that of the absence of first-order ancillary statistics, is considered, leading

to the concept of completeness.

Definition 3. A statistic S is first-order distribution-free under (X ,A,P) if and only if (i) it is
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P-integrable (that is, EP[S] exists and is finite for any P ∈ P) and (ii) EP[S] = c/P, a constant that

does not depend on P ∈ P.

A statistic S is said to be a P-almost sure constant if there exists a constant c and, for all

P ∈ P, a set NP ∈ A with P-probability zero such that S(x) = c for all x /∈ NP. The P-almost

sure constants are trivially first-order distribution-free. A statistic T is called complete if the only

T-measurable first-order distribution-free statistics are those trivial ones.

Definition 4. A statistic T (or the corresponding σ-field AT) is complete for (X ,A,P) if and

only if the fact that EP[ℓ(T)] = 0 for all P ∈ P implies that ℓ(T) = 0 P-almost surely for all P ∈ P.

It is easy to show that a statistic T is complete if and only if, indeed, the P-almost sure

constants are the only T-measurable first-order distribution-free statistics, in the sense that the

fact that EP[ℓ(T)] = c/P for all P ∈ P implies that ℓ(T) = c/P P-almost surely for all P ∈ P.

Example 2 (continued): let X = (X1, . . . , Xn) collect independent and identically distributed

random variables whose common distribution is the uniform distribution over the interval [0, θ].

Denote by P = {Pθ : θ ∈ R} the family of joint distributions of such X’s. For n ≥ 2, the

statistic T = X is not complete because

ℓ(T) = X2 −X1

is T-measurable, is not a P-almost sure constant, yet provides Eθ[ℓ(T)] = 0 for all θ > 0 (we

write Eθ instead of EPθ
). Similarly, for n ≥ 2, the order statistic T = X(·) is not complete because

ℓ(T) =
n+ 1

n
X(n) − (n+ 1)X(1)

is T-measurable, is not a P-almost sure constant, yet provides Eθ[ℓ(T)] = 0 for all θ > 0. For

the same reason, the statistic T = (X(1), X(n)) is not complete either for n ≥ 2. In contrast, the

statistic T = X(n) is complete, as we now show. Assume that there exists ℓ such that Eθ[ℓ(T )] = 0

for all θ > 0, that is, such that, for all θ > 0,

0 = Eθ[ℓ(T )] = Eθ[ℓ(X(n))] =

∫ ∞

−∞
ℓ(z)f

X(n)

θ (z) dz =
n

θn

∫ θ

0
ℓ(z)zn−1 dz.
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Thus, ∫ θ

0
ℓ(z)zn−1 dz = 0

for all θ > 0, so that we must have that ℓ(z)zn−1 = 0 µ+-almost everywhere (where µ+ is the

Lebesgue measure on R+), hence also that ℓ(z) = 0 µ+-almost everywhere. Since X(n) is nonneg-

ative Pθ-almost surely for any θ > 0, it follows that ℓ(X(n)) = 0 Pθ-almost surely for any θ > 0.

This establishes that T = X(n) is complete.

As we shall see, completeness is a property that nicely complements sufficiency. The ex-

ample above suggests that a sufficient statistic may be complete only if it provides performs a

large/maximal reduction of X still ensuring sufficiency. The next result supports this.

Theorem 2. Let T be sufficient and complete for (X ,A,P). Then, provided that a minimal

sufficient statistic exists, T is minimal sufficient.

Proof. Let T∗ be a minimal sufficient statistic. It is enough to prove that T is T∗-measurable

(since the sufficient statistic T is then measurable with respect to any sufficient statistic, hence is

a minimal sufficient statistic). To this end, consider the statistic

V := T− EP[T|T∗]

(sufficiency of T∗ implies that this is indeed a statistic). Clearly, it has expectation zero under

any P ∈ P. Also, V is T-measurable (since T∗ is minimal sufficient, the T∗-measurable statistic

EP[T|T∗] is also T-measurable). Completeness of T thus entails that V = 0 P-almost surely under

any P ∈ P, hence that

T = EP[T|T∗]

P-almost surely under any P ∈ P. It follows that T is T∗-measurable, which establishes the

result.

