5 Hypothesis Testing: UMP Tests

5.1 The decision problem

Consider the statistical model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$, where \mathcal{P} is partitioned into $\mathcal{P} = H_0 \oplus H_1$, along with the decision space $\mathcal{D} = \{RH_0, \not RH_0\} = \{1, 0\}$; here, RH_0 and $\not RH_0$ (equivalently, 1 and 0) respectively stand for "reject H_0 " and "do not reject H_0 ". Consider also the loss function defined by

$$L_P(d) = \begin{cases} 1 & \text{if } P \in H_1 \text{ and } d = 0\\ 0 & \text{otherwise.} \end{cases}$$

The cost of not rejecting H_0 when H_0 is false (the so-called *Type II error*) thus is one, while rejecting H_0 when H_0 is true (*Type I error*) has cost zero.

A randomized decision rule—a collection, indexed by $\mathbf{x} \in \mathcal{X}$, of conditional (on $\mathbf{X}=\mathbf{x}$) distributions over the two points "0" ($\mathbb{R}H_0$) and "1" (RH_0)—is entirely described by the \mathbf{X} measurable probability mass it puts on "1" (RH_0), that is, an \mathbf{X} -measurable statistic, $\phi(\mathbf{X})$, say, with values in [0, 1]. The set of all possible randomized decision rules is thus

 $\mathcal{T} := \{ \phi : \phi(\mathbf{x}) \text{ a statistic with values in } ([0,1], \mathcal{B}_{[0,1]}) \}, \qquad \mathcal{B}_{[0,1]} := \mathcal{B} \cap [0,1],$

with the interpretation that, in case the randomized decision rule ϕ is adopted, conditional on $\mathbf{X} = \mathbf{x}$, decision "1" (RH_0) will be taken with probability $\phi(\mathbf{x})$. If \mathbf{x} is observed and $\phi(\mathbf{x}) = 1/2$, then the statistician thus can flip a fair coin in order to decide between RH_0 and RH_0 ; if $\phi(\mathbf{x}) = 1/6$, then she/he can roll a dice, etc. Of course, if $\phi(\mathbf{x}) = 1$ or 0, then she/he will reject or not reject without randomization.

¹With slight modifications by Davy Paindaveine and Thomas Verdebout.

A specific terminology is associated with this decision problem:

- H_0 is called the *null hypothesis*, H_1 the *alternative hypothesis*; together, they characterize a *testing problem*.
- A decision rule ϕ (a statistic with values in [0,1]) is called a *(randomized) test*. If ϕ is such that $P[\phi(\mathbf{X}) \in \{0,1\}] = 1$ for any $P \in \mathcal{P}$, it is called a *nonrandomized* or *pure test*.
- The unconditional probability under P that a given test ϕ eventually leads to the rejection of H_0 is

$$\mathbf{E}_{\mathbf{P}}[\phi] = \int_{\mathcal{X}} \phi(x) \, d\mathbf{P}(x);$$

this quantity is called the size of ϕ when $P \in H_0$, the power of ϕ when $P \in H_1$.

– The risk (the expected loss) associated with a test ϕ is

$$\mathbf{R}_{\mathbf{P}}^{\phi} = \begin{cases} 1 - \mathbf{E}_{\mathbf{P}}[\phi] & \text{if } \mathbf{P} \in H_1 \\ 0 & \text{if } \mathbf{P} \in H_0 \end{cases}$$

(under $P \in H_1$, that risk is the probability of ϕ committing Type II error and is called the *Type II risk*). That risk R_P^{ϕ} is to be minimized uniformly in $P \in H_1$. Equivalently, the power of ϕ , $E_P[\phi]$, $P \in H_1$, is to be maximized uniformly in $P \in H_1$.

Clearly, if the power is to be maximized with respect to $\phi \in \mathcal{T}$, without placing any restriction on ϕ , then the trivial test $\phi(\mathbf{x}) = 1 \mathcal{P}$ -almost surely, which rejects H_0 irrespective of the observed value \mathbf{x} of \mathbf{X} , qualifies as the uniformly most powerful test, hence the solution of the testing problem. Such a trivial solution is ruled out by the following principle.

The Neyman principle. Fix some $\alpha \in (0, 1)$, and restrict to the class C_{α} of α -level tests, i.e., of the tests ϕ satisfying the level constraint

$$\mathbf{E}_{\mathbf{P}}[\phi] \le \alpha \text{ for all } \mathbf{P} \in H_0.$$
(5.1)

A test ϕ^* is said to be uniformly most powerful (UMP) within a class C of tests if

- (a) $\phi^* \in \mathcal{C}$, and
- (b) for all $\phi \in \mathcal{C}$ and all $P \in H_1$, $E_P[\phi^*] \ge E_P[\phi]$.

That principle, often complemented by some further ones, will be considered throughout the chapters on hypothesis testing. A test ϕ^* which is uniformly most powerful within the class $C_{\alpha} = \{\phi : E_P[\phi] \leq \alpha \text{ for all } P \in H_0\}$ of α -level tests is called *uniformly most powerful* at level α , or α -level uniformly most powerful.

5.2 The Neyman-Pearson Lemma

5.2.1 Testing a simple null against a simple alternative

A hypothesis H (null or alternative) is called *simple* if it contains a single element. Else, it is called *composite*. The simplest of all hypothesis testing problems is that of testing a *simple null* $H_0 = \{P_0\}$ against a *simple alternative* $H_1 = \{P_1\}$. The problem then consists in maximizing $E_1[\phi] := E_{P_1}[\phi] = \int \phi(\mathbf{x}) dP_1(\mathbf{x})$ under the level constraint $E_0[\phi] := E_{P_0}[\phi] = \int \phi(\mathbf{x}) dP_0(\mathbf{x}) \leq \alpha$. Maximizing such an integral under an integral constraint is a standard variational problem. Its solution, along with some properties, is summarized in the following remark, known as the Neyman-Pearson Fundamental Lemma.

Note that P_0 and P_1 are dominated by the sum $\mu := P_0 + P_1$; it will be convenient to use the corresponding densities

$$f_0 := \frac{d\mathbf{P}_0}{d\mu}$$
 and $f_1 := \frac{d\mathbf{P}_1}{d\mu}$

Also, instead of "uniformly most powerful" (UMP), in this context, we simply say "most powerful" (MP); "uniformly" here indeed means "uniformly in $P \in H_1$ ", which in the present case is superfluous, as H_1 is simple.

Before stating the Neyman-Pearson Lemma, let us define a Neyman test with constant k

(for the simple H_0 against the simple H_1) as a test of the form

$$\phi(\mathbf{x}) := \begin{cases} 1 & \text{if } f_1(\mathbf{x}) > kf_0(\mathbf{x}) \\ \gamma(\mathbf{x}) & \text{if } f_1(\mathbf{x}) = kf_0(\mathbf{x}) \\ 0 & \text{if } f_1(\mathbf{x}) < kf_0(\mathbf{x}) \end{cases}$$

where $k \in \mathbb{R}^+ := \mathbb{R}^+ \cup \{\infty\}$ and $\mathbf{x} \mapsto \gamma(\mathbf{x})$ takes values in [0, 1].

The Neyman-Pearson Lemma generally consists of the following fourfold statement.

Lemma 1 (Neyman-Pearson Lemma). Consider the statistical model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$, with $\mathcal{P} := \{P_0, P_1\}$, the null hypothesis $H_0 := \{P_0\}$, and the alternative $H_1 := \{P_1\}$. Fix $\alpha \in (0, 1)$. Then, we have the following:

(i) There exist $k \in \mathbb{R}^+$ and $\gamma \in [0, 1]$ such that the test

$$\phi_{\alpha}^{*}(\mathbf{x}) := \begin{cases} 1 & \text{if } f_{1}(\mathbf{x}) > kf_{0}(\mathbf{x}) \\ \gamma & \text{if } f_{1}(\mathbf{x}) = kf_{0}(\mathbf{x}) \\ 0 & \text{if } f_{1}(\mathbf{x}) < kf_{0}(\mathbf{x}) \end{cases}$$

satisfies $E_0[\phi_{\alpha}^*] = \alpha$ (size constraint).

