# Lecture Notes for STAT-F404, author: Marc Hallin ${ }^{1}$ 

## 5 Hypothesis Testing: UMP Tests

### 5.1 The decision problem

Consider the statistical model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$, where $\mathcal{P}$ is partitioned into $\mathcal{P}=H_{0} \oplus H_{1}$, along with the decision space $\mathcal{D}=\left\{R H_{0}, \not R H_{0}\right\}=\{1,0\}$; here, $R H_{0}$ and $\not R H_{0}$ (equivalently, 1 and 0 ) respectively stand for "reject $H_{0}$ " and "do not reject $H_{0}$ ". Consider also the loss function defined by

$$
L_{P}(d)= \begin{cases}1 & \text { if } \mathrm{P} \in H_{1} \text { and } d=0 \\ 0 & \text { otherwise }\end{cases}
$$

The cost of not rejecting $H_{0}$ when $H_{0}$ is false (the so-called Type II error) thus is one, while rejecting $H_{0}$ when $H_{0}$ is true (Type I error) has cost zero.

A randomized decision rule - a collection, indexed by $\mathbf{x} \in \mathcal{X}$, of conditional (on $\mathbf{X}=\mathbf{x}$ ) distributions over the two points " 0 " $\left(R H_{0}\right)$ and " 1 " $\left(R H_{0}\right)$-is entirely described by the $\mathbf{X}$ measurable probability mass it puts on " 1 " $\left(R H_{0}\right)$, that is, an $\mathbf{X}$-measurable statistic, $\phi(\mathbf{X})$, say, with values in $[0,1]$. The set of all possible randomized decision rules is thus

$$
\mathcal{T}:=\left\{\phi: \phi(\mathbf{x}) \text { a statistic with values in }\left([0,1], \mathcal{B}_{[0,1]}\right)\right\}, \quad \mathcal{B}_{[0,1]}:=\mathcal{B} \cap[0,1]
$$

with the interpretation that, in case the randomized decision rule $\phi$ is adopted, conditional on $\mathbf{X}=\mathbf{x}$, decision " 1 " $\left(R H_{0}\right)$ will be taken with probability $\phi(\mathbf{x})$. If $\mathbf{x}$ is observed and $\phi(\mathbf{x})=1 / 2$, then the statistician thus can flip a fair coin in order to decide between $R H_{0}$ and $\not R H_{0}$; if $\phi(\mathbf{x})=1 / 6$, then she/he can roll a dice, etc. Of course, if $\phi(\mathbf{x})=1$ or 0 , then she/he will reject or not reject without randomization.

[^0]A specific terminology is associated with this decision problem:

- $H_{0}$ is called the null hypothesis, $H_{1}$ the alternative hypothesis; together, they characterize a testing problem.
- A decision rule $\phi$ (a statistic with values in $[0,1]$ ) is called a (randomized) test. If $\phi$ is such that $\mathrm{P}[\phi(\mathbf{X}) \in\{0,1\}]=1$ for any $\mathrm{P} \in \mathcal{P}$, it is called a nonrandomized or pure test.
- The unconditional probability under P that a given test $\phi$ eventually leads to the rejection of $H_{0}$ is

$$
\mathrm{E}_{\mathrm{P}}[\phi]=\int_{\mathcal{X}} \phi(x) d \mathrm{P}(x) ;
$$

this quantity is called the size of $\phi$ when $\mathrm{P} \in H_{0}$, the power of $\phi$ when $\mathrm{P} \in H_{1}$.

- The risk (the expected loss) associated with a test $\phi$ is

$$
\mathrm{R}_{\mathrm{P}}^{\phi}= \begin{cases}1-\mathrm{E}_{\mathrm{P}}[\phi] & \text { if } \mathrm{P} \in H_{1} \\ 0 & \text { if } \mathrm{P} \in H_{0}\end{cases}
$$

(under $\mathrm{P} \in H_{1}$, that risk is the probability of $\phi$ committing Type II error and is called the Type II risk). That risk $\mathrm{R}_{\mathrm{P}}^{\phi}$ is to be minimized uniformly in $\mathrm{P} \in H_{1}$. Equivalently, the power of $\phi, \mathrm{E}_{\mathrm{P}}[\phi], \mathrm{P} \in H_{1}$, is to be maximized uniformly in $\mathrm{P} \in H_{1}$.

Clearly, if the power is to be maximized with respect to $\phi \in \mathcal{T}$, without placing any restriction on $\phi$, then the trivial test $\phi(\mathbf{x})=1 \mathcal{P}$-almost surely, which rejects $H_{0}$ irrespective of the observed value $\mathbf{x}$ of $\mathbf{X}$, qualifies as the uniformly most powerful test, hence the solution of the testing problem. Such a trivial solution is ruled out by the following principle.