Two remarks are in order. First, it is not always so that minimal sufficient statistic exists

(although existence actually holds under extremely mild assumptions). Second, a minimal sufficient

statistic may fail to be complete; for instance, we saw in Chapter 2 that when one observes a

random vectorX = (X1, . . . , Xn) collecting i.i.d. realizations from the Unif(θ− 1
2 , θ+

1
2) distribution,

then T = (X(1), X(n)) is minimal sufficient; however, it is not complete since Eθ[X(n)−X(1)− n−1
n+1 ] =

0 for any θ ∈ R.
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The following result provides another interesting property of sufficient and complete statistics.

Recall that a statistic S, with values in (S,BS), and a statistic T, with values in (T ,BT ), are

P-independent if

for all B ∈ BS , P[S−1(B)|T] = P[S−1(B)] P-almost surely,

or, equivalently, if for all B ∈ BT , P[T
−1(B)|S] = P[T−1(B)] P-almost surely.

Theorem 3. (Basu, 1955) If (i) T is sufficient and complete for (X ,A,P) and (ii) S is distribution-

free, then S and T are P-independent for any P ∈ P.

Proof. Fix B ∈ BS arbitrarily. Since

EP

[
P[S−1(B)|T]

]
= P[S−1(B)] for all P ∈ P,

one has

EP

[
P[S−1(B)|T]− P[S−1(B)]

]
= 0 for all P ∈ P. (3.3)

Note that P[S−1(B)|T] does not depend on P (since T is sufficient) and that this is also the case

for P[S−1(B)] (since P[S−1(B)] = PS [B] and S is distribution-free). Thus,

P
[
S−1(B)|T

]
− P[S−1(B)]

is a T-measurable statistic. In view of (3.3), that T-measurable statistic has expectation zero for

all P ∈ P. Since T is complete, we must then have

P[S−1(B)|T]− P[S−1(B)] = 0 P-almost surely

for any P ∈ P. Since B ∈ BS was fixed arbitrarily, we thus proved that

P[S−1(B)|T] = P[S−1(B)] P-almost surely

for any P ∈ P and any B ∈ BS , which establishes the result.

Example 2 (continued): In the framework of this example, we have seen that T = X(n) is suf-

ficient and complete. The statistic S = (X2/X1, X3/X1, . . . , Xn−1/X1) is distribution-free (this

follows by noting that S = (Z2/Z1, . . . , Zn−1/Z1), where (Z1, . . . , Zn) := (X1/θ, . . . , Xn/θ) is
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distribution-free). The Basu theorem thus implies that X(n) and (X2/X1, X3/X1, . . . , Xn−1/X1)

are independent under Pθ for any θ > 0.

Example 5: the Basu theorem can be seen as an extension of the classical Fisher Lemma on the

independence of X̄ and s2 in Gaussian samples. Let indeed X = (X1, . . . , Xn), where the Xi’s are

independent and identically distributed N (µ, σ2); take µ ∈ R as the parameter of this model, and

consider σ2 as fixed. Then,

(a) from the factorization criterion, X̄ is sufficient for this one-parameter family;

(b) it can be shown (a property of exponential families, to be covered in Chapter 4) that X̄ is

complete for the same family;

(c) from classical results, we know that ns2/σ2 ∼ χ2
n−1, irrespective of µ; hence, s

2 is distribution-

free.

The Basu theorem thus implies that X̄ and s2 are independent. Now, such independence holds

for any σ2, and thus extends to the two-parameter family indexed by µ and σ2. For the same

reason, the following pairs also are mutually independent: X̄ and Xmax −Xmin; X̄ and the vector

of spacings (X(2) −X(1), . . . , X(n) −X(n−1)); X̄ and the vector of ranks (R
(n)
1 , . . . , R

(n)
n ).3

In point estimation, completeness essentially complements sufficiency in the Rao-Blackwell the-

orem, yielding the Lehmann-Scheffé theorem.

Theorem 4. (Lehmann-Scheffé) Let T be sufficient and complete for (X ,A,P), and let S be an

unbiased estimator of φ(P). Then,

(i) ST := E/P [S|T] is essentially unique (in the sense that if S1 and S2 are two unbiased estima-

tors of φ(P ), then ST
1 = ST

2 P-almost surely for all P ∈ P);

(ii) irrespective of the convex loss function d 7−→ LP(d), S
T has uniformly minimum risk in the

class of unbiased estimators of φ(P) (“ST is UMRU for φ(P)”)4.

3The rank of Xi is defined as R
(n)
i := #{ j = 1, . . . , n : Xj ≤ Xi}.

4UMRU stands for Uniformly Minimum Risk Unbiased.
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Proof. (i) Let S1 and S2 be unbiased estimators of φ(P), and denote as ST
1 and ST

2 their Rao-

Blackwellized versions. Then, for all P ∈ P,

EP

[
ST
i

]
:= EP

[
E/P[Si|T]

]
= EP[Si] = φ(P),

so that ST
1 and ST

2 still are unbiased estimators of φ(P). Hence,

EP

[
ST
1 − ST

2

]
= 0 for all P ∈ P.

But ST
1 − ST

2 is a T-measurable statistic. Completeness of T thus entails that

ST
1 − ST

2 = 0 P-almost surely for all P ∈ P,

which establishes the result. (ii) Pick an arbitrary unbiased estimator V of φ(P ). Applying Part (i)

of the result, then the Rao-Blackwell theorem, we obtain

RST

P = RVT

P ≤ RV
P for all P ∈ P.

This establishes that ST is UMRU for φ(P).

Exponential families are the main domain of application for the Lehmann-Scheffé theorem.

Those families are the subject of Chapter 4. Here, we treat an example that does not belong to

exponential families.

Example 2 (continued): In the framework of this example, we have seen that T = X(n) is

sufficient and complete. We also showed that the Rao-Blackwellized version of the unbiased esti-

mator S = 2X1 of θ is

ST =
n+ 1

n
X(n).

From the Lehmann-Scheffé theorem, ST is UMRU for θ. Irrespective of the convex loss func-

tion considered. For the L2 loss function, this shows in particular that this estimator is UMVU

(Uniformly Minimum Variance Unbiased) for θ.
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3.4 A more involved application: U-statistics

Consider the nonparametric model under which the observation is an independent and identically

distributed n-tuple X = (X1, . . . , Xn), where Xi has unspecified density f ∈ F , the family of all

probability densities (with respect to the Lebesgue measure µ) over (R,B). As we have seen in

Chapter 2, the order statistic X(·) :=
(
X(1), . . . , X(n)

)
is then sufficient, and it can be shown that

it is also complete5.

That property of the order statistic is not affected if moment restrictions are applied to the

densities f ∈ F (that is, if F is replaced with the family F0 of those densities for which moments,

or the moments of some functions, exist up to some order). The Lehmann-Scheffé theorem thus

applies to such nonparametric families.

Assume that ψ : Rk −→ R is such that

φ(P) := EP[ψ(X1, . . . , Xk)]

exists and is finite for all P such that f = dP
dµ ∈ F0 and consider the problem of estimat-

ing φ(P ) on the basis of X. Obviously, S := ψ(X1, . . . , Xk) is an unbiased estimator of φ(P ).

The Rao-Blackwellized version SX(·) of this estimator is then UMRU for φ(P ). Now, conditional

on X(·) = x(·), where x(·) = (x(1), x(2), . . . , x(n)) has strictly increasing entries (ties have Lebesgue

measure zero, hence probability zero, so that they safely can be neglected), (X1, . . . , Xk) is uni-

formly distributed over the n(n − 1) . . . (n − k + 1) ordered k-tuples (xi1 , . . . , xik) with entries in

{x(1), . . . , x(n)}, or equivalently in {x1, . . . , xn}. It follows that

SX(·) = EP

[
ψ(X1, . . . , Xk)|X(·)

]
=

1

n(n− 1) . . . (n− k + 1)

n∑
i1,...,ik=1

ij pairwise ̸=

ψ(Xi1 , . . . , Xik),

where the sum is over all distinct ordered k-tuples of integers in {1, . . . , n}. This leads to the

definition of a U -statistic (Hoeffding 1948).

Definition 5. Let ψ : Rk −→ R be such that

5For a proof, one may consider the exponential subfamily FTn associated with the priviliged statistic Tn :=(∑n
i=1 Xi,

∑n
i=1 X

2
i , . . . ,

∑n
i=1 X

n
i

)
. It can be shown that X(·) generates the same σ-field as Tn, hence is complete

for the exponential subfamily (see Chapter 4), which in turn implies that it is complete for the broader family F .
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(i) φ(P) := EP[ψ(X1, . . . , Xk)] for all P with density f ∈ F0 (see above), and

(ii) k is the smallest integer for which such a ψ exists (that is, k is the smallest number of

observations required for unbiased estimation of φ(P)).

Then, ψ is called a kernel (of order k) for Ψ, and the statistic

Uψ = Uψ(X1, . . . , Xn) :=
1

n(n− 1) . . . (n− k + 1)

n∑
i1,...,ik=1

ij pairwise ̸=

ψ(Xi1 , . . . , Xik)

is called a U-statistic with kernel ψ.

Remark 1: If the kernel ψ is symmetric in its arguments (meaning that ψ(Xπ(1), . . . , Xπ(k)) =

ψ(X1, . . . , Xk) for any permutation π of {1, . . . , n}), then Uψ takes the form

Uψ =
k!

n(n− 1) . . . (n− k + 1)

n∑
i1,...,ik=1

i1<...<ik

ψ(Xi1 , . . . , Xik).

Remark 2: If F is further restricted to the subfamily of symmetric (with respect to 0) densities,

then the order statistic loses its minimal sufficiency and completeness properties to the order

statistic of absolute values. A U -statistic can be defined with appropriate changes in the form of

conditional expectations.

It follows from the Lehmann-Scheffé theorem that when f is unspecified in F0 := {f ∈ F :

φ(P) exists and is finite}, the U -statistic Uψ is, for convex loss functions, a UMRU estimator

for φ(P), and is essentially unique (in the sense that if ψ1 and ψ2 are two kernels for φ(P), then

Uψ1 = Uψ2 P-almost surely for any f ∈ F0).

Example 6: With the above notation, let F0 be the family of densities f = dP
dµ for which the

mean mP :=
∫
xf(x)dµ(x) exists and is finite. Clearly, ψ(X1) = X1 is a kernel of order one for

φ(P) = mP. It follows that

Uψ =
1

n

n∑
i=1

Xi =: X̄

is UMRU for mP in the model with unspecified density f ∈ F0.

Example 7: Let now F0 be the family of densities for which the variances σ2P := VarP[Xi] are

11



finite. Since

EP[(X1 −X2)
2] = EP[X

2
1 ] + EP[X

2
2 ]− 2EP[X1X2] = 2{EP[X

2
1 ]− (EP[X1])

2} = 2σ2P

for all P such that f = dP
dµ ∈ F0, a kernel of order two for φ(P) = σ2P is

ψ(X1, X2) =
1

2
(X1 −X2)

2 .

The corresponding U -statistic is

Uψ =
1

2n(n− 1)

n∑
i,j=1

i ̸=j

(Xi −Xj)
2 =

1

2n(n− 1)

n∑
i,j=1

(Xi −Xj)
2

=
1

2n(n− 1)

n∑
i,j=1

(X2
i +X2

j − 2XiXj) =
1

2n(n− 1)

{
2n

n∑
i=1

X2
i − 2

( n∑
i=1

Xi

)2
}

=
n

n− 1

{
1

n

n∑
i=1

X2
i − X̄2

}
=

1

n− 1

n∑
i=1

(Xi − X̄)2 =: S2,

which is the traditional unbiased estimator of σ2. From the Lehmann-Scheffé theorem, S2 is thus

UMRU for σ2P in the model with unspecified density f ∈ F0.

Those UMRU results look impressively strong, as the corresponding families of distributions are

quite big. Yet one should not forget that the bigger F , the more severe the unbiasedness constraint

(the fact that X̄ and S2 are UMRU estimators is largely due to the fact that they do not have

many competitors).
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