- (ii) The test ϕ_{α}^* is most powerful at level α .
- (iii) Conversely, if ϕ is such that $E_0[\phi] \leq \alpha$ and $E_1[\phi] = E_1[\phi_{\alpha}^*]$, then $(\phi_{\alpha}^*(\mathbf{x}) \phi'(\mathbf{x}))(f_1(\mathbf{x}) \neq kf_0(\mathbf{x})) = 0 \ \mu$ -a.e., or equivalently, $(\phi_{\alpha}^*(\mathbf{x}) \phi'(\mathbf{x}))\mathbb{I}[f_1(\mathbf{x}) \neq kf_0(\mathbf{x})] = 0 \ \mu$ -a.e. (if an α -level test ϕ' is as powerful as ϕ_{α}^* , then it is also a Neyman test with constant k).
- (*iv*) $E_1[\phi_{\alpha}^*] > \alpha$.

Proof. (i) Let $F_0(z) := P_0[f_1(\mathbf{X}) \le zf_0(\mathbf{X})]$ for any z. Noting that $z \mapsto F_0(z)$ is a cumulative distribution function, define

$$k := \inf\{z : F_0(z) > 1 - \alpha\} \quad \text{and} \quad \gamma = \begin{cases} \frac{F_0(k) - (1 - \alpha)}{F_0(k) - F_0(k - 0)} & \text{if } F_0(k) > F_0(k - 0) \\ 0 & \text{if } F_0(k) = F_0(k - 0), \end{cases}$$

where $F_0(k-0)$ denotes the limit of $F_0(z)$ when z converges to k from below. Then,

$$\begin{aligned} \mathbf{E}_{0}[\phi_{\alpha}^{*}] &= \mathbf{P}_{0}[f_{1}(\mathbf{X}) > kf_{0}(\mathbf{X})] + \gamma \mathbf{P}_{0}[f_{1}(\mathbf{X}) = kf_{0}(\mathbf{X})] + 0 \times \mathbf{P}_{0}[f_{1}(\mathbf{X}) < kf_{0}(\mathbf{X})] \\ &= 1 - F_{0}(k) + \frac{F_{0}(k) - (1 - \alpha)}{F_{0}(k) - F_{0}(k - 0)} (F_{0}(k) - F_{0}(k - 0)) = \alpha. \end{aligned}$$

<u>Remark 1</u>: Note that if F_0^{-1} is well-defined at $1 - \alpha$, then $F_0(k) = 1 - \alpha$ and $\gamma = 0$: ϕ_{α}^* is a *pure test* involving no randomization. If not, $F_0(k-0) \leq 1 - \alpha < F_0(k)$, and $0 < \gamma \leq 1$. In case $\gamma < 1$, ϕ_{α}^* is a randomized test (in case $\gamma = 1$, again, no randomization is involved, but the critical region is of the form $\{\mathbf{x} : f_1(\mathbf{x}) \geq kf_0(\mathbf{x})\}$).

(ii) For any ϕ satisfying $E_0[\phi] \leq \alpha$, consider the integral (with respect to $\mu = P_0 + P_1$)

$$\int_{\mathcal{X}} (\phi_{\alpha}^*(\mathbf{x}) - \phi(\mathbf{x})) (f_1(\mathbf{x}) - k f_0(\mathbf{x})) d\mu(\mathbf{x}).$$
(5.2)

The integrand in (5.2) is nonnegative for all \mathbf{x} : indeed,

- either $f_1(\mathbf{x}) k f_0(\mathbf{x}) < 0$; then $\phi_{\alpha}^*(\mathbf{x}) \phi(\mathbf{x}) = -\phi(\mathbf{x}) \leq 0$, and the integrand is nonnegative;
- or $f_1(\mathbf{x}) k f_0(\mathbf{x}) > 0$; then $\phi_{\alpha}^*(\mathbf{x}) \phi(\mathbf{x}) = 1 \phi(\mathbf{x}) \ge 0$, and the integrand again is nonnegative;
- or $f_1(\mathbf{x}) k f_0(\mathbf{x}) = 0$, and the integrand is zero, hence in particular nonnegative.

It follows that the integral itself is nonnegative. Developing that integral yields

$$0 \leq E_{1}[\phi_{\alpha}^{*}] - E_{1}[\phi] - k(E_{0}[\phi_{\alpha}^{*}] - E_{0}[\phi])$$

= $E_{1}[\phi_{\alpha}^{*}] - E_{1}[\phi] - k(\alpha - E_{0}[\phi]),$ (5.3)

hence (since $k \ge 0$ and $E_0[\phi] \le \alpha$)

$$\mathrm{E}_{1}[\phi_{\alpha}^{*}] - \mathrm{E}_{1}[\phi] \ge k(\alpha - \mathrm{E}_{0}[\phi]) \ge 0,$$

as was to be shown.

(iii) Assume that ϕ satisfies $E_0[\phi] \leq \alpha$ and is as powerful as ϕ_{α}^* . Then, (5.3) yields

$$0 \le \mathcal{E}_1[\phi_{\alpha}^*] - \mathcal{E}_1[\phi] - k(\alpha - \mathcal{E}_0[\phi]) = -k(\alpha - \mathcal{E}_0[\phi]) \le 0,$$
(5.4)

so that the integral (5.2) is zero. As an integral with nonnegative integrand, however, (5.2) only can take value 0 if that integrand is μ -almost everywhere zero, which establishes the result (that is, ϕ_{α}^{*} and ϕ coincide μ -almost everywhere, except possibly in the possible randomization part where $f_1(\mathbf{x}) = k f_0(\mathbf{x})$).

(iv) Clearly, the trivial test defined by $\phi_0(\mathbf{x}) = \alpha$ for any \mathbf{x} has level α . Since ϕ_{α}^* is most powerful at level α , we must then have $E_1[\phi_{\alpha}^*] \ge E_1[\phi_0] = \alpha$. Now, assume that $E_1[\phi_{\alpha}^*] = \alpha$. Then,

$$\mu(\{\mathbf{x} : f_1(\mathbf{x}) \neq k f_0(\mathbf{x})\})$$

= $\mu(\{\mathbf{x} : f_1(\mathbf{x}) \neq k f_0(\mathbf{x}), \phi_{\alpha}^*(\mathbf{x}) = \phi_0(\mathbf{x})\}) + \mu(\{x : f_1(\mathbf{x}) \neq k f_0(\mathbf{x}), \phi_{\alpha}^*(\mathbf{x}) \neq \phi_0(\mathbf{x})\})$
=: $T_1 + T_2 = 0$

 $(T_1 \text{ is zero because } \phi_0(\mathbf{x}) = \alpha(\in (0, 1)) \text{ cannot be equal to } \phi_{\alpha}^*(\mathbf{x}) \text{ when } f_1(\mathbf{x}) \neq k f_0(\mathbf{x}),$ whereas T_2 is zero from Part (iii) of the lemma). Thus, $f_1(\mathbf{x}) = k f_0(\mathbf{x}) \mu$ -almost everywhere. Since $\int_{\mathcal{X}} f_0(\mathbf{x}) d\mu(\mathbf{x}) = \int_{\mathcal{X}} f_1(\mathbf{x}) d\mu(\mathbf{x}) = 1$, we then have that $f_1(\mathbf{x}) = f_0(\mathbf{x}) \mu$ -almost everywhere, which implies that $P_0 = P_1$, a contradiction. This completes the proof of the lemma.

<u>Remark 2</u>: It follows from the proof of the Neyman-Pearson Lemma that

(a) any test of the form

$$\phi(\mathbf{x}) = \begin{cases} 1 & \text{if } f_1(\mathbf{x}) > k f_0(\mathbf{x}) \\ 0 & \text{if } f_1(\mathbf{x}) < k f_0(\mathbf{x}) \end{cases}$$
(5.5)

for some $k \ge 0$ (no specification in case $f_1(\mathbf{x}) = k f_0(\mathbf{x})$) is most powerful, at level $E_0[\phi]$, for $\{P_0\}$ against $\{P_1\}$; (b) for any test of the form (5.5), there exists a test of the form

$$\phi'(\mathbf{x}) = \begin{cases} 1 & \text{if } f_1(\mathbf{x}) > kf_0(\mathbf{x}) \\ \gamma & \text{if } f_1(\mathbf{x}) = kf_0(\mathbf{x}) \\ 0 & \text{if } f_1(\mathbf{x}) < kf_0(\mathbf{x}) \end{cases}$$

with $\gamma \in [0, 1]$, such that $E_0[\phi'] = E_0[\phi]$ and $E_1[\phi'] = E_1[\phi]$;

(c) unless $P_0 = P_1$, any test of the form (5.5) with $E_0[\phi] < 1$ is such that $E_1[\phi] > E_0[\phi]$.

The intuitive interpretation of the optimality property of test of the Neyman type is essentially the following: with P₀-probability one, $f_1(\mathbf{X}) > kf_0(\mathbf{X})$ is equivalent to $f_1(\mathbf{X})/f_0(\mathbf{X}) > k$, where $f_1(\mathbf{x})/f_0(\mathbf{x})$, the *likelihood ratio*, can be interpreted as an "exchange rate" between size and power, between type I risk (the P₀-probability of rejecting) and power (the P₁-probability of rejecting). The optimal test ϕ_{α}^* in part (ii) of the Lemma thus consists in spending "a total amount α " of type I risk on those points \mathbf{x} where the "exchange rate" is most favorable.

5.2.2 The power diagram

If two tests ϕ' and ϕ'' are such that $E_0[\phi'] = E_0[\phi'']$ and $E_1[\phi'] = E_1[\phi'']$, they are perfectly equivalent from a decision-theoretic point of view: same size, same power. Therefore, we may identify all tests ϕ having (for a given testing problem, of the form $H_0 = \{P_0\}, H_1 = \{P_1\}$) the same size $E_0[\phi]$ and the same power $E_1[\phi]$ with the point $(E_0[\phi], E_1[\phi])$ in the unit square. The set

$$\mathcal{M} := \{ (E_0[\phi], E_1[\phi]) : \phi \text{ is a test} \}$$

is called the *power diagram* (for P_0 and P_1). It has the following typical form.

The lefthand panel corresponds to the particular case where P_0 and P_1 are absolutely continuous with respect to each other, whereas the righthand panel is the general case. As for the quantities α_0 and β_1 ,

- $\beta_1 := P_1[f_0(\mathbf{X}) = 0]$ is the maximal power of a test with size zero (achieved by $\phi(\mathbf{x}) = \mathbb{I}[f_0(\mathbf{x}) = 0]$), whereas
- $(1 \alpha_0) := P_0[f_1(\mathbf{X}) > 0]$ is the minimal size of a test with power one (achieved by $\phi(\mathbf{x}) = \mathbb{I}[f_1(\mathbf{x}) > 0]).$

Less importantly, $\alpha_0 = P_0[f_1(\mathbf{X}) = 0]$ is then the maximal size of a test with power zero (achieved by $\phi(\mathbf{x}) = \mathbb{I}[f_1(\mathbf{x}) = 0]$) and $(1 - \beta_1) = P_1[f_0(\mathbf{X}) > 0]$ is then the minimal power of a test with size one (achieved by $\phi(\mathbf{x}) = \mathbb{I}[f_0(\mathbf{x}) > 0]$). Whenever P_0 and P_1 are absolutely continuous with respect to each other, $\alpha_0 = \beta_1 = 0$.

The following proposition provides some elementary properties of power diagrams.

Proposition. (i) The main diagonal of the unit square, representing the tests of the form $\phi_0 = \alpha \ \mu$ -almost everywhere ($\alpha \in [0, 1]$), is in \mathcal{M} ;

(ii) \mathcal{M} is symmetric with respect to $(\frac{1}{2}, \frac{1}{2})$;

- (iii) \mathcal{M} is convex;
- (iv) the "upper boundary" of \mathcal{M} represents the Neyman-Pearson Lemma tests;
- (v) \mathcal{M} is closed, hence compact.

Except for part (v), all statements in this proposition are quite elementary; proofs are left to the reader.

5.3 Families with monotone likelihood ratios

Testing a simple null against a simple alternative is of theoretical rather than practical interest. The simplest problems (for a one-parameter family $\{P_{\theta} : \theta \in \Theta\}$, where Θ is an interval of \mathbb{R} —possibly, \mathbb{R} itself) that are of practical relevance are of the form

$$H_0 = \{ \mathbf{P}_{\theta} : \theta \le \theta_0 \} \qquad \text{vs} \qquad H_1 = \{ \mathbf{P}_{\theta} : \theta > \theta_0 \},$$

which is often simply written as $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. Such hypotheses are called *one-sided*. They only make sense, of course, for $\theta_0 \in int(\Theta)$ —an assumption which is tacitly made throughout this section. Of course, the opposite problem, with $H_0: \theta \geq \theta_0$ and $H_1: \theta < \theta_0$, is equally interesting, but essentially equivalent.

A family $\mathcal{P} = \{ \mathcal{P}_{\theta} : \theta \in \Theta \}$ is said to have monotone likelihood ratio in the (real-valued) statistic T if (i) it is dominated by some σ -finite measure μ and (ii) there exist versions of the densities $f_{\theta} := \frac{d\mathcal{P}_{\theta}}{d\mu}$ such that, for any $\theta < \theta'$, the ratio

$$\frac{f_{\theta'}(\mathbf{x})}{f_{\theta}(\mathbf{x})}$$

is a nondecreasing function of $T(\mathbf{x})$.

Example 1: Binomial Bin(n, p) families, with densities (over \mathbb{R} , with respect to the counting measure of the set $\{0, 1, \ldots, n\}$)

$$f_p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

indexed by $\theta = p \in [0, 1]$, have monotone likelihood ratio with respect to T(x) = x.

Example 2: Poisson families, with densities (over \mathbb{R}^n for a sample of size n, with respect to the counting measure of \mathbb{N}^n)

$$f_{\lambda}(\mathbf{x}) = e^{-n\lambda} \frac{\lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!} \qquad \mathbf{x} = (x_1, \dots, x_n)$$

indexed by $\lambda \in \mathbb{R}_0^+$, have monotone likelihood ratio with respect to $T(\mathbf{x}) = \sum_{i=1}^n x_i$.

Example 3: More generally, one-parameter exponential families, with densities (indexed by $\theta \in \Theta$)

$$f_{\theta}(\mathbf{x}) = C(\theta)h(\mathbf{x})\exp(\theta T(\mathbf{x}))$$

is a monotone likelihood ratio family with respect to the natural statistic $T(\mathbf{x})$.

As we shall see, the conclusions of the Neyman-Pearson Lemma almost directly extend to one-sided testing problems in families with monotone likelihood ratios—a fact we summarize in the following theorem (Karlin and Rubin, 1956).

Theorem 1. Let $\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \}$ be a family with monotone likelihood ratio with respect to $T(\mathbf{x})$. Fix $\alpha \in (0,1)$ and $\theta_0 \in int(\Theta)$. Then, (i) There exist $t_{\alpha} \in \mathbb{R}$ and $\gamma_{\alpha} \in [0,1]$ such that the test

$$\phi_{\alpha}^{*}(\mathbf{x}) = \begin{cases} 1 & \text{if } T(\mathbf{x}) > t_{\alpha} \\ \gamma_{\alpha} & \text{if } T(\mathbf{x}) = t_{\alpha} \\ 0 & \text{if } T(\mathbf{x}) < t_{\alpha} \end{cases}$$

has size α under P_{θ_0} , that is, satisfies $E_{\theta_0}[\phi_{\alpha}^*] = \alpha$. (ii) The size/power function $\theta \mapsto E_{\theta}[\phi_{\alpha}^*]$ is strictly monotone increasing. (iii) The test ϕ_{α}^* is uniformly most powerful in the class of α -level tests for the problem of testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$.

Proof. (i) The proof of this part is very similar to the proof of the first part of the Neyman-Pearson fundamental lemma. Let $t \mapsto F_{\theta_0}^T(t) := P_0[T(\mathbf{X}) \le t]$ be the cumulative distribution

function of T under P_{θ_0} . Then, with

$$t_{\alpha} := \inf\{z : F_{\theta_{0}}^{T}(t) > 1 - \alpha\} \quad \text{and} \quad \gamma_{\alpha} = \begin{cases} \frac{F_{\theta_{0}}^{T}(t_{\alpha}) - (1 - \alpha)}{F_{\theta_{0}}^{T}(t_{\alpha}) - F_{\theta_{0}}^{T}(t_{\alpha} - 0)} & \text{if } F_{\theta_{0}}^{T}(t_{\alpha}) > F_{\theta_{0}}^{T}(t_{\alpha} - 0) \\ 0 & \text{if } F_{\theta_{0}}^{T}(t_{\alpha}) = F_{\theta_{0}}^{T}(t_{\alpha} - 0), \end{cases}$$

we have

]

$$\begin{aligned} \mathbf{E}_{\theta_0}[\phi_{\alpha}^*] &= \mathbf{P}_{\theta_0}[T(\mathbf{X}) > t_{\alpha}] + \gamma_{\alpha} \mathbf{P}_{\theta_0}[T(\mathbf{X}) = t_{\alpha}] + 0 \times \mathbf{P}_{\theta_0}[T(\mathbf{X}) < t_{\alpha}] \\ &= 1 - F_{\theta_0}^T(t_{\alpha}) + \frac{F_{\theta_0}^T(t_{\alpha}) - (1 - \alpha)}{F_{\theta_0}^T(t_{\alpha}) - F_{\theta_0}^T(t_{\alpha} - 0)} (F_{\theta_0}^T(t_{\alpha}) - F_{\theta_0}^T(t_{\alpha} - 0)) = \alpha. \end{aligned}$$

(ii) Fix $\theta' < \theta''$ in Θ . In view of the monotone likelihood property, we have that $T(\mathbf{x})$ is larger than, equal to, or smaller than t_{α} if and only if $f_{\theta''}(\mathbf{x})/f_{\theta'}(\mathbf{x})$ is larger than, equal to, or smaller than some $k = k(\theta', \theta'', t_{\alpha})$. Thus, the test ϕ_{α}^* rewrites

$$\phi_{\alpha}^{*}(\mathbf{x}) := \begin{cases} 1 & \text{if } f_{\theta''}(\mathbf{x}) > k f_{\theta'}(\mathbf{x}) \\ \gamma_{\alpha} & \text{if } f_{\theta''}(\mathbf{x}) = k f_{\theta'}(\mathbf{x}) \\ 0 & \text{if } f_{\theta''}(\mathbf{x}) < k f_{\theta'}(\mathbf{x}). \end{cases}$$
(5.6)

This is the Neyman-Pearson test for $H_0: \theta = \theta'$ against $H_1: \theta = \theta''$ at level $E_{\theta'}[\phi^*]$. From Part (iv) of the Neyman-Pearson lemma, we thus have that $E_{\theta''}[\phi^*_{\alpha}] > E_{\theta'}[\phi^*_{\alpha}]$.

(iii) It directly follows from (i)–(ii) that ϕ_{α}^* is an α -level test for the problem of testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$. Let then ϕ be an arbitrary α -level test for this problem. Fix $\theta_1 > \theta_0$ arbitrarily. Since ϕ is an α -level test for the problem of testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ and since ϕ_{α}^* is the Neyman-Pearson test for this problem at level α (this is seen by proceeding as in (ii) with $\theta' = \theta_0$ and $\theta'' = \theta_1$), we must have $E_{\theta_1}[\phi_{\alpha}^*] \geq E_{\theta_1}[\phi]$. This establishes the result.

The result shows in particular that the size/power function $\theta \mapsto E_{\theta}[\phi_{\alpha}^*]$ is strictly mono-

tone increasing. In exponential families, it can actually be shown that

$$\frac{d}{d_{\theta}} \mathbf{E}_{\theta}[\phi_{\alpha}^*] > 0$$

at any θ such that $0 < E_{\theta}[\phi_{\alpha}^*] < 1$ (a proof is available on request), which will actually play an important role in the next chapter.

5.4 A generalized Neyman-Pearson Lemma

Consider next the problem of testing the composite null hypothesis $H_0 = \{P_1, \ldots, P_m\}$ against the simple alternative $H_1 = \{P_{m+1}\}$. Writing $\mu := P_1 + \ldots + P_{m+1}$, let

$$f_i := \frac{\mathrm{d} \mathrm{P}_i}{\mathrm{d} \mu}, \qquad i = 1, \dots, m+1,$$

and define the corresponding power diagram as

$$\mathcal{M}_{m+1} := \{ (\mathbf{E}_1[\phi], \dots, \mathbf{E}_{m+1}[\phi]) : \phi \text{ is a test} \}$$

(each point **y** in \mathcal{M}_{m+1} represents a class of tests which are all equivalent from the point of view of size and power, therefore essentially the same from a decisional point of view). The power diagram \mathcal{M}_{m+1} enjoys all elementary properties of \mathcal{M}_2 : convexity, compactness, symmetry, etc. Note that the projection of \mathcal{M}_{m+1} onto the space of its first *m* components is nothing else but \mathcal{M}_m .

A test of the form

$$\phi(\mathbf{x}) = \begin{cases} 1 & \text{if } f_{m+1}(\mathbf{x}) > \sum_{i=1}^{m} k_i f_i(\mathbf{x}) \\ \gamma(\mathbf{x}) & \text{if } f_{m+1}(\mathbf{x}) = \sum_{i=1}^{m} k_i f_i(\mathbf{x}) \\ 0 & \text{if } f_{m+1}(\mathbf{x}) < \sum_{i=1}^{m} k_i f_i(\mathbf{x}), \end{cases}$$

where k_1, \ldots, k_m are real numbers (not necessarily positive) is called a *generalized Neyman* test. The following result extends (in a somewhat weaker form, though) the fundamental Neyman-Pearson Lemma to the present context.

- **Proposition 1** (The generalized Neyman-Pearson Lemma 1st version). (i) For all $\mathbf{c} = (c_1, \ldots, c_m) \in \mathcal{M}_m$, there exists a test maximizing $\mathbf{E}_{m+1}[\phi]$ under the size constraints $\mathbf{E}_i[\phi] = c_i$ for $i = 1, \ldots, m$.
 - (ii) If ϕ^* satisfies $E_i[\phi] = c_i$, i = 1, ..., m, with $\mathbf{c} \in \mathcal{M}_m$ and is of the generalized Neyman type, then it maximizes $E_{m+1}[\phi]$ under the constraints $E_i[\phi] = c_i$ for i = 1, ..., m.
- (iii) If, moreover, the Neyman test ϕ^* in (ii) is such that $k_i \ge 0$ for i = 1, ..., m, then it also maximizes $\mathbb{E}_{m+1}[\phi]$ under the level constraints $\mathbb{E}_i[\phi] \le c_i$ for i = 1, ..., m.
- (iv) if $\mathbf{c} = (c_1, \ldots, c_m)$ is an interior point of \mathcal{M}_m , then there exists a Neyman test such that $\mathbf{E}_i[\phi] = c_i$ for $i = 1, \ldots, m$ (it follows from (ii) that this test automatically maximizes $\mathbf{E}_{m+1}[\phi]$ under the constraints $\mathbf{E}_i[\phi] = c_i$ for $i = 1, \ldots, m$).

Proof. (i) Denote by D the "vertical" straight line through **c**. The tests satisfying the constraints $E_i[\phi] = c_i$, for i = 1, ..., m, are those represented by $D \cap \mathcal{M}_{m+1}$. Due to convexity, $D \cap \mathcal{M}_{m+1}$ is a ("vertical") segment $[B^-, B^+]$, with $B^{\pm} := (c_1, ..., c_m, b^{\pm})$ and $b^+ \geq b^-$. Any test represented by B^+ (a nonempty class) achieves the desired maximization, and the maximal value is b^+ .

(ii) Let ϕ satisfy $E_i[\phi] = c_i$. The integrand in

$$\int_{\mathcal{X}} (\phi^*(\mathbf{x}) - \phi(\mathbf{x})) \left(f_{m+1}(\mathbf{x}) - \sum_{i=1}^m k_i f_i(\mathbf{x}) \right) d\mu(\mathbf{x})$$
(5.7)

is nonnegative; hence the integral also is. Thus,

$$\int_{\mathcal{X}} (\phi^*(\mathbf{x}) - \phi(\mathbf{x})) f_{m+1}(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}) \geq \sum_{i=1}^m k_i \int (\phi^*(\mathbf{x}) - \phi(\mathbf{x})) f_i(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x})$$
$$= \sum_{i=1}^m k_i (c_i - \mathrm{E}_i[\phi]) = 0,$$

which reads $E_{m+1}[\phi^*] \ge E_{m+1}[\phi]$ (note, however, that this does not tell us anything about the *existence* of such a ϕ^* , nor about the values of k_i , $i = 1, \ldots, m$; on this point, we refer to Part (iv) of the proposition).

(iii) Let ϕ satisfy $E_i[\phi] \leq c_i, i = 1, ..., m$. Since $k_i \geq 0, i = 1, ..., m$, nonnegativity of (5.7) now yields

$$\int_{\mathcal{X}} (\phi^*(\mathbf{x}) - \phi(\mathbf{x})) f_{m+1}(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}) \geq \sum_{i=1}^m k_i \int (\phi^*(\mathbf{x}) - \phi(\mathbf{x})) f_i(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x})$$
$$= \sum_{i=1}^m k_i (c_i - \mathrm{E}_i[\phi]) \geq 0,$$

which provides again $E_{m+1}[\phi^*] \ge E_{m+1}[\phi]$ (that conclusion is invalid as soon as one at least of the k_i 's is negative).

(iv) Convexity of \mathcal{M}_{m+1} and the Separating Hyperplane Theorem imply the existence of a hyperplane H such that B⁺ (defined in Part (i) of the result) belongs to H and \mathcal{M}_{m+1} lies entirely on one side of H. The point **c** belongs to the interior of \mathcal{M}_m , so that B⁻ \neq B⁺. It clearly follows that B⁻ $\in \mathcal{M}_{m+1}$ lies "below" B⁺, so that \mathcal{M}_{m+1} also entirely lies "below" H. The equation of H is (the general equation of a hyperplane through a point B⁺ with coordinates (c_1, \ldots, c_m, b^+))

$$\sum_{i=1}^{m} \tilde{k}_i y_i + \tilde{k}_{m+1} y_{m+1} = \sum_{i=1}^{m} \tilde{k}_i c_i + \tilde{k}_{m+1} b^+, \qquad \mathbf{y} \in \mathbb{R}^{m+1},$$

where the coefficients \tilde{k}_i are defined up to a multiplicative constant. We have $\tilde{k}_{m+1} \neq 0$. Indeed, $\tilde{k}_{m+1} = 0$ would imply that the vertical line through $[B^-, B^+]$ belongs to H, which is not compatible with \mathcal{M}_{m+1} being "below" H unless $B^- = B^+$; this, however, is ruled out by the assumption that **c** is an interior point of \mathcal{M}_m . Since $\tilde{k}_{m+1} \neq 0$, we may, without any loss of generality, assume $\tilde{k}_{m+1} = 1$. Putting $k_i = -\tilde{k}_i$, we then have that

$$y_{m+1} - \sum_{i=1}^{m} k_i y_i = b^+ - \sum_{i=1}^{m} k_i c_i \quad \text{if and only if } \mathbf{y} \text{ "on" H}$$
$$y_{m+1} - \sum_{i=1}^{m} k_i y_i < b^+ - \sum_{i=1}^{m} k_i c_i \quad \text{if and only if } \mathbf{y} \text{ "below" H}.$$

Since \mathcal{M}_{m+1} is entirely below H, any test ϕ provides

$$E_{m+1}[\phi] - \sum_{i=1}^{m} k_i E_i[\phi] \le E_{m+1}[\phi^+] - \sum_{i=1}^{m} k_i E_{m+1}[\phi^+],$$

where ϕ^+ is a test represented by B⁺. This rewrites

$$\int_{\mathcal{X}} \phi(\mathbf{x}) \Big(f_{m+1}(\mathbf{x}) - \sum_{i=1}^{m} k_i f_i(\mathbf{x}) \Big) \, \mathrm{d}\mu(\mathbf{x}) \le \int_{\mathcal{X}} \phi^+(\mathbf{x}) \Big(f_{m+1}(\mathbf{x}) - \sum_{i=1}^{m} k_i f_i(\mathbf{x}) \Big) \, \mathrm{d}\mu(\mathbf{x}),$$

where the k_i 's, as the coefficients of the separating hyperplane H, are fixed. Hence, ϕ^+ is a maximizer, over all possible tests, of the integral

$$\int_{\mathcal{X}} \phi(\mathbf{x}) \Big(f_{m+1}(\mathbf{x}) - \sum_{i=1}^{m} k_i f_i(\mathbf{x}) \Big) \mathrm{d}\mu(\mathbf{x}).$$

That maximum, for ϕ ranging over the set of all possible tests, is clearly

$$\int_{\mathcal{X}} \left(f_{m+1}(\mathbf{x}) - \sum_{i=1}^{m} k_i f_i(\mathbf{x}) \right)^+ \mathrm{d}\mu,$$

where $(z)^+ = \max(z, 0)$ is the positive part of a number z, and this maximum can only be achieved if ϕ^* is, μ -almost everywhere, of the form

$$\phi^*(\mathbf{x}) = \begin{cases} 1 & \text{if } f_{m+1}(\mathbf{x}) > \sum_{i=1}^m k_i f_i(\mathbf{x}) \\ \gamma(\mathbf{x}) & \text{if } f_{m+1}(\mathbf{x}) = \sum_{i=1}^m k_i f_i(\mathbf{x}) \\ 0 & \text{if } f_{m+1}(\mathbf{x}) < \sum_{i=1}^m k_i f_i(\mathbf{x}) \end{cases}$$

that is, if it is a Neyman test with constants k_i , $i = 1, \ldots, m$.

Two important remarks are in order.

<u>Remark 1:</u> The proof of Proposition 1 can actually be extended easily to cover the following slightly more general version of the result, that will be useful in the next chapter.

Proposition 2 (The generalized Neyman-Pearson Lemma — 2nd version). Let g_1, \ldots, g_{m+1} : $(\mathcal{X}, \mathcal{A}) \to (\mathbb{R}, \mathcal{B})$ be measurable functions that are μ -integrable, and consider

$$\mathcal{M}_m = \left\{ \left(\int_{\mathcal{X}} \phi(\mathbf{x}) g_1(\mathbf{x}) \, d\mu(\mathbf{x}), \dots, \int_{\mathcal{X}} \phi(\mathbf{x}) g_m(\mathbf{x}) \, d\mu(\mathbf{x}) \right) : \phi \ a \ test \right\}.$$

In this framework, calling "a generalized Neyman test" a test of the form

$$\phi(\mathbf{x}) = \begin{cases} 1 & \text{if } g_{m+1}(\mathbf{x}) > \sum_{i=1}^{m} k_i g_i(\mathbf{x}) \\ \gamma(\mathbf{x}) & \text{if } g_{m+1}(\mathbf{x}) = \sum_{i=1}^{m} k_i g_i(\mathbf{x}) \\ 0 & \text{if } g_{m+1}(\mathbf{x}) < \sum_{i=1}^{m} k_i g_i(\mathbf{x}), \end{cases}$$

where k_1, \ldots, k_m are real numbers, we have the following:

- (i) For all $\mathbf{c} = (c_1, \ldots, c_m) \in \mathcal{M}_m$, there exists a test maximizing $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{m+1}(\mathbf{x}) d\mu(\mathbf{x})$ under the size constraints $\int_{\mathcal{X}} \phi(\mathbf{x}) g_i(\mathbf{x}) d\mu(\mathbf{x}) = c_i$ for $i = 1, \ldots, m$.
- (ii) If ϕ^* satisfies $\int_{\mathcal{X}} \phi(\mathbf{x}) g_i(\mathbf{x}) d\mu(\mathbf{x}) = c_i$, i = 1, ..., m, with $\mathbf{c} \in \mathcal{M}_m$ and is of the generalized Neyman type, then it maximizes $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{m+1}(\mathbf{x}) d\mu(\mathbf{x})$ under the constraints $\int_{\mathcal{X}} \phi(\mathbf{x}) g_i(\mathbf{x}) d\mu(\mathbf{x}) = c_i$ for i = 1, ..., m.
- (iii) If, moreover, the Neyman test ϕ^* in (ii) is such that $k_i \ge 0$ for i = 1, ..., m, then it also maximizes $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{m+1}(\mathbf{x}) d\mu(\mathbf{x})$ under the constraints $\int_{\mathcal{X}} \phi(\mathbf{x}) g_i(\mathbf{x}) d\mu(\mathbf{x}) \le c_i$ for i = 1, ..., m.
- (iv) if $\mathbf{c} = (c_1, \ldots, c_m)$ is an interior point of \mathcal{M}_m , then there exists a Neyman test such that $\int_{\mathcal{X}} \phi(\mathbf{x}) g_i(\mathbf{x}) d\mu(\mathbf{x}) = c_i$ for $i = 1, \ldots, m$ (it follows from (ii) that this test automatically maximizes $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{m+1}(\mathbf{x}) d\mu(\mathbf{x})$ under the constraints $\int_{\mathcal{X}} \phi(\mathbf{x}) g_i(\mathbf{x}) d\mu(\mathbf{x}) = c_i$ for $i = 1, \ldots, m$).

Of course, the first version of the generalized Neyman-Pearson lemma is recovered when g_i is taken as a density function f_i for any i = 1, ..., m.

<u>Remark 2</u>: In the "favorable" cases described by Proposition 1(iii), the optimal test is of

the form

$$\phi(\mathbf{x}) = 1$$
 if $f_{m+1}(\mathbf{x}) > k \left(\sum_{i=1}^{m} \frac{k_i}{k} f_i(\mathbf{x})\right)$,

where $k := \sum_{i=1}^{m} k_i$ is the sum of the nonnegative coefficients k_i 's. Since $k_i/k \ge 0$ for $i = 1, \ldots, m$ and $\sum_{i=1}^{m} (k_i/k) = 1$, this test is a Neyman test (in the sense of the fundamental lemma) for a mixture density of the form

$$f_0 := \sum_{i=1}^m \frac{k_i}{k} f_i$$

against $\{f_{m+1}\}$. This remark is exploited in the next section.

5.5 Least favorable distributions

5.5.1 Mixtures

The generalized Neyman-Pearson Lemma tells us that, in the "favorable cases", most powerful tests of a composite null hypothesis $H_0 = \{f_1, \ldots, f_m\}$ against $H_1 = \{f_{m+1}\}$, under a level condition $E_{f_i}[\phi] \leq \alpha$ for $i = 1, \ldots, m$, exist and are of the form

$$\phi^*(\mathbf{x}) = \begin{cases} 1 & \text{if } f_{m+1}(\mathbf{x}) > \sum_{i=1}^m k_i f_i(\mathbf{x}) \\ \gamma & \text{if } f_{m+1}(\mathbf{x}) = \sum_{i=1}^m k_i f_i(\mathbf{x}) \\ 0 & \text{if } f_{m+1}(\mathbf{x}) < \sum_{i=1}^m k_i f_i(\mathbf{x}), \end{cases}$$

with $k_i \ge 0$ for i = 1, ..., m and γ determined by $\mathbb{E}_{f_i}[\phi] \le \alpha$ for i = 1, ..., m. By "favorable cases", we mean that such a test exists. Letting $k := \sum_{i=1}^n k_i$, this test rewrites as

$$\phi^*(\mathbf{x}) = \begin{cases} 1 & \text{if } f_{m+1}(\mathbf{x}) > k\left(\sum_{i=1}^m \frac{k_i}{k} f_i(\mathbf{x})\right) \\ \gamma & \text{if } f_{m+1}(\mathbf{x}) = k\left(\sum_{i=1}^m \frac{k_i}{k} f_i(\mathbf{x})\right) \\ 0 & \text{if } f_{m+1}(\mathbf{x}) < k\left(\sum_{i=1}^m \frac{k_i}{k} f_i(\mathbf{x})\right), \end{cases}$$

which is the Neyman-Pearson test for the simple hypothesis $\{\sum_{i=1}^{m} \frac{k_i}{k} f_i\}$ against the simple alternative $\{f_{m+1}\}$ under α -level constraint. This density $\sum_{i=1}^{m} \frac{k_i}{k} f_i$ (one easily checks that

it is a density) is a mixture of f_1, \ldots, f_m , with mixing probabilities $\frac{k_1}{k}, \ldots, \frac{k_m}{k}$. When testing for a composite null hypothesis H_0 , this suggests looking at mixtures of the densities in H_0 .

5.5.2 Least Favorable Mixtures

Consider the problem of testing $H_0 = \{f_{\boldsymbol{\theta}} : \boldsymbol{\theta} \in \Theta\}$ against $H_1 = \{g\}$, where $f_{\boldsymbol{\theta}}$ and g are densities, with respect to some σ -finite measure μ , over $(\mathcal{X}, \mathcal{A})$, and $\Theta \subseteq \mathbb{R}^k$ is equipped with the Borel σ -field $\mathcal{B}^k \cap \Theta$. Let λ denote a probability measure over $(\Theta, \mathcal{B}^k \cap \Theta)$. Then, $h_{\lambda} : \mathbf{x} \mapsto h_{\lambda}(\mathbf{x}) := \int_{\Theta} f_{\boldsymbol{\theta}}(\mathbf{x}) d\lambda(\mathbf{x})$ is still a probability density with respect to μ over $(\mathcal{X}, \mathcal{A})$ — a mixture of the densities $f_{\boldsymbol{\theta}}, \boldsymbol{\theta} \in \Theta$.

For any λ , denote by $H_{\lambda} := \{h_{\lambda}\}$ the simple hypothesis under which the observation has density h_{λ} . Consider the Neyman-Pearson α -level test ϕ_{λ} of H_{λ} against H_1 , and write $\pi_{\lambda} := E_g[\phi_{\lambda}]$ for its power under H_1 . We adopt the following definition.

Definition 1. The mixing measure λ_{LF} , or the corresponding mixture density $h_{\lambda_{\text{LF}}}$, are called least favorable if $\pi_{\lambda_{\text{LF}}} \leq \pi_{\lambda}$ for any probability measure λ over Θ .

We then have the following result.

Proposition 3. Let λ_0 be such that $E_{\boldsymbol{\theta}}[\phi_{\lambda_0}] \leq \alpha$ for all $\boldsymbol{\theta} \in \Theta$. Then, (i) the test ϕ_{λ_0} is most powerful, at level α , for H_0 against H_1 ; (ii) the density h_{λ_0} is least favorable.

Proof. (i) By assumption, ϕ_{λ_0} is an α -level for H_0 against H_1 . Let then ϕ be an arbitrary α -level test for the same problem, that is, $E_{\boldsymbol{\theta}}[\phi] \leq \alpha$ for all $\boldsymbol{\theta} \in \Theta$. Then, Fubini's Theorem yields that

$$E_{h_{\lambda_0}}[\phi] = \int_{\mathcal{X}} \phi(\mathbf{x}) h_{\lambda_0}(\mathbf{x}) d\mu(\mathbf{x}) = \int_{\mathcal{X}} \phi(\mathbf{x}) \left(\int_{\Theta} f_{\theta}(\mathbf{x}) d\lambda_0(\theta) \right) d\mu(\mathbf{x})$$

$$(5.8)$$

$$= \int_{\mathcal{X}} \int_{\Theta} \phi(\mathbf{x}) f_{\boldsymbol{\theta}}(\mathbf{x}) d\lambda_0(\boldsymbol{\theta}) d\mu(\mathbf{x}) = \int_{\Theta} \left(\int_{\mathcal{X}} \phi(\mathbf{x}) f_{\boldsymbol{\theta}}(\mathbf{x}) d\mu(\mathbf{x}) \right) d\lambda_0(\boldsymbol{\theta}) = \int_{\Theta} \mathcal{E}_{\boldsymbol{\theta}}[\phi] d\lambda_0(\boldsymbol{\theta}) \leq \alpha,$$

so that ϕ is an α -level test for $H_{\lambda_0} = \{h_{\lambda_0}\}$ against $H_1 = \{g\}$. Since ϕ_{λ_0} is the most powerful test at level α for the latter problem, we must then have $E_g[\phi_{\lambda_0}] \ge E_g[\phi]$.

(ii) Fix an arbitrary mixture distribution λ . Proceeding as in (5.8), we have

$$\begin{split} \mathbf{E}_{h_{\lambda}}[\phi_{\lambda_{0}}] &= \int_{\mathcal{X}} \phi_{\lambda_{0}}(\mathbf{x}) h_{\lambda}(\mathbf{x}) d\mu(\mathbf{x}) = \int_{\mathcal{X}} \phi_{\lambda_{0}}(\mathbf{x}) \left(\int_{\Theta} f_{\boldsymbol{\theta}}(\mathbf{x}) d\lambda(\boldsymbol{\theta}) \right) d\mu(\mathbf{x}) \\ &= \int_{\mathcal{X}} \int_{\Theta} \phi_{\lambda_{0}}(\mathbf{x}) f_{\boldsymbol{\theta}}(\mathbf{x}) d\lambda(\boldsymbol{\theta}) d\mu(\mathbf{x}) = \int_{\Theta} \left(\int_{\mathcal{X}} \phi_{\lambda_{0}}(\mathbf{x}) f_{\boldsymbol{\theta}}(\mathbf{x}) d\mu(\mathbf{x}) \right) d\lambda(\boldsymbol{\theta}) = \int_{\Theta} \mathbf{E}_{\boldsymbol{\theta}}[\phi_{\lambda_{0}}] d\lambda(\boldsymbol{\theta}) \leq \alpha. \end{split}$$

Thus, ϕ_{λ_0} satisfies the level constraint under H_{λ} and, therefore, is at most as powerful as ϕ_{λ} : $\mathbf{E}_g[\phi_{\lambda_0}] \leq \mathbf{E}_g[\phi_{\lambda}]$. This shows that $\pi_{\lambda_0} \leq \pi_{\lambda}$ for any λ , so that h_{λ_0} is least favorable. \Box

5.5.3 Application 1: one-sided tests in one-parameter exponential families

In the one-parameter family of exponential densities

$$f_{\theta}(\mathbf{x}) = C(\theta) \exp(\theta T(\mathbf{x}))$$

(densities are with respect to some dominating measure μ , and $\theta \in \Theta$, where Θ is an interval of \mathbb{R}), consider the one-sided testing problem $H_0: \theta \leq \theta_0$ versus the alternative $H_1: \theta > \theta_0$. Uniformly most powerful tests at level α have been obtained for that problem in Section 5.3. As we now show, they also follow from a least-favorable approach.

Proposition 4. The test

$$\phi^*(\mathbf{x}) = \begin{cases} 1 & \text{if } T(\mathbf{x}) > t_{\alpha} \\ \gamma_{\alpha} & \text{if } T(\mathbf{x}) = t_{\alpha} \\ 0 & \text{if } T(\mathbf{x}) < t_{\alpha} \end{cases}$$

where γ_{α} and t_{α} are determined by the size condition $E_{\theta_0}[\phi^*] = \alpha$, is uniformly most powerful, at level α , for $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$.

Proof. Fix $\theta_1 > \theta_0$ arbitrarily and consider the problem of testing $\mathcal{H}_0 : \theta \leq \theta_0$ against $H_1 : \theta = \theta_1$. We show that, for this problem, f_{θ_0} (the degenerate mixture associated with $\lambda(\{\theta_0\}) = 1$) is least favorable. The Neyman-Pearson test for $\{f_{\theta_0}\}$ against $\{f_{\theta_1}\}$ has the

form

$$\phi(\mathbf{x}) = \begin{cases} 1 & \text{if } C(\theta_1) \exp(\theta_1 T(\mathbf{x})) > k_\alpha C(\theta_0) \exp(\theta_0 T(\mathbf{x})) \\ \gamma_\alpha & \text{if } C(\theta_1) \exp(\theta_1 T(\mathbf{x})) = k_\alpha C(\theta_0) \exp(\theta_0 T(\mathbf{x})) \\ 0 & \text{if } C(\theta_1) \exp(\theta_1 T(\mathbf{x})) < k_\alpha C(\theta_0) \exp(\theta_0 T(\mathbf{x})), \end{cases}$$

with k_{α} and γ_{α} determined by $E_{\theta_0}[\phi] = \alpha$. Equivalently,

$$\phi(\mathbf{x}) = \begin{cases} 1 & \text{if } \exp((\theta_1 - \theta_0)T(\mathbf{x})) > k_{\alpha}C(\theta_0)/C(\theta_1) \\ \gamma_{\alpha} & \text{if } \exp((\theta_1 - \theta_0)T(\mathbf{x})) = k_{\alpha}C(\theta_0)/C(\theta_1) \\ 0 & \text{if } \exp((\theta_1 - \theta_0)T(\mathbf{x})) < k_{\alpha}C(\theta_0)/C(\theta_1), \end{cases}$$

or again

$$\phi(\mathbf{x}) = \begin{cases} 1 & \text{if } T(\mathbf{x}) > t_{\alpha} := (\theta_1 - \theta_0)^{-1} \log(k_{\alpha} C(\theta_0) / C(\theta_1)) \\ \gamma_{\alpha} & \text{if } T(\mathbf{x}) = t_{\alpha} := (\theta_1 - \theta_0)^{-1} \log(k_{\alpha} C(\theta_0) / C(\theta_1)) \\ 0 & \text{if } T(\mathbf{x}) < t_{\alpha} := (\theta_1 - \theta_0)^{-1} \log(k_{\alpha} C(\theta_0) / C(\theta_1)), \end{cases}$$

where t_{α} and γ_{α} are determined by $E_{\theta_0}[\phi] = \alpha$. Hence, ϕ coincides with the test ϕ_{α}^* from Theorem 1(i) (irrespective of θ_1).

Now, for any $\theta' < \theta_0$, note that ϕ_{α}^* is also the Neyman-Pearson Lemma test for $\{P_{\theta'}\}$ against $\{P_{\theta_0}\}$ at level $E_{\theta'}[\phi_{\alpha}^*]$, so that the Neyman-Pearson lemma implies that $E_{\theta'}[\phi_{\alpha}^*] < E_{\theta_0}[\phi_{\alpha}^*] = \alpha$. It follows from Proposition 3(ii) that the degenerate mixture at $\{\theta_0\}$ is indeed least favorable and from Proposition 3(i) that ϕ_{α}^* is uniformly most powerful, at level α , for $\mathcal{H}_0: \theta \leq \theta_0$ against $H_1: \theta = \theta_1$. Since $\theta_1(>\theta_0)$ was fixed arbitrarily, we conclude that the same test is also uniformly most powerful, at level α , for $\mathcal{H}_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$. \Box

A particular case of an exponential family with one parameter is the Bernoulli family. Let X_1, \ldots, X_n be i.i.d. Bin(1, p) random variables, with $p \in (0, 1)$, and consider the problem of testing

$$H_0: p \le p_0$$
 against $H_1: p > p_0$.

The Bernoulli family is an exponential family with natural parameter $\theta = \log(\frac{p}{1-p})$ and privileged statistic $\sum_{i=1}^{n} X_i$. Note that

$$\log\left(\frac{p}{1-p}\right) \le \log\left(\frac{p_0}{1-p_0}\right)$$
 if and only if $p \le p_0$,

so that the testing problem considered is of the form

$$H_0: \theta \leq \theta_0$$
 against $H_1: \theta > \theta_0$.

The test

$$\phi_{\alpha}^{*}(\mathbf{x}) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} x_{i} > t_{\alpha} \\ \gamma_{\alpha} & \text{if } \sum_{i=1}^{n} x_{i} = t_{\alpha} \\ 0 & \text{if } \sum_{i=1}^{n} x_{i} < t_{\alpha}, \end{cases}$$

with t_{α} and γ_{α} fixed by the condition $E_{p_0}[\phi_{\alpha}^*] = \alpha$, is then uniformly most powerful at level α .

5.5.4 Application 2: the sign test

Let $\mathbf{X} = (X_1, \ldots, X_n)$ collect *n* independently and identically distributed observations of *X*, with density $f \in \mathcal{F}$, where \mathcal{F} is the family of all probability densities with respect to the Lebesgue measure over $(\mathbb{R}, \mathcal{B})$. Consider, for given $p_0 \in (0, 1)$, the testing problem

$$\begin{cases} H_0 : x_{(p_0)} \ge x_0 \\ H_1 : x_{(p_0)} < x_0, \end{cases}$$

where x_0 is some given real number, and $x_{(p_0)}$ is the quantile of order p_0 of X. Writing $p := P[X \le x_0] = \int_{-\infty}^{x_0} f(x) d\mu(x)$, the same testing problem takes the form

$$\begin{cases} H_0: p \le p_0\\ H_1: p > p_0. \end{cases}$$

Denote as $M = M(\mathbf{X}) := \#\{i = 1, ..., n : X_i \leq x_0\}$ the number of observations that are not larger than x_0 : clearly, $M \sim Bin(n, p)$. The test

$$\phi_{\text{sign}}(\mathbf{x}) := \begin{cases} 1 & \text{if } M(\mathbf{x}) > m_{\alpha} \\ \gamma_{\alpha} & \text{if } M(\mathbf{x}) = m_{\alpha} \\ 0 & \text{if } M(\mathbf{x}) < m_{\alpha}, \end{cases}$$
(5.9)

where m_{α} and γ_{α} are determined by $E_{p_0}[\phi_{sign}] = \alpha$, is called a *sign test* (here, we write E_{p_0} for the expectation of an *M*-measurable variable under $M \sim Bin(n, p_0)$).

Proposition 5. The sign test (5.9) is uniformly most powerful for H_0 against H_1 at level α .

Proof. Any $f \in \mathcal{F}$ can be characterized as a triple (p, f^+, f^-) , where $p := \int_{-\infty}^{x_0} f(x) d\mu(x) \in (0, 1), f^+(x) := f(x)\mathbb{I}[x > x_0]/(1-p)$ is the conditional density of $X \sim f$, conditional on $X \ge x_0$, and $f^-(x) := f(x)\mathbb{I}[x \le x_0]/p$ is the conditional density of $X \sim f$, conditional on $X < x_0$. The null hypothesis and the alternative then take the forms

$$H_0 = \{ (p, f^-, f^+) : p \le p_0, \ f^- \in \mathcal{F}^-, \ f^+ \in \mathcal{F}^+ \}$$

and

$$H_1 = \{ (p, f^-, f^+) : p > p_0, f^- \in \mathcal{F}^-, f^+ \in \mathcal{F}^+ \}$$

respectively, where \mathcal{F}^- (resp., \mathcal{F}^+) is the set of all possible conditional densities f^+ (resp., f^-). The joint density under (p, f^+, f^-) of $\mathbf{X} = (X_1, \ldots, X_n)$ at $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$ is

$$p^{m}(1-p)^{n-m}f^{-}(x_{i_{1}})\dots f^{-}(x_{i_{m}})f^{+}(x_{j_{1}})\dots f^{+}(x_{j_{n-m}})$$

where $m = M(\mathbf{x}) = \#\{i = 1, ..., n : x_i \le x_0\}$ and $i_1, ..., i_m, j_1, ..., j_{n-m}$ are such that

$$x_{i_1}, \ldots, x_{i_m} \le x_0 < x_{j_1}, \ldots, x_{j_{n-m}}.$$

Now, fix a distribution (p_1, f_1^-, f_1^+) in H_1 (hence, $p_1 > p_0$): intuitively, the "closest" distribution in H_0 could well be (p_0, f_1^-, f_1^+) . Let us show that indeed (p_0, f_1^-, f_1^+) is the least favorable mixture (against the fixed alternative $\{(p_1, f_1^-, f_1^+)\}$). To this end, we first construct the Neyman-Pearson test for $\{(p_0, f_1^-, f_1^+)\}$ against $\{(p_1, f_1^-, f_1^+)\}$. Recalling that $m = M(\mathbf{x})$, this test is

$$\phi^{*}(\mathbf{x}) = \begin{cases} 1 & \text{if } \left(\frac{p_{1}}{p_{0}}\right)^{m} \left(\frac{1-p_{1}}{1-p_{0}}\right)^{n-m} > k_{\alpha} \\ \gamma_{\alpha} & \text{if } \left(\frac{p_{1}}{p_{0}}\right)^{m} \left(\frac{1-p_{1}}{1-p_{0}}\right)^{n-m} = k_{\alpha} \\ 0 & \text{if } \left(\frac{p_{1}}{p_{0}}\right)^{m} \left(\frac{1-p_{1}}{1-p_{0}}\right)^{n-m} < k_{\alpha}, \end{cases}$$

where k_{α} and γ_{α} are determined by $E_{(p_0,f_1^-,f_1^+)}[\phi^*] = \alpha$ (note that this expectation does not depend on f_1^- nor on f_1^+ since the distribution of M under (p_0, f_1^-, f_1^+) is the $Bin(n, p_0)$ distribution). Clearly, since $p_1 > p_0$, this test takes the simpler form

$$\phi^*(\mathbf{x}) = \begin{cases} 1 & \text{if } M(\mathbf{x}) > m_\alpha \\ \gamma_\alpha & \text{if } M(\mathbf{x}) = m_\alpha \\ 0 & \text{if } M(\mathbf{x}) < m_\alpha, \end{cases}$$

where m_{α} and γ_{α} still are determined by $E_{(p_0,f_1^-,f_1^+)}[\phi^*] = \alpha$. This test ϕ^* thus coincides with the previously described sign test ϕ_{sign} . Now, in order to use the least favorable argument, it only remains to show that $E_{(p,f^-,f^+)}[\phi^*] \leq \alpha$ for any $p \leq p_0$, $f^- \in \mathcal{F}^-$ and $f^+ \in \mathcal{F}^+$. But this follows from the fact that $E_{(p,f^-,f^+)}[\phi^*]$ does not depend on (f^-,f^+) and is increasing in p—one way to show this is to note that ϕ^* is actually the uniformly most powerful test for $\{p \leq p_0\}$ against $\{p > p_0\}$ in the (exponential) Bernoulli model under which $\mathbb{I}[X_1 \leq x_0], \ldots, \mathbb{I}[X_n \leq x_0]$ are independently and identically distributed Bin(1, p) random variables (see Section 5.5.3).