The Neyman principle. Fix some $\alpha \in(0,1)$, and restrict to the class $\mathcal{C}_{\alpha}$ of $\alpha$-level tests, i.e., of the tests $\phi$ satisfying the level constraint

$$
\begin{equation*}
\mathrm{E}_{\mathrm{P}}[\phi] \leq \alpha \text { for all } \mathrm{P} \in H_{0} . \tag{5.1}
\end{equation*}
$$

A test $\phi^{*}$ is said to be uniformly most powerful (UMP) within a class $\mathcal{C}$ of tests if
(a) $\phi^{*} \in \mathcal{C}$, and
(b) for all $\phi \in \mathcal{C}$ and all $\mathrm{P} \in H_{1}, \mathrm{E}_{\mathrm{P}}\left[\phi^{*}\right] \geq \mathrm{E}_{\mathrm{P}}[\phi]$.

That principle, often complemented by some further ones, will be considered throughout the chapters on hypothesis testing. A test $\phi^{*}$ which is uniformly most powerful within the class $\mathcal{C}_{\alpha}=\left\{\phi: \mathrm{E}_{\mathrm{P}}[\phi] \leq \alpha\right.$ for all $\left.\mathrm{P} \in H_{0}\right\}$ of $\alpha$-level tests is called uniformly most powerful at level $\alpha$, or $\alpha$-level uniformly most powerful.

### 5.2 The Neyman-Pearson Lemma

### 5.2.1 Testing a simple null against a simple alternative

A hypothesis $H$ (null or alternative) is called simple if it contains a single element. Else, it is called composite. The simplest of all hypothesis testing problems is that of testing a simple null $H_{0}=\left\{\mathrm{P}_{0}\right\}$ against a simple alternative $H_{1}=\left\{\mathrm{P}_{1}\right\}$. The problem then consists in maximizing $\mathrm{E}_{1}[\phi]:=\mathrm{E}_{\mathrm{P}_{1}}[\phi]=\int \phi(\mathbf{x}) d \mathrm{P}_{1}(\mathbf{x})$ under the level constraint $\mathrm{E}_{0}[\phi]:=\mathrm{E}_{\mathrm{P}_{0}}[\phi]=$ $\int \phi(\mathbf{x}) d \mathrm{P}_{0}(\mathbf{x}) \leq \alpha$. Maximizing such an integral under an integral constraint is a standard variational problem. Its solution, along with some properties, is summarized in the following remark, known as the Neyman-Pearson Fundamental Lemma.

Note that $\mathrm{P}_{0}$ and $\mathrm{P}_{1}$ are dominated by the sum $\mu:=\mathrm{P}_{0}+\mathrm{P}_{1}$; it will be convenient to use the corresponding densities

$$
f_{0}:=\frac{d \mathrm{P}_{0}}{d \mu} \quad \text { and } \quad f_{1}:=\frac{d \mathrm{P}_{1}}{d \mu}
$$

Also, instead of "uniformly most powerful" (UMP), in this context, we simply say "most powerful" (MP); "uniformly" here indeed means "uniformly in $\mathrm{P} \in H_{1}$ ", which in the present case is superfluous, as $H_{1}$ is simple.

Before stating the Neyman-Pearson Lemma, let us define a Neyman test with constant $k$
(for the simple $H_{0}$ against the simple $H_{1}$ ) as a test of the form

$$
\phi(\mathbf{x}):=\left\{\begin{array}{cl}
1 & \text { if } f_{1}(\mathbf{x})>k f_{0}(\mathbf{x}) \\
\gamma(\mathbf{x}) & \text { if } f_{1}(\mathbf{x})=k f_{0}(\mathbf{x}) \\
0 & \text { if } f_{1}(\mathbf{x})<k f_{0}(\mathbf{x})
\end{array}\right.
$$

where $k \in \overline{\mathbb{R}}^{+}:=\mathbb{R}^{+} \cup\{\infty\}$ and $\mathbf{x} \mapsto \gamma(\mathbf{x})$ takes values in $[0,1]$.
The Neyman-Pearson Lemma generally consists of the following fourfold statement.
Lemma 1 (Neyman-Pearson Lemma). Consider the statistical model $(\mathcal{X}, \mathcal{A}, \mathcal{P})$, with $\mathcal{P}:=$ $\left\{\mathrm{P}_{0}, \mathrm{P}_{1}\right\}$, the null hypothesis $H_{0}:=\left\{\mathrm{P}_{0}\right\}$, and the alternative $H_{1}:=\left\{\mathrm{P}_{1}\right\}$. Fix $\alpha \in(0,1)$. Then, we have the following:
(i) There exist $k \in \mathbb{R}^{+}$and $\gamma \in[0,1]$ such that the test

$$
\phi_{\alpha}^{*}(\mathbf{x}):= \begin{cases}1 & \text { if } f_{1}(\mathbf{x})>k f_{0}(\mathbf{x}) \\ \gamma & \text { if } f_{1}(\mathbf{x})=k f_{0}(\mathbf{x}) \\ 0 & \text { if } f_{1}(\mathbf{x})<k f_{0}(\mathbf{x})\end{cases}
$$

satisfies $\mathrm{E}_{0}\left[\phi_{\alpha}^{*}\right]=\alpha$ (size constraint).
(ii) The test $\phi_{\alpha}^{*}$ is most powerful at level $\alpha$.
(iii) Conversely, if $\phi$ is such that $\mathrm{E}_{0}[\phi] \leq \alpha$ and $\mathrm{E}_{1}[\phi]=\mathrm{E}_{1}\left[\phi_{\alpha}^{*}\right]$, then $\left(\phi_{\alpha}^{*}(\mathbf{x})-\phi^{\prime}(\mathbf{x})\right)\left(f_{1}(\mathbf{x}) \neq\right.$ $\left.k f_{0}(\mathbf{x})\right)=0 \mu$-a.e., or equivalently, $\left(\phi_{\alpha}^{*}(\mathbf{x})-\phi^{\prime}(\mathbf{x})\right) \mathbb{I}\left[f_{1}(\mathbf{x}) \neq k f_{0}(\mathbf{x})\right]=0 \mu$-a.e. (if an $\alpha$-level test $\phi^{\prime}$ is as powerful as $\phi_{\alpha}^{*}$, then it is also a Neyman test with constant $k$ ).
(iv) $\mathrm{E}_{1}\left[\phi_{\alpha}^{*}\right]>\alpha$.

Proof. (i) Let $F_{0}(z):=\mathrm{P}_{0}\left[f_{1}(\mathbf{X}) \leq z f_{0}(\mathbf{X})\right]$ for any $z$. Noting that $z \mapsto F_{0}(z)$ is a cumulative distribution function, define

$$
k:=\inf \left\{z: F_{0}(z)>1-\alpha\right\} \quad \text { and } \quad \gamma=\left\{\begin{array}{cl}
\frac{F_{0}(k)-(1-\alpha)}{F_{0}(k)-F_{0}(k-0)} & \text { if } F_{0}(k)>F_{0}(k-0) \\
0 & \text { if } F_{0}(k)=F_{0}(k-0)
\end{array}\right.
$$

where $F_{0}(k-0)$ denotes the limit of $F_{0}(z)$ when $z$ converges to $k$ from below. Then,

$$
\begin{aligned}
\mathrm{E}_{0}\left[\phi_{\alpha}^{*}\right] & =\mathrm{P}_{0}\left[f_{1}(\mathbf{X})>k f_{0}(\mathbf{X})\right]+\gamma \mathrm{P}_{0}\left[f_{1}(\mathbf{X})=k f_{0}(\mathbf{X})\right]+0 \times \mathrm{P}_{0}\left[f_{1}(\mathbf{X})<k f_{0}(\mathbf{X})\right] \\
& =1-F_{0}(k)+\frac{F_{0}(k)-(1-\alpha)}{F_{0}(k)-F_{0}(k-0)}\left(F_{0}(k)-F_{0}(k-0)\right)=\alpha
\end{aligned}
$$

Remark 1: Note that if $F_{0}^{-1}$ is well-defined at $1-\alpha$, then $F_{0}(k)=1-\alpha$ and $\gamma=0: \phi_{\alpha}^{*}$ is a pure test involving no randomization. If not, $F_{0}(k-0) \leq 1-\alpha<F_{0}(k)$, and $0<\gamma \leq 1$. In case $\gamma<1$, $\phi_{\alpha}^{*}$ is a randomized test (in case $\gamma=1$, again, no randomization is involved, but the critical region is of the form $\left.\left\{\mathbf{x}: f_{1}(\mathbf{x}) \geq k f_{0}(\mathbf{x})\right\}\right)$.
(ii) For any $\phi$ satisfying $\mathrm{E}_{0}[\phi] \leq \alpha$, consider the integral (with respect to $\mu=\mathrm{P}_{0}+\mathrm{P}_{1}$ )

$$
\begin{equation*}
\int_{\mathcal{X}}\left(\phi_{\alpha}^{*}(\mathbf{x})-\phi(\mathbf{x})\right)\left(f_{1}(\mathbf{x})-k f_{0}(\mathbf{x})\right) d \mu(\mathbf{x}) . \tag{5.2}
\end{equation*}
$$

The integrand in (5.2) is nonnegative for all $\mathbf{x}$ : indeed,

- either $f_{1}(\mathbf{x})-k f_{0}(\mathbf{x})<0$; then $\phi_{\alpha}^{*}(\mathbf{x})-\phi(\mathbf{x})=-\phi(\mathbf{x}) \leq 0$, and the integrand is nonnegative;
- or $f_{1}(\mathbf{x})-k f_{0}(\mathbf{x})>0$; then $\phi_{\alpha}^{*}(\mathbf{x})-\phi(\mathbf{x})=1-\phi(\mathbf{x}) \geq 0$, and the integrand again is nonnegative;
- or $f_{1}(\mathbf{x})-k f_{0}(\mathbf{x})=0$, and the integrand is zero, hence in particular nonnegative.

It follows that the integral itself is nonnegative. Developing that integral yields

$$
\begin{align*}
0 & \leq \mathrm{E}_{1}\left[\phi_{\alpha}^{*}\right]-\mathrm{E}_{1}[\phi]-k\left(\mathrm{E}_{0}\left[\phi_{\alpha}^{*}\right]-\mathrm{E}_{0}[\phi]\right) \\
& =\mathrm{E}_{1}\left[\phi_{\alpha}^{*}\right]-\mathrm{E}_{1}[\phi]-k\left(\alpha-\mathrm{E}_{0}[\phi]\right), \tag{5.3}
\end{align*}
$$

hence (since $k \geq 0$ and $\mathrm{E}_{0}[\phi] \leq \alpha$ )

$$
\mathrm{E}_{1}\left[\phi_{\alpha}^{*}\right]-\mathrm{E}_{1}[\phi] \geq k\left(\alpha-\mathrm{E}_{0}[\phi]\right) \geq 0
$$

as was to be shown.
(iii) Assume that $\phi$ satisfies $\mathrm{E}_{0}[\phi] \leq \alpha$ and is as powerful as $\phi_{\alpha}^{*}$. Then, (5.3) yields

$$
\begin{equation*}
0 \leq \mathrm{E}_{1}\left[\phi_{\alpha}^{*}\right]-\mathrm{E}_{1}[\phi]-k\left(\alpha-\mathrm{E}_{0}[\phi]\right)=-k\left(\alpha-\mathrm{E}_{0}[\phi]\right) \leq 0 \tag{5.4}
\end{equation*}
$$

so that the integral (5.2) is zero. As an integral with nonnegative integrand, however, (5.2) only can take value 0 if that integrand is $\mu$-almost everywhere zero, which establishes the result (that is, $\phi_{\alpha}^{*}$ and $\phi$ coincide $\mu$-almost everywhere, except possibly in the possible randomization part where $\left.f_{1}(\mathbf{x})=k f_{0}(\mathbf{x})\right)$.
(iv) Clearly, the trivial test defined by $\phi_{0}(\mathbf{x})=\alpha$ for any $\mathbf{x}$ has level $\alpha$. Since $\phi_{\alpha}^{*}$ is most powerful at level $\alpha$, we must then have $\mathrm{E}_{1}\left[\phi_{\alpha}^{*}\right] \geq \mathrm{E}_{1}\left[\phi_{0}\right]=\alpha$. Now, assume that $\mathrm{E}_{1}\left[\phi_{\alpha}^{*}\right]=\alpha$. Then,

$$
\begin{aligned}
& \mu\left(\left\{\mathbf{x}: f_{1}(\mathbf{x}) \neq k f_{0}(\mathbf{x})\right\}\right) \\
& \quad=\mu\left(\left\{\mathbf{x}: f_{1}(\mathbf{x}) \neq k f_{0}(\mathbf{x}), \phi_{\alpha}^{*}(\mathbf{x})=\phi_{0}(\mathbf{x})\right\}\right)+\mu\left(\left\{x: f_{1}(\mathbf{x}) \neq k f_{0}(\mathbf{x}), \phi_{\alpha}^{*}(\mathbf{x}) \neq \phi_{0}(\mathbf{x})\right\}\right) \\
& \quad=: T_{1}+T_{2}=0
\end{aligned}
$$

( $T_{1}$ is zero because $\phi_{0}(\mathbf{x})=\alpha(\in(0,1))$ cannot be equal to $\phi_{\alpha}^{*}(\mathbf{x})$ when $f_{1}(\mathbf{x}) \neq k f_{0}(\mathbf{x})$, whereas $T_{2}$ is zero from Part (iii) of the lemma). Thus, $f_{1}(\mathbf{x})=k f_{0}(\mathbf{x}) \mu$-almost everywhere. Since $\int_{\mathcal{X}} f_{0}(\mathbf{x}) d \mu(\mathbf{x})=\int_{\mathcal{X}} f_{1}(\mathbf{x}) d \mu(\mathbf{x})=1$, we then have that $f_{1}(\mathbf{x})=f_{0}(\mathbf{x}) \mu$-almost everywhere, which implies that $\mathrm{P}_{0}=\mathrm{P}_{1}$, a contradiction. This completes the proof of the lemma.

Remark 2: It follows from the proof of the Neyman-Pearson Lemma that
(a) any test of the form

$$
\phi(\mathbf{x})= \begin{cases}1 & \text { if } f_{1}(\mathbf{x})>k f_{0}(\mathbf{x})  \tag{5.5}\\ 0 & \text { if } f_{1}(\mathbf{x})<k f_{0}(\mathbf{x})\end{cases}
$$

for some $k \geq 0$ (no specification in case $f_{1}(\mathbf{x})=k f_{0}(\mathbf{x})$ ) is most powerful, at level $\mathrm{E}_{0}[\phi]$, for $\left\{\mathrm{P}_{0}\right\}$ against $\left\{\mathrm{P}_{1}\right\}$;
(b) for any test of the form (5.5), there exists a test of the form

$$
\phi^{\prime}(\mathbf{x})= \begin{cases}1 & \text { if } f_{1}(\mathbf{x})>k f_{0}(\mathbf{x}) \\ \gamma & \text { if } f_{1}(\mathbf{x})=k f_{0}(\mathbf{x}) \\ 0 & \text { if } f_{1}(\mathbf{x})<k f_{0}(\mathbf{x})\end{cases}
$$

with $\gamma \in[0,1]$, such that $\mathrm{E}_{0}\left[\phi^{\prime}\right]=\mathrm{E}_{0}[\phi]$ and $\mathrm{E}_{1}\left[\phi^{\prime}\right]=\mathrm{E}_{1}[\phi]$;
(c) unless $\mathrm{P}_{0}=\mathrm{P}_{1}$, any test of the form (5.5) with $\mathrm{E}_{0}[\phi]<1$ is such that $\mathrm{E}_{1}[\phi]>\mathrm{E}_{0}[\phi]$.

The intuitive interpretation of the optimality property of test of the Neyman type is essentially the following: with $\mathrm{P}_{0}$-probability one, $f_{1}(\mathbf{X})>k f_{0}(\mathbf{X})$ is equivalent to $f_{1}(\mathbf{X}) / f_{0}(\mathbf{X})>k$, where $f_{1}(\mathbf{x}) / f_{0}(\mathbf{x})$, the likelihood ratio, can be interpreted as an "exchange rate" between size and power, between type I risk (the $\mathrm{P}_{0}$-probability of rejecting) and power (the $\mathrm{P}_{1}$-probability of rejecting). The optimal test $\phi_{\alpha}^{*}$ in part (ii) of the Lemma thus consists in spending "a total amount $\alpha$ " of type I risk on those points $\mathbf{x}$ where the "exchange rate" is most favorable.

### 5.2.2 The power diagram

If two tests $\phi^{\prime}$ and $\phi^{\prime \prime}$ are such that $\mathrm{E}_{0}\left[\phi^{\prime}\right]=\mathrm{E}_{0}\left[\phi^{\prime \prime}\right]$ and $\mathrm{E}_{1}\left[\phi^{\prime}\right]=\mathrm{E}_{1}\left[\phi^{\prime \prime}\right]$, they are perfectly equivalent from a decision-theoretic point of view: same size, same power. Therefore, we may identify all tests $\phi$ having (for a given testing problem, of the form $H_{0}=\left\{\mathrm{P}_{0}\right\}, H_{1}=\left\{\mathrm{P}_{1}\right\}$ ) the same size $\mathrm{E}_{0}[\phi]$ and the same power $\mathrm{E}_{1}[\phi]$ with the point $\left(\mathrm{E}_{0}[\phi], \mathrm{E}_{1}[\phi]\right)$ in the unit square. The set

$$
\mathcal{M}:=\left\{\left(\mathrm{E}_{0}[\phi], \mathrm{E}_{1}[\phi]\right): \phi \text { is a test }\right\}
$$

is called the power diagram (for $\mathrm{P}_{0}$ and $\mathrm{P}_{1}$ ). It has the following typical form.


The lefthand panel corresponds to the particular case where $P_{0}$ and $P_{1}$ are absolutely continuous with respect to each other, whereas the righthand panel is the general case. As for the quantities $\alpha_{0}$ and $\beta_{1}$,
$-\beta_{1}:=\mathrm{P}_{1}\left[f_{0}(\mathbf{X})=0\right]$ is the maximal power of a test with size zero (achieved by $\left.\phi(\mathbf{x})=\mathbb{I}\left[f_{0}(\mathbf{x})=0\right]\right)$, whereas
$-\left(1-\alpha_{0}\right):=\mathrm{P}_{0}\left[f_{1}(\mathbf{X})>0\right]$ is the minimal size of a test with power one (achieved by $\left.\phi(\mathbf{x})=\mathbb{I}\left[f_{1}(\mathbf{x})>0\right]\right)$.

Less importantly, $\alpha_{0}=\mathrm{P}_{0}\left[f_{1}(\mathbf{X})=0\right]$ is then the maximal size of a test with power zero (achieved by $\left.\phi(\mathbf{x})=\mathbb{I}\left[f_{1}(\mathbf{x})=0\right]\right)$ and $\left(1-\beta_{1}\right)=\mathrm{P}_{1}\left[f_{0}(\mathbf{X})>0\right]$ is then the minimal power of a test with size one (achieved by $\phi(\mathbf{x})=\mathbb{I}\left[f_{0}(\mathbf{x})>0\right]$ ). Whenever $\mathrm{P}_{0}$ and $\mathrm{P}_{1}$ are absolutely continuous with respect to each other, $\alpha_{0}=\beta_{1}=0$.

The following proposition provides some elementary properties of power diagrams.
Proposition. (i) The main diagonal of the unit square, representing the tests of the form $\phi_{0}=\alpha \mu$-almost everywhere $(\alpha \in[0,1])$, is in $\mathcal{M}$;
(ii) $\mathcal{M}$ is symmetric with respect to $\left(\frac{1}{2}, \frac{1}{2}\right)$;
(iii) $\mathcal{M}$ is convex;
(iv) the "upper boundary" of $\mathcal{M}$ represents the Neyman-Pearson Lemma tests;
(v) $\mathcal{M}$ is closed, hence compact.

Except for part (v), all statements in this proposition are quite elementary; proofs are left to the reader.

### 5.3 Families with monotone likelihood ratios

Testing a simple null against a simple alternative is of theoretical rather than practical interest. The simplest problems (for a one-parameter family $\left\{\mathrm{P}_{\theta}: \theta \in \Theta\right\}$, where $\Theta$ is an interval of $\mathbb{R}$ —possibly, $\mathbb{R}$ itself) that are of practical relevance are of the form

$$
H_{0}=\left\{\mathrm{P}_{\theta}: \theta \leq \theta_{0}\right\} \quad \text { vs } \quad H_{1}=\left\{\mathrm{P}_{\theta}: \theta>\theta_{0}\right\}
$$

which is often simply written as $H_{0}: \theta \leq \theta_{0}$ vs $H_{1}: \theta>\theta_{0}$. Such hypotheses are called one-sided. They only make sense, of course, for $\theta_{0} \in \operatorname{int}(\Theta)$-an assumption which is tacitly made throughout this section. Of course, the opposite problem, with $H_{0}: \theta \geq \theta_{0}$ and $H_{1}: \theta<\theta_{0}$, is equally interesting, but essentially equivalent.

A family $\mathcal{P}=\left\{\mathrm{P}_{\theta}: \theta \in \Theta\right\}$ is said to have monotone likelihood ratio in the (real-valued) statistic $T$ if (i) it is dominated by some $\sigma$-finite measure $\mu$ and (ii) there exist versions of the densities $f_{\theta}:=\frac{d \mathrm{P}_{\theta}}{d \mu}$ such that, for any $\theta<\theta^{\prime}$, the ratio

$$
\frac{f_{\theta^{\prime}}(\mathbf{x})}{f_{\theta}(\mathbf{x})}
$$

is a nondecreasing function of $T(\mathbf{x})$.
Example 1: Binomial $\operatorname{Bin}(n, p)$ families, with densities (over $\mathbb{R}$, with respect to the counting measure of the set $\{0,1, \ldots, n\}$ )

$$
f_{p}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

indexed by $\theta=p \in[0,1]$, have monotone likelihood ratio with respect to $T(x)=x$.
Example 2: Poisson families, with densities (over $\mathbb{R}^{n}$ for a sample of size $n$, with respect to the counting measure of $\mathbb{N}^{n}$ )

$$
f_{\lambda}(\mathbf{x})=e^{-n \lambda} \frac{\lambda^{\sum_{i=1}^{n} x_{i}}}{\prod_{i=1}^{n} x_{i}!} \quad \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)
$$

indexed by $\lambda \in \mathbb{R}_{0}^{+}$, have monotone likelihood ratio with respect to $T(\mathbf{x})=\sum_{i=1}^{n} x_{i}$.
Example 3: More generally, one-parameter exponential families, with densities (indexed by $\theta \in \Theta$ )

$$
f_{\theta}(\mathbf{x})=C(\theta) h(\mathbf{x}) \exp (\theta T(\mathbf{x}))
$$

is a monotone likelihood ratio family with respect to the natural statistic $T(\mathbf{x})$.
As we shall see, the conclusions of the Neyman-Pearson Lemma almost directly extend to one-sided testing problems in families with monotone likelihood ratios-a fact we summarize in the following theorem (Karlin and Rubin, 1956).

Theorem 1. Let $\mathcal{P}=\left\{\mathrm{P}_{\theta}: \theta \in \Theta\right\}$ be a family with monotone likelihood ratio with respect to $T(\mathbf{x})$. Fix $\alpha \in(0,1)$ and $\theta_{0} \in \operatorname{int}(\Theta)$. Then, (i) There exist $t_{\alpha} \in \mathbb{R}$ and $\gamma_{\alpha} \in[0,1]$ such that the test

$$
\phi_{\alpha}^{*}(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } T(\mathbf{x})>t_{\alpha} \\
\gamma_{\alpha} & \text { if } T(\mathbf{x})=t_{\alpha} \\
0 & \text { if } T(\mathbf{x})<t_{\alpha}
\end{array}\right.
$$

has size $\alpha$ under $\mathrm{P}_{\theta_{0}}$, that is, satisfies $\mathrm{E}_{\theta_{0}}\left[\phi_{\alpha}^{*}\right]=\alpha$. (ii) The size/power function $\theta \mapsto \mathrm{E}_{\theta}\left[\phi_{\alpha}^{*}\right]$ is strictly monotone increasing. (iii) The test $\phi_{\alpha}^{*}$ is uniformly most powerful in the class of $\alpha$-level tests for the problem of testing $H_{0}: \theta \leq \theta_{0}$ against $H_{1}: \theta>\theta_{0}$.

Proof. (i) The proof of this part is very similar to the proof of the first part of the NeymanPearson fundamental lemma. Let $t \mapsto F_{\theta_{0}}^{T}(t):=\mathrm{P}_{0}[T(\mathbf{X}) \leq t]$ be the cumulative distribution
function of $T$ under $\mathrm{P}_{\theta_{0}}$. Then, with
$t_{\alpha}:=\inf \left\{z: F_{\theta_{0}}^{T}(t)>1-\alpha\right\} \quad$ and $\quad \gamma_{\alpha}=\left\{\begin{array}{cl}\frac{F_{\theta_{0}}^{T}\left(t_{\alpha}\right)-(1-\alpha)}{F_{\theta_{0}}^{T}\left(t_{\alpha}\right)-F_{\theta_{0}}^{T}\left(t_{\alpha}-0\right)} & \text { if } F_{\theta_{0}}^{T}\left(t_{\alpha}\right)>F_{\theta_{0}}^{T}\left(t_{\alpha}-0\right) \\ 0 & \text { if } F_{\theta_{0}}^{T}\left(t_{\alpha}\right)=F_{\theta_{0}}^{T}\left(t_{\alpha}-0\right),\end{array}\right.$
we have

$$
\begin{aligned}
\mathrm{E}_{\theta_{0}}\left[\phi_{\alpha}^{*}\right] & =\mathrm{P}_{\theta_{0}}\left[T(\mathbf{X})>t_{\alpha}\right]+\gamma_{\alpha} \mathrm{P}_{\theta_{0}}\left[T(\mathbf{X})=t_{\alpha}\right]+0 \times \mathrm{P}_{\theta_{0}}\left[T(\mathbf{X})<t_{\alpha}\right] \\
& =1-F_{\theta_{0}}^{T}\left(t_{\alpha}\right)+\frac{F_{\theta_{0}}^{T}\left(t_{\alpha}\right)-(1-\alpha)}{F_{\theta_{0}}^{T}\left(t_{\alpha}\right)-F_{\theta_{0}}^{T}\left(t_{\alpha}-0\right)}\left(F_{\theta_{0}}^{T}\left(t_{\alpha}\right)-F_{\theta_{0}}^{T}\left(t_{\alpha}-0\right)\right)=\alpha .
\end{aligned}
$$

(ii) Fix $\theta^{\prime}<\theta^{\prime \prime}$ in $\Theta$. In view of the monotone likelihood property, we have that $T(\mathbf{x})$ is larger than, equal to, or smaller than $t_{\alpha}$ if and only if $f_{\theta^{\prime \prime}}(\mathbf{x}) / f_{\theta^{\prime}}(\mathbf{x})$ is larger than, equal to, or smaller than some $k=k\left(\theta^{\prime}, \theta^{\prime \prime}, t_{\alpha}\right)$. Thus, the test $\phi_{\alpha}^{*}$ rewrites

$$
\phi_{\alpha}^{*}(\mathbf{x}):=\left\{\begin{align*}
1 & \text { if } f_{\theta^{\prime \prime}}(\mathbf{x})>k f_{\theta^{\prime}}(\mathbf{x})  \tag{5.6}\\
\gamma_{\alpha} & \text { if } f_{\theta^{\prime \prime}}(\mathbf{x})=k f_{\theta^{\prime}}(\mathbf{x}) \\
0 & \text { if } f_{\theta^{\prime \prime}}(\mathbf{x})<k f_{\theta^{\prime}}(\mathbf{x})
\end{align*}\right.
$$

This is the Neyman-Pearson test for $H_{0}: \theta=\theta^{\prime}$ against $H_{1}: \theta=\theta^{\prime \prime}$ at level $\mathrm{E}_{\theta^{\prime}}\left[\phi^{*}\right]$. From Part (iv) of the Neyman-Pearson lemma, we thus have that $\mathrm{E}_{\theta^{\prime \prime}}\left[\phi_{\alpha}^{*}\right]>\mathrm{E}_{\theta^{\prime}}\left[\phi_{\alpha}^{*}\right]$.
(iii) It directly follows from (i)-(ii) that $\phi_{\alpha}^{*}$ is an $\alpha$-level test for the problem of testing $H_{0}: \theta \leq \theta_{0}$ against $H_{1}: \theta>\theta_{0}$. Let then $\phi$ be an arbitrary $\alpha$-level test for this problem. Fix $\theta_{1}>\theta_{0}$ arbitrarily. Since $\phi$ is an $\alpha$-level test for the problem of testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ and since $\phi_{\alpha}^{*}$ is the Neyman-Pearson test for this problem at level $\alpha$ (this is seen by proceeding as in (ii) with $\theta^{\prime}=\theta_{0}$ and $\theta^{\prime \prime}=\theta_{1}$ ), we must have $\mathrm{E}_{\theta_{1}}\left[\phi_{\alpha}^{*}\right] \geq \mathrm{E}_{\theta_{1}}[\phi]$. This establishes the result.

The result shows in particular that the size/power function $\theta \mapsto \mathrm{E}_{\theta}\left[\phi_{\alpha}^{*}\right]$ is strictly mono-
tone increasing. In exponential families, it can actually be shown that

$$
\frac{d}{d_{\theta}} \mathrm{E}_{\theta}\left[\phi_{\alpha}^{*}\right]>0
$$

at any $\theta$ such that $0<\mathrm{E}_{\theta}\left[\phi_{\alpha}^{*}\right]<1$ (a proof is available on request), which will actually play an important role in the next chapter.

### 5.4 A generalized Neyman-Pearson Lemma

Consider next the problem of testing the composite null hypothesis $H_{0}=\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{m}\right\}$ against the simple alternative $H_{1}=\left\{\mathrm{P}_{m+1}\right\}$. Writing $\mu:=\mathrm{P}_{1}+\ldots+\mathrm{P}_{m+1}$, let

$$
f_{i}:=\frac{\mathrm{dP}_{i}}{\mathrm{~d} \mu}, \quad i=1, \ldots, m+1
$$

and define the corresponding power diagram as

$$
\mathcal{M}_{m+1}:=\left\{\left(\mathrm{E}_{1}[\phi], \ldots, \mathrm{E}_{m+1}[\phi]\right): \phi \text { is a test }\right\}
$$

(each point $\mathbf{y}$ in $\mathcal{M}_{m+1}$ represents a class of tests which are all equivalent from the point of view of size and power, therefore essentially the same from a decisional point of view). The power diagram $\mathcal{M}_{m+1}$ enjoys all elementary properties of $\mathcal{M}_{2}$ : convexity, compactness, symmetry, etc. Note that the projection of $\mathcal{M}_{m+1}$ onto the space of its first $m$ components is nothing else but $\mathcal{M}_{m}$.

A test of the form

$$
\phi(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } f_{m+1}(\mathbf{x})>\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x}) \\
\gamma(\mathbf{x}) & \text { if } f_{m+1}(\mathbf{x})=\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x}) \\
0 & \text { if } f_{m+1}(\mathbf{x})<\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x})
\end{array}\right.
$$

where $k_{1}, \ldots, k_{m}$ are real numbers (not necessarily positive) is called a generalized Neyman test. The following result extends (in a somewhat weaker form, though) the fundamental Neyman-Pearson Lemma to the present context.

Proposition 1 (The generalized Neyman-Pearson Lemma - 1st version). (i) For all $\mathbf{c}=$ $\left(c_{1}, \ldots, c_{m}\right) \in \mathcal{M}_{m}$, there exists a test maximizing $\mathrm{E}_{m+1}[\phi]$ under the size constraints $\mathrm{E}_{i}[\phi]=c_{i}$ for $i=1, \ldots, m$.
(ii) If $\phi^{*}$ satisfies $\mathrm{E}_{i}[\phi]=c_{i}, i=1, \ldots, m$, with $\mathbf{c} \in \mathcal{M}_{m}$ and is of the generalized Neyman type, then it maximizes $\mathrm{E}_{m+1}[\phi]$ under the constraints $\mathrm{E}_{i}[\phi]=c_{i}$ for $i=1, \ldots, m$.
(iii) If, moreover, the Neyman test $\phi^{*}$ in (ii) is such that $k_{i} \geq 0$ for $i=1, \ldots, m$, then it also maximizes $\mathrm{E}_{m+1}[\phi]$ under the level constraints $\mathrm{E}_{i}[\phi] \leq c_{i}$ for $i=1, \ldots, m$.
(iv) if $\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right)$ is an interior point of $\mathcal{M}_{m}$, then there exists a Neyman test such that $\mathrm{E}_{i}[\phi]=c_{i}$ for $i=1, \ldots, m$ (it follows from (ii) that this test automatically maximizes $\mathrm{E}_{m+1}[\phi]$ under the constraints $\mathrm{E}_{i}[\phi]=c_{i}$ for $\left.i=1, \ldots, m\right)$.

Proof. (i) Denote by D the "vertical" straight line through c. The tests satisfying the constraints $\mathrm{E}_{i}[\phi]=c_{i}$, for $i=1, \ldots, m$, are those represented by $\mathrm{D} \cap \mathcal{M}_{m+1}$. Due to convexity, $\mathrm{D} \cap \mathcal{M}_{m+1}$ is a ("vertical") segment $\left[\mathrm{B}^{-}, \mathrm{B}^{+}\right]$, with $\mathrm{B}^{ \pm}:=\left(c_{1}, \ldots, c_{m}, b^{ \pm}\right)$and $b^{+} \geq b^{-}$. Any test represented by $\mathrm{B}^{+}$(a nonempty class) achieves the desired maximization, and the maximal value is $b^{+}$.
(ii) Let $\phi$ satisfy $\mathrm{E}_{i}[\phi]=c_{i}$. The integrand in

$$
\begin{equation*}
\int_{\mathcal{X}}\left(\phi^{*}(\mathbf{x})-\phi(\mathbf{x})\right)\left(f_{m+1}(\mathbf{x})-\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x})\right) \mathrm{d} \mu(\mathbf{x}) \tag{5.7}
\end{equation*}
$$

is nonnegative; hence the integral also is. Thus,

$$
\begin{aligned}
\int_{\mathcal{X}}\left(\phi^{*}(\mathbf{x})-\phi(\mathbf{x})\right) f_{m+1}(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}) & \geq \sum_{i=1}^{m} k_{i} \int\left(\phi^{*}(\mathbf{x})-\phi(\mathbf{x})\right) f_{i}(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}) \\
& =\sum_{i=1}^{m} k_{i}\left(c_{i}-\mathrm{E}_{i}[\phi]\right)=0
\end{aligned}
$$

which reads $\mathrm{E}_{m+1}\left[\phi^{*}\right] \geq \mathrm{E}_{m+1}[\phi]$ (note, however, that this does not tell us anything about the existence of such a $\phi^{*}$, nor about the values of $k_{i}, i=1, \ldots, