Lecture Notes for STAT-F404, author: Marc Hallin ${ }^{1}$

3 Sufficiency and point estimation

3.1 The Rao-Blackwell theorem

Let $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ be a statistical model, and let $\mathbf{T}=\mathbf{T}(\mathbf{X})$ be a sufficient statistic for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$. Consider a decision space ($\mathcal{D}, \mathcal{B}_{\mathcal{D}}$), where \mathcal{D} is a convex Borel set of \mathbb{R}^{k}, equipped with the Borel sub- σ-field $\mathcal{B}_{\mathcal{D}}=\mathcal{B}^{k} \bigcap \mathcal{D}$. In this context, a pure decision rule $\delta:(\mathcal{X}, \mathcal{A}) \longrightarrow\left(\mathcal{D}, \mathcal{B}_{\mathcal{D}}\right)$ is a statistic with values in $\left(\mathcal{D}, \mathcal{B}_{\mathcal{D}}\right)$. The typical example is point estimation for the value (at $\mathrm{P} \in \mathcal{P}$) of a realvalued function $\varphi(\mathrm{P})$: then, the decision space is $\mathcal{D}=\varphi(\mathcal{P})$. We henceforth use the terminology associated with point estimation.

An estimator δ is called \mathcal{P}-integrable if $\mathrm{E}_{\mathrm{P}}[\delta(\mathbf{X})]$ exists and is finite for all $\mathrm{P} \in \mathcal{P}$ (convexity of \mathcal{D} implies that $\mathrm{E}_{\mathrm{P}}[\delta(\mathbf{X})] \in \mathcal{D}$ for all P$)$. If $\mathrm{E}_{\mathrm{P}}[\delta(\mathbf{X})]=\varphi(\mathrm{P})$ for all P , then we say that δ is an unbiased estimator of $\varphi(\mathrm{P})$. Define the Rao-Blackwellization of δ with respect to \mathbf{T} as

$$
\delta^{\mathbf{T}}:=\mathrm{E}_{\not p}[\delta(\mathbf{X}) \mid \mathbf{T}],
$$

where independence on P follows from sufficiency of \mathbf{T} (sufficiency indeed implies that there exists a version of this conditional expectation that does not depend on P^{2}). Thus, $\delta^{\mathbf{T}}$ is still a statistic, that, from convexity, takes its values in \mathcal{D}. Note that if δ is an unbiased estimator of $\varphi(\mathrm{P})$, then $\delta^{\mathbf{T}}$ is an unbiased estimator of $\varphi(\mathrm{P})$, too, as

$$
\mathrm{E}_{\mathrm{P}}\left[\delta^{\mathbf{T}}(\mathbf{X})\right]=\mathrm{E}_{\mathrm{P}}\left[\mathrm{E}_{\mathrm{P}}[\delta(\mathbf{X}) \mid \mathbf{T}]\right]=\mathrm{E}_{\mathrm{P}}[\delta(\mathbf{X})]=\psi(\mathrm{P})
$$

for all $\mathrm{P} \in \mathcal{P}$. Now, denote by $\mathrm{R}_{\mathrm{P}}^{\delta}$ and $\mathrm{R}_{\mathrm{P}}^{\delta^{\mathrm{T}}}$ the risks at P associated with δ and δ^{T}, respectively, for a given loss function $(\mathrm{P}, d) \longmapsto \mathrm{L}_{\mathrm{P}}(d)$.

Theorem 1. (Rao-Blackwell). Let \mathbf{T} be sufficient for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$. Consider a loss function $(\mathrm{P}, d) \longmapsto$ $\mathrm{L}_{\mathrm{P}}(d)$ such that $d \longmapsto \mathrm{~L}_{\mathrm{P}}(d)$ is strictly convex for all $\mathrm{P} \in \mathcal{P}$. Then, for any $\mathrm{P} \in \mathcal{P}$ at which the risk $\mathrm{R}_{\mathrm{P}}^{\delta}$ exists and is finite, $\mathrm{R}_{\mathrm{P}}^{\delta}>\mathrm{R}_{\mathrm{P}}^{\delta^{\mathbf{T}}}$ unless $\delta=\delta^{\mathbf{T}} \mathrm{P}$-almost surely (in which case one obviously has $\mathrm{R}_{\mathrm{P}}^{\delta}=\mathrm{R}_{\mathrm{P}}^{\delta^{\mathrm{T}}}$.

[^0]Proof. The proof directly follows from an application of Jensen's inequality. Recall that, for any real-valued convex function g, any \mathcal{A}-measurable random vector $\boldsymbol{\xi}$ and any sub- σ-field \mathcal{A}_{0} of \mathcal{A},

$$
\begin{equation*}
\mathrm{E}\left[g(\boldsymbol{\xi}) \mid \mathcal{A}_{0}\right] \geq g\left(\mathrm{E}\left[\boldsymbol{\xi} \mid \mathcal{A}_{0}\right]\right) \tag{3.1}
\end{equation*}
$$

provided that $\mathrm{E}[g(\boldsymbol{\xi})]$ exists and is finite; if the function g is strictly convex and $\boldsymbol{\xi}$ is not \mathcal{A}_{0}-measurable, then inequality is strict. Here, for all $\mathrm{P} \in \mathcal{P}$, Jensen's inequality yields

$$
\begin{align*}
\mathrm{R}_{\mathrm{P}}^{\delta^{\mathrm{T}}} & =\mathrm{E}_{\mathrm{P}}\left[\mathrm{~L}_{\mathrm{P}}\left(\delta^{\mathbf{T}}\right)\right]=\mathrm{E}_{\mathrm{P}}\left[\mathrm{~L}_{\mathrm{P}}\left(\mathrm{E}_{p}[\delta(\mathbf{X}) \mid \mathbf{T}]\right)\right] \\
& \leq \mathrm{E}_{\mathrm{P}}\left[\mathrm{E}_{\not p}\left[\mathrm{~L}_{\mathrm{P}}(\delta(\mathbf{X})) \mid \mathbf{T}\right]\right]=\mathrm{E}_{\mathrm{P}}\left[\mathrm{~L}_{\mathrm{P}}(\delta(\mathbf{X}))\right]=\mathrm{R}_{\mathrm{P}}^{\delta} \tag{3.2}
\end{align*}
$$

where the inequality in (3.2) follows from (3.1), and is strict unless δ is \mathbf{T}-measurable.
Conditioning with respect to a sufficient statistic thus uniformly improves any estimator δ which is not \mathbf{T}-measurable. If the loss function in convex, but not strictly convex, then the inequality may become weak, $\mathrm{R}_{\mathrm{P}}^{\delta} \geq \mathrm{R}_{\mathrm{P}}^{\delta^{\mathrm{T}}}$, even for a non \mathbf{T}-measurable δ. In all cases, thus, the \mathbf{T}-measurable estimator $\delta^{\mathbf{T}}$ is uniformly preferable to δ, irrespective of the convex loss function considered.

Example 1: Let X_{1}, \ldots, X_{n} be a sample of independent and identically distributed random variables with $\mathrm{E}\left[X_{i}\right]=\mu \in \mathbb{R}$ but otherwise unspecified Lebesgue density f. The weighted mean $\bar{X}_{\mathbf{w}}:=\sum_{i=1}^{n} w_{i} X_{i}$, with $w_{1}, \ldots, w_{n} \geq 0$ and $\sum_{i=1}^{n} w_{i}=1$, is an unbiased estimator of μ. The order statistic $\mathbf{X}_{(\cdot)}:=\left(X_{(1)}, \ldots, X_{(n)}\right)$ is sufficient. In view of the linearity properties of conditional expectations, the Rao-Blackwellization $\bar{X}_{\mathbf{w}}^{\mathbf{X}_{(\cdot)}}$ of $\bar{X}_{\mathbf{w}}$ is $\bar{X}_{\mathbf{w}}^{\mathbf{X}_{(\cdot)}}=\sum_{i=1}^{n} w_{i} \mathrm{E}\left[X_{i} \mid \mathbf{X}_{(\cdot)}\right]$. The distribution of \mathbf{X} conditional on $\mathbf{X}_{(\cdot)}=\mathbf{x}_{(\cdot)}=\left(x_{(1)}, \ldots, x_{(n)}\right)$ is uniform over the $n!$ permutations of $\mathbf{x}_{(\cdot)}$. Hence, the distribution of X_{i} conditional on $\mathbf{X}_{(\cdot)}=\mathbf{x}_{(\cdot)}$ is uniform over $x_{(1)}, \ldots, x_{(n)}$, so that

$$
\mathrm{E}\left[X_{i} \mid \mathbf{X}_{(\cdot)}\right]=\frac{1}{n} \sum_{i=1}^{n} X_{(i)}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=: \bar{X} .
$$

Therefore, Rao-Blackwellizing $\bar{X}_{\mathbf{w}}$ yields

$$
\bar{X}_{\mathbf{w}}^{\mathbf{X}_{(\cdot)}}=\sum_{i=1}^{n} w_{i} \mathrm{E}\left[X_{i} \mid \mathbf{X}_{(\cdot)}\right]=\sum_{i=1}^{n} w_{i} \bar{X}=\bar{X} .
$$

Unweighted means, thus, in this respect are preferable to weighted means (which is quite plausible
in view of the symmetry of the problem). Note that, in particular, Rao-Blackwellization of X_{1} provides \bar{X} (this is the particular case associated with $\mathbf{w}=(1,0, \ldots, 0)$).
 ables whose common distribution is the uniform distribution over the interval $[0, \theta]$. Denote by $\mathcal{P}=\left\{\mathrm{P}_{\theta}: \theta \in \mathbb{R}\right\}$ the family of joint distributions of such \mathbf{X} 's. We consider the problem of estimating $\varphi(P)=\theta$. The density of P_{θ} with respect to the Lebesgue measure in \mathbb{R}^{n}, at $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, is then

$$
f_{\theta}(\mathbf{x})=\prod_{i=1}^{n} \mathbb{I}\left[0 \leq x_{i} \leq \theta\right]=\mathbb{I}\left[0 \leq x_{(1)}, x_{(n)} \leq \theta\right]=\mathbb{I}\left[0 \leq x_{(1)}\right] \mathbb{I}\left[x_{(n)} \leq \theta\right]
$$

The factorization criterion thus implies that $\mathbf{T}:=X_{(n)}$ is sufficient. An unbiased estimator for θ is $\delta=2 X_{1}$. Its Rao-Blackwellization using $\mathbf{T}=X_{(n)}$ is given by

$$
\delta^{X_{(n)}}=2 \mathrm{E}\left[X_{1} \mid X_{(n)}\right]=2\left\{X_{(n)} \times \frac{1}{n}+\mathrm{E}\left[Z \mid X_{(n)}\right] \times\left(1-\frac{1}{n}\right)\right\}
$$

where Z, conditional on $X_{(n)}$, is uniformly distributed over $\left[0, X_{(n)}\right]$. Therefore,

$$
\delta^{X_{(n)}}=2\left\{\frac{X_{(n)}}{n}+\frac{X_{(n)}}{2}\left(1-\frac{1}{n}\right)\right\}=\frac{n+1}{n} X_{(n)}
$$

It is easy to check explicitly that this is indeed an unbiased estimator of θ.

3.2 Distribution-freeness and ancillarity

We now turn to the concept of distribution-freeness, which, in a sense, is exactly the opposite of sufficiency: whereas a sufficient statistic carries all the available information, a distribution-free statistic does not carry any information at all. As we shall see, however, things are more subtle.

As usual, let $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ be a statistical model.
Definition 1. A statistic \mathbf{S} is distribution-free (under $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ or under $\mathcal{P})$ if its distribution is the same under any $\mathrm{P} \in \mathcal{P}$, that is, if $\mathrm{P}_{1}^{\mathrm{S}}=\mathrm{P}_{2}^{\mathrm{S}}$ for all $\mathrm{P}_{1}, \mathrm{P}_{2} \in \mathcal{P}$.

Note that distribution-freeness, like sufficiency, is a property of σ-fields: if \mathbf{S} is distribution-free, so is any $\mathcal{A}_{\mathbf{S}}$-measurable statistic. Hence, we may also speak of distribution-free σ-fields in the sequel.

Definition 2. A distribution-free statistic \mathbf{S} measurable with respect to any sufficient statistic is called ancillary for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$.

Example 3: Let $\mathbf{X}=(N, Y)$, where $N-1 \sim \operatorname{Bin}\left(1, \frac{1}{2}\right)$ and, conditionally on $N=n, Y \sim$ $\operatorname{Bin}(n, p)$, with $p \in(0,1)$, which characterizes the distribution $\mathrm{P}_{p}^{\mathbf{X}}$ of \mathbf{X}. Denoting as μ the counting measure of $\{(1,0),(1,1),(2,0),(2,1),(2,2)\}$, the family $\mathcal{P}=\left\{\mathrm{P}_{p}: p \in(0,1)\right\}$ is a one-parameter family dominated by μ; it is easy to check that the density of P_{p} with respect to μ is, at $\mathbf{x}=(n, y)$,

$$
f_{p}(\mathbf{x})=\frac{1}{2}\binom{n}{y} p^{y}(1-p)^{n-y} .
$$

One can show that $\mathbf{X}=(N, Y)$ is minimal sufficient, while $N \sim \operatorname{Bin}\left(1, \frac{1}{2}\right)$ is obviously distributionfree, and \mathbf{X}-measurable. Hence, N is ancillary. Although N does not carry any information on p, it is needed in interpreting the information contained in Y.

Example 4: In the logistic location family (Example 2 of Chapter 2), the order statistic $\mathbf{X}_{(\cdot)}$ is minimal sufficient. Since the spacings $X_{(i+1)}-X_{(i)}$ are distribution-free (indeed, $X_{(i+1)}-X_{(i)}=$ $\left.\left(X_{(i+1)}-\theta\right)-\left(X_{(i)}-\theta\right)\right)$ and $\mathbf{X}_{(\cdot)}$-measurable, each of them is ancillary.

The principle of ancillarity consists in getting rid of ancillary statistics/ σ-fields. This principle, in the presence of \mathbf{S}, distribution-free and measurable with respect to a minimal sufficient statistic \mathbf{T}, consists in reducing the original model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ by conditioning on \mathbf{S}, yielding $\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}, \mathcal{P}^{\mathbf{T} \mid \mathbf{S}=\mathbf{s}}\right)$, where $\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}\right)$ is \mathbf{T} 's observation space, and $\mathcal{P}^{\mathbf{T} \mid \mathbf{S}=\mathbf{s}}$ is the collection of conditional distributions of \mathbf{T} conditional on $\mathbf{S}=\mathbf{s}$ (provided that such conditional distributions exist).

Example 3 (continued): Observe $N=n$, then treat it as a constant, with a model which is either binomial with exponent 1 , or binomial with exponent 2 .

3.3 Completeness and the Lehmann-Scheffé theorem

Reduction of the data via sufficiency is most effective when there is no ancillary statistic except for the trivial case - the almost sure constants. Characterizing such an absence is difficult, and an even stronger requirement, that of the absence of first-order ancillary statistics, is considered, leading to the concept of completeness.

Definition 3. A statistic \mathbf{S} is first-order distribution-free under $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ if and only if (i) it is
\mathcal{P}-integrable (that is, $\mathrm{E}_{\mathrm{P}}[\mathbf{S}]$ exists and is finite for any $\mathrm{P} \in \mathcal{P}$) and (ii) $\mathrm{E}_{\mathrm{P}}[\mathbf{S}]=\mathbf{c}_{\not p}$, a constant that does not depend on $\mathrm{P} \in \mathcal{P}$.

A statistic \mathbf{S} is said to be a \mathcal{P}-almost sure constant if there exists a constant \mathbf{c} and, for all $\mathrm{P} \in \mathcal{P}$, a set $N_{\mathrm{P}} \in \mathcal{A}$ with P -probability zero such that $\mathbf{S}(\mathbf{x})=\mathbf{c}$ for all $\mathbf{x} \notin N_{\mathrm{P}}$. The \mathcal{P}-almost sure constants are trivially first-order distribution-free. A statistic \mathbf{T} is called complete if the only T-measurable first-order distribution-free statistics are those trivial ones.

Definition 4. A statistic \mathbf{T} (or the corresponding σ-field $\mathcal{A}_{\mathbf{T}}$) is complete for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ if and only if the fact that $\mathrm{E}_{\mathrm{P}}[\ell(\mathbf{T})]=\mathbf{0}$ for all $\mathrm{P} \in \mathcal{P}$ implies that $\ell(\mathbf{T})=\mathbf{0} \mathrm{P}$-almost surely for all $\mathrm{P} \in \mathcal{P}$.

It is easy to show that a statistic \mathbf{T} is complete if and only if, indeed, the \mathcal{P}-almost sure constants are the only \mathbf{T}-measurable first-order distribution-free statistics, in the sense that the fact that $\mathrm{E}_{\mathrm{P}}[\ell(\mathbf{T})]=\mathbf{c}_{\phi p}$ for all $\mathrm{P} \in \mathcal{P}$ implies that $\ell(\mathbf{T})=\mathbf{c}_{\phi p} \mathrm{P}$-almost surely for all $\mathrm{P} \in \mathcal{P}$.

Example 2 (continued): let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ collect independent and identically distributed random variables whose common distribution is the uniform distribution over the interval $[0, \theta]$. Denote by $\mathcal{P}=\left\{\mathrm{P}_{\theta}: \theta \in \mathbb{R}\right\}$ the family of joint distributions of such \mathbf{X} 's. For $n \geq 2$, the statistic $\mathbf{T}=\mathbf{X}$ is not complete because

$$
\ell(\mathbf{T})=X_{2}-X_{1}
$$

is \mathbf{T}-measurable, is not a \mathcal{P}-almost sure constant, yet provides $\mathrm{E}_{\theta}[\ell(\mathbf{T})]=0$ for all $\theta>0$ (we write E_{θ} instead of $\mathrm{E}_{\mathrm{P}_{\theta}}$. Similarly, for $n \geq 2$, the order statistic $\mathbf{T}=\mathbf{X}_{(\cdot)}$ is not complete because

$$
\ell(\mathbf{T})=\frac{n+1}{n} X_{(n)}-(n+1) X_{(1)}
$$

is \mathbf{T}-measurable, is not a \mathcal{P}-almost sure constant, yet provides $\mathrm{E}_{\theta}[\ell(\mathbf{T})]=0$ for all $\theta>0$. For the same reason, the statistic $\mathbf{T}=\left(X_{(1)}, X_{(n)}\right)$ is not complete either for $n \geq 2$. In contrast, the statistic $T=X_{(n)}$ is complete, as we now show. Assume that there exists ℓ such that $\mathrm{E}_{\theta}[\ell(T)]=0$ for all $\theta>0$, that is, such that, for all $\theta>0$,

$$
0=\mathrm{E}_{\theta}[\ell(T)]=\mathrm{E}_{\theta}\left[\ell\left(X_{(n)}\right)\right]=\int_{-\infty}^{\infty} \ell(z) f_{\theta}^{X_{(n)}}(z) d z=\frac{n}{\theta^{n}} \int_{0}^{\theta} \ell(z) z^{n-1} d z
$$

Thus,

$$
\int_{0}^{\theta} \ell(z) z^{n-1} d z=0
$$

for all $\theta>0$, so that we must have that $\ell(z) z^{n-1}=0 \mu_{+}$-almost everywhere (where μ_{+}is the Lebesgue measure on \mathbb{R}^{+}), hence also that $\ell(z)=0 \mu_{+-}$almost everywhere. Since $X_{(n)}$ is nonnegative P_{θ}-almost surely for any $\theta>0$, it follows that $\ell\left(X_{(n)}\right)=0 \mathrm{P}_{\theta}$-almost surely for any $\theta>0$. This establishes that $T=X_{(n)}$ is complete.

As we shall see, completeness is a property that nicely complements sufficiency. The example above suggests that a sufficient statistic may be complete only if it provides performs a large/maximal reduction of \mathbf{X} still ensuring sufficiency. The next result supports this.

Theorem 2. Let \mathbf{T} be sufficient and complete for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$. Then, provided that a minimal sufficient statistic exists, \mathbf{T} is minimal sufficient.

Proof. Let \mathbf{T}_{*} be a minimal sufficient statistic. It is enough to prove that \mathbf{T} is \mathbf{T}_{*}-measurable (since the sufficient statistic \mathbf{T} is then measurable with respect to any sufficient statistic, hence is a minimal sufficient statistic). To this end, consider the statistic

$$
\mathbf{V}:=\mathbf{T}-\mathrm{E}_{\mathrm{P}}\left[\mathbf{T} \mid \mathbf{T}_{*}\right]
$$

(sufficiency of \mathbf{T}_{*} implies that this is indeed a statistic). Clearly, it has expectation zero under any $\mathrm{P} \in \mathcal{P}$. Also, \mathbf{V} is \mathbf{T}-measurable (since \mathbf{T}_{*} is minimal sufficient, the \mathbf{T}_{*}-measurable statistic $\mathrm{E}_{P}\left[\mathbf{T} \mid \mathbf{T}_{*}\right]$ is also \mathbf{T}-measurable). Completeness of \mathbf{T} thus entails that $\mathbf{V}=0$ P-almost surely under any $\mathrm{P} \in \mathcal{P}$, hence that

$$
\mathbf{T}=\mathrm{E}_{\mathrm{P}}\left[\mathbf{T} \mid \mathbf{T}_{*}\right]
$$

P -almost surely under any $\mathrm{P} \in \mathcal{P}$. It follows that \mathbf{T} is \mathbf{T}_{*}-measurable, which establishes the result.

Two remarks are in order. First, it is not always so that minimal sufficient statistic exists (although existence actually holds under extremely mild assumptions). Second, a minimal sufficient statistic may fail to be complete; for instance, we saw in Chapter 2 that when one observes a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ collecting i.i.d. realizations from the $\operatorname{Unif}\left(\theta-\frac{1}{2}, \theta+\frac{1}{2}\right)$ distribution, then $\mathbf{T}=\left(X_{(1)}, X_{(n)}\right)$ is minimal sufficient; however, it is not complete since $\mathrm{E}_{\theta}\left[X_{(n)}-X_{(1)}-\frac{n-1}{n+1}\right]=$ 0 for any $\theta \in \mathbb{R}$.

The following result provides another interesting property of sufficient and complete statistics. Recall that a statistic \mathbf{S}, with values in $\left(\mathcal{S}, \mathcal{B}_{\mathcal{S}}\right)$, and a statistic \mathbf{T}, with values in $\left(\mathcal{T}, \mathcal{B}_{\mathcal{T}}\right)$, are P-independent if

$$
\text { for all } B \in \mathcal{B}_{\mathcal{S}}, \quad \mathrm{P}\left[\mathbf{S}^{-1}(B) \mid \mathbf{T}\right]=\mathrm{P}\left[\mathbf{S}^{-1}(B)\right] \quad \mathrm{P} \text {-almost surely },
$$

or, equivalently, if for all $B \in \mathcal{B}_{\mathcal{T}}, \mathrm{P}\left[\mathbf{T}^{-1}(B) \mid \mathbf{S}\right]=\mathrm{P}\left[\mathbf{T}^{-1}(B)\right] \mathrm{P}$-almost surely.
Theorem 3. (Basu, 1955) If (i) \mathbf{T} is sufficient and complete for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ and (ii) \mathbf{S} is distributionfree, then \mathbf{S} and \mathbf{T} are P -independent for any $\mathrm{P} \in \mathcal{P}$.

Proof. Fix $B \in \mathcal{B}_{\mathcal{S}}$ arbitrarily. Since

$$
\mathrm{E}_{\mathrm{P}}\left[\mathrm{P}\left[\mathbf{S}^{-1}(B) \mid \mathbf{T}\right]\right]=\mathrm{P}\left[\mathbf{S}^{-1}(B)\right] \quad \text { for all } \mathrm{P} \in \mathcal{P}
$$

one has

$$
\begin{equation*}
\mathrm{E}_{\mathrm{P}}\left[\mathrm{P}\left[\mathbf{S}^{-1}(B) \mid \mathbf{T}\right]-\mathrm{P}\left[\mathbf{S}^{-1}(B)\right]\right]=0 \quad \text { for all } \mathrm{P} \in \mathcal{P} . \tag{3.3}
\end{equation*}
$$

Note that $\mathrm{P}\left[\mathbf{S}^{-1}(B) \mid \mathbf{T}\right]$ does not depend on P (since \mathbf{T} is sufficient) and that this is also the case for $\mathrm{P}\left[\mathbf{S}^{-1}(B)\right]$ (since $\mathrm{P}\left[\mathbf{S}^{-1}(B)\right]=\mathrm{P}{ }^{\mathbf{S}}[B]$ and \mathbf{S} is distribution-free). Thus,

$$
\mathrm{P}\left[\mathbf{S}^{-1}(B) \mid \mathbf{T}\right]-\mathrm{P}\left[\mathbf{S}^{-1}(B)\right]
$$

is a T-measurable statistic. In view of (3.3), that T-measurable statistic has expectation zero for all $\mathrm{P} \in \mathcal{P}$. Since \mathbf{T} is complete, we must then have

$$
\mathrm{P}\left[\mathbf{S}^{-1}(B) \mid \mathbf{T}\right]-\mathrm{P}\left[\mathbf{S}^{-1}(B)\right]=0 \quad \mathrm{P} \text {-almost surely }
$$

for any $\mathrm{P} \in \mathcal{P}$. Since $B \in \mathcal{B}_{\mathcal{S}}$ was fixed arbitrarily, we thus proved that

$$
\mathrm{P}\left[\mathbf{S}^{-1}(B) \mid \mathbf{T}\right]=\mathrm{P}\left[\mathbf{S}^{-1}(B)\right] \quad \text { P-almost surely }
$$

for any $\mathrm{P} \in \mathcal{P}$ and any $B \in \mathcal{B}_{\mathcal{S}}$, which establishes the result.
Example 2 (continued): In the framework of this example, we have seen that $T=X_{(n)}$ is sufficient and complete. The statistic $\mathbf{S}=\left(X_{2} / X_{1}, X_{3} / X_{1}, \ldots, X_{n-1} / X_{1}\right)$ is distribution-free (this follows by noting that $\mathbf{S}=\left(Z_{2} / Z_{1}, \ldots, Z_{n-1} / Z_{1}\right)$, where $\left(Z_{1}, \ldots, Z_{n}\right):=\left(X_{1} / \theta, \ldots, X_{n} / \theta\right)$ is
distribution-free). The Basu theorem thus implies that $X_{(n)}$ and $\left(X_{2} / X_{1}, X_{3} / X_{1}, \ldots, X_{n-1} / X_{1}\right)$ are independent under P_{θ} for any $\theta>0$.

Example 5: the Basu theorem can be seen as an extension of the classical Fisher Lemma on the independence of \bar{X} and s^{2} in Gaussian samples. Let indeed $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$, where the X_{i} 's are independent and identically distributed $\mathcal{N}\left(\mu, \sigma^{2}\right)$; take $\mu \in \mathbb{R}$ as the parameter of this model, and consider σ^{2} as fixed. Then,
(a) from the factorization criterion, \bar{X} is sufficient for this one-parameter family;
(b) it can be shown (a property of exponential families, to be covered in Chapter 4) that \bar{X} is complete for the same family;
(c) from classical results, we know that $n s^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$, irrespective of μ; hence, s^{2} is distributionfree.

The Basu theorem thus implies that \bar{X} and s^{2} are independent. Now, such independence holds for any σ^{2}, and thus extends to the two-parameter family indexed by μ and σ^{2}. For the same reason, the following pairs also are mutually independent: \bar{X} and $X_{\max }-X_{\min } ; \bar{X}$ and the vector of spacings $\left(X_{(2)}-X_{(1)}, \ldots, X_{(n)}-X_{(n-1)}\right) ; \bar{X}$ and the vector of ranks $\left(R_{1}^{(n)}, \ldots, R_{n}^{(n)}\right) .^{3}$

In point estimation, completeness essentially complements sufficiency in the Rao-Blackwell theorem, yielding the Lehmann-Scheffé theorem.

Theorem 4. (Lehmann-Scheffé) Let \mathbf{T} be sufficient and complete for $(\mathcal{X}, \mathcal{A}, \mathcal{P})$, and let \mathbf{S} be an unbiased estimator of $\varphi(\mathrm{P})$. Then,
(i) $\mathbf{S}^{\mathbf{T}}:=\mathrm{E}_{\not 尸 P}[\mathbf{S} \mid \mathbf{T}]$ is essentially unique (in the sense that if \mathbf{S}_{1} and \mathbf{S}_{2} are two unbiased estimators of $\varphi(P)$, then $\mathbf{S}_{1}^{\mathbf{T}}=\mathbf{S}_{2}^{\mathbf{T}} \mathrm{P}$-almost surely for all $\left.\mathrm{P} \in \mathcal{P}\right)$;
(ii) irrespective of the convex loss function $\mathbf{d} \longmapsto \mathrm{L}_{\mathrm{P}}(\mathbf{d}), \mathbf{S}^{\mathbf{T}}$ has uniformly minimum risk in the class of unbiased estimators of $\varphi(\mathrm{P})\left(\right.$ " $\mathbf{S}^{\mathbf{T}}$ is UMRU for $\varphi(\mathrm{P})$ ") ${ }^{4}$.

[^1]Proof. (i) Let \mathbf{S}_{1} and \mathbf{S}_{2} be unbiased estimators of $\varphi(\mathrm{P})$, and denote as $\mathbf{S}_{1}^{\mathbf{T}}$ and $\mathbf{S}_{2}^{\mathrm{T}}$ their RaoBlackwellized versions. Then, for all $\mathrm{P} \in \mathcal{P}$,

$$
\mathrm{E}_{\mathrm{P}}\left[\mathbf{S}_{i}^{\mathbf{T}}\right]:=\mathrm{E}_{\mathrm{P}}\left[\mathrm{E}_{\phi}\left[\mathbf{S}_{i} \mid \mathbf{T}\right]\right]=\mathrm{E}_{\mathrm{P}}\left[\mathbf{S}_{i}\right]=\varphi(\mathrm{P}),
$$

so that $\mathbf{S}_{1}^{\mathbf{T}}$ and $\mathbf{S}_{2}^{\mathbf{T}}$ still are unbiased estimators of $\varphi(\mathrm{P})$. Hence,

$$
\mathrm{E}_{\mathrm{P}}\left[\mathbf{S}_{1}^{\mathbf{T}}-\mathbf{S}_{2}^{\mathbf{T}}\right]=0 \quad \text { for all } \mathrm{P} \in \mathcal{P}
$$

But $\mathbf{S}_{1}^{\mathbf{T}}-\mathbf{S}_{2}^{\mathbf{T}}$ is a \mathbf{T}-measurable statistic. Completeness of \mathbf{T} thus entails that

$$
\mathbf{S}_{1}^{\mathbf{T}}-\mathbf{S}_{2}^{\mathbf{T}}=0 \quad \mathrm{P} \text {-almost surely for all } \mathrm{P} \in \mathcal{P}
$$

which establishes the result. (ii) Pick an arbitrary unbiased estimator \mathbf{V} of $\varphi(P)$. Applying Part (i) of the result, then the Rao-Blackwell theorem, we obtain

$$
\mathrm{R}_{\mathrm{P}}^{\mathbf{S}^{\mathbf{T}}}=\mathrm{R}_{\mathrm{P}}^{\mathbf{V}^{\mathbf{T}}} \leq \mathrm{R}_{\mathrm{P}}^{\mathbf{V}} \quad \text { for all } \mathrm{P} \in \mathcal{P} .
$$

This establishes that $\mathbf{S}^{\mathbf{T}}$ is UMRU for $\varphi(\mathrm{P})$.
Exponential families are the main domain of application for the Lehmann-Scheffé theorem. Those families are the subject of Chapter 4. Here, we treat an example that does not belong to exponential families.

Example 2 (continued): In the framework of this example, we have seen that $T=X_{(n)}$ is sufficient and complete. We also showed that the Rao-Blackwellized version of the unbiased estimator $S=2 X_{1}$ of θ is

$$
S^{T}=\frac{n+1}{n} X_{(n)} .
$$

From the Lehmann-Scheffé theorem, S^{T} is UMRU for θ. Irrespective of the convex loss function considered. For the L_{2} loss function, this shows in particular that this estimator is UMVU (Uniformly Minimum Variance Unbiased) for θ.

3.4 A more involved application: U-statistics

Consider the nonparametric model under which the observation is an independent and identically distributed n-tuple $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$, where X_{i} has unspecified density $f \in \mathcal{F}$, the family of all probability densities (with respect to the Lebesgue measure μ) over (\mathbb{R}, \mathcal{B}). As we have seen in Chapter 2, the order statistic $\mathbf{X}_{(\cdot)}:=\left(X_{(1)}, \ldots, X_{(n)}\right)$ is then sufficient, and it can be shown that it is also complete ${ }^{5}$.

That property of the order statistic is not affected if moment restrictions are applied to the densities $f \in \mathcal{F}$ (that is, if \mathcal{F} is replaced with the family \mathcal{F}_{0} of those densities for which moments, or the moments of some functions, exist up to some order). The Lehmann-Scheffé theorem thus applies to such nonparametric families.

Assume that $\psi: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ is such that

$$
\varphi(\mathrm{P}):=\mathrm{E}_{\mathrm{P}}\left[\psi\left(X_{1}, \ldots, X_{k}\right)\right]
$$

exists and is finite for all P such that $f=\frac{\mathrm{dP}}{\mathrm{d} \mu} \in \mathcal{F}_{0}$ and consider the problem of estimating $\varphi(P)$ on the basis of \mathbf{X}. Obviously, $\mathbf{S}:=\psi\left(X_{1}, \ldots, X_{k}\right)$ is an unbiased estimator of $\varphi(P)$. The Rao-Blackwellized version $\mathbf{S}^{\mathbf{X}_{(\cdot)}}$ of this estimator is then UMRU for $\varphi(P)$. Now, conditional on $\mathbf{X}_{(\cdot)}=\mathbf{x}_{(\cdot)}$, where $\mathbf{x}_{(\cdot)}=\left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$ has strictly increasing entries (ties have Lebesgue measure zero, hence probability zero, so that they safely can be neglected), $\left(X_{1}, \ldots, X_{k}\right)$ is uniformly distributed over the $n(n-1) \ldots(n-k+1)$ ordered k-tuples $\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ with entries in $\left\{x_{(1)}, \ldots, x_{(n)}\right\}$, or equivalently in $\left\{x_{1}, \ldots, x_{n}\right\}$. It follows that

$$
\begin{aligned}
\mathbf{S}^{\mathbf{X}_{(\cdot)}} & =\mathrm{E}_{\mathrm{P}}\left[\psi\left(X_{1}, \ldots, X_{k}\right) \mid \mathbf{X}_{(\cdot)}\right] \\
& =\frac{1}{n(n-1) \ldots(n-k+1)} \sum_{\substack{i_{1}, \ldots, i_{k}=1 \\
i_{j} \text { pairwise } \neq}}^{n} \psi\left(X_{i_{1}}, \ldots, X_{i_{k}}\right),
\end{aligned}
$$

where the sum is over all distinct ordered k-tuples of integers in $\{1, \ldots, n\}$. This leads to the definition of a U-statistic (Hoeffding 1948).

Definition 5. Let $\psi: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ be such that

[^2](i) $\varphi(\mathrm{P}):=\mathrm{E}_{\mathrm{P}}\left[\psi\left(X_{1}, \ldots, X_{k}\right)\right]$ for all P with density $f \in \mathcal{F}_{0}$ (see above), and
(ii) k is the smallest integer for which such a ψ exists (that is, k is the smallest number of observations required for unbiased estimation of $\varphi(\mathrm{P})$).

Then, ψ is called a kernel (of order k) for Ψ, and the statistic

$$
U_{\psi}=U_{\psi}\left(X_{1}, \ldots, X_{n}\right):=\frac{1}{n(n-1) \ldots(n-k+1)} \sum_{\substack{i_{1}, \ldots, i_{k}=1 \\ i_{j} \text { pairwise } \neq}}^{n} \psi\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

is called a U-statistic with kernel ψ.
Remark 1: If the kernel ψ is symmetric in its arguments (meaning that $\psi\left(X_{\pi(1)}, \ldots, X_{\pi(k)}\right)=$ $\psi\left(X_{1}, \ldots, X_{k}\right)$ for any permutation π of $\left.\{1, \ldots, n\}\right)$, then U_{ψ} takes the form

$$
U_{\psi}=\frac{k!}{n(n-1) \ldots(n-k+1)} \sum_{\substack{i_{1}, \ldots, i_{k}=1 \\ i_{1}<\ldots<i_{k}}}^{n} \psi\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

Remark 2: If \mathcal{F} is further restricted to the subfamily of symmetric (with respect to 0) densities, then the order statistic loses its minimal sufficiency and completeness properties to the order statistic of absolute values. A U-statistic can be defined with appropriate changes in the form of conditional expectations.

It follows from the Lehmann-Scheffé theorem that when f is unspecified in $\mathcal{F}_{0}:=\{f \in \mathcal{F}$: $\varphi(\mathrm{P})$ exists and is finite $\}$, the U-statistic U_{ψ} is, for convex loss functions, a UMRU estimator for $\varphi(\mathrm{P})$, and is essentially unique (in the sense that if ψ_{1} and ψ_{2} are two kernels for $\varphi(\mathrm{P})$, then $U_{\psi_{1}}=U_{\psi_{2}}$ P-almost surely for any $f \in \mathcal{F}_{0}$).

Example 6: With the above notation, let \mathcal{F}_{0} be the family of densities $f=\frac{\mathrm{dP}}{\mathrm{d} \mu}$ for which the mean $m_{\mathrm{P}}:=\int x f(x) \mathrm{d} \mu(x)$ exists and is finite. Clearly, $\psi\left(X_{1}\right)=X_{1}$ is a kernel of order one for $\varphi(\mathrm{P})=m_{\mathrm{P}}$. It follows that

$$
U_{\psi}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=: \bar{X}
$$

is UMRU for m_{P} in the model with unspecified density $f \in \mathcal{F}_{0}$.

finite. Since

$$
\mathrm{E}_{\mathrm{P}}\left[\left(X_{1}-X_{2}\right)^{2}\right]=\mathrm{E}_{\mathrm{P}}\left[X_{1}^{2}\right]+\mathrm{E}_{\mathrm{P}}\left[X_{2}^{2}\right]-2 \mathrm{E}_{\mathrm{P}}\left[X_{1} X_{2}\right]=2\left\{\mathrm{E}_{\mathrm{P}}\left[X_{1}^{2}\right]-\left(\mathrm{E}_{\mathrm{P}}\left[X_{1}\right]\right)^{2}\right\}=2 \sigma_{\mathrm{P}}^{2}
$$

for all P such that $f=\frac{\mathrm{dP}}{\mathrm{d} \mu} \in \mathcal{F}_{0}$, a kernel of order two for $\varphi(\mathrm{P})=\sigma_{\mathrm{P}}^{2}$ is

$$
\psi\left(X_{1}, X_{2}\right)=\frac{1}{2}\left(X_{1}-X_{2}\right)^{2} .
$$

The corresponding U-statistic is

$$
\begin{aligned}
U_{\psi}= & \frac{1}{2 n(n-1)} \sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(X_{i}-X_{j}\right)^{2}=\frac{1}{2 n(n-1)} \sum_{i, j=1}^{n}\left(X_{i}-X_{j}\right)^{2} \\
& =\frac{1}{2 n(n-1)} \sum_{i, j=1}^{n}\left(X_{i}^{2}+X_{j}^{2}-2 X_{i} X_{j}\right)=\frac{1}{2 n(n-1)}\left\{2 n \sum_{i=1}^{n} X_{i}^{2}-2\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right\} \\
& =\frac{n}{n-1}\left\{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}\right\}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=: S^{2},
\end{aligned}
$$

which is the traditional unbiased estimator of σ^{2}. From the Lehmann-Scheffé theorem, S^{2} is thus UMRU for σ_{P}^{2} in the model with unspecified density $f \in \mathcal{F}_{0}$.

Those UMRU results look impressively strong, as the corresponding families of distributions are quite big. Yet one should not forget that the bigger \mathcal{F}, the more severe the unbiasedness constraint (the fact that \bar{X} and S^{2} are UMRU estimators is largely due to the fact that they do not have many competitors).

[^0]: ${ }^{1}$ With slight modifications by Davy Paindaveine and Thomas Verdebout.
 ${ }^{2}$ This was actually established in the proof of the Halmos-Savage Theorem.

[^1]: ${ }^{3}$ The rank of X_{i} is defined as $R_{i}^{(n)}:=\#\left\{j=1, \ldots, n: X_{j} \leq X_{i}\right\}$.
 ${ }^{4}$ UMRU stands for Uniformly Minimum Risk Unbiased.

[^2]: ${ }^{5}$ For a proof, one may consider the exponential subfamily $\mathcal{F}_{\mathbf{T}_{n}}$ associated with the priviliged statistic $\mathbf{T}_{n}:=$ $\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}, \ldots, \sum_{i=1}^{n} X_{i}^{n}\right)$. It can be shown that $\mathbf{X}_{(\cdot)}$ generates the same σ-field as \mathbf{T}_{n}, hence is complete for the exponential subfamily (see Chapter 4), which in turn implies that it is complete for the broader family \mathcal{F}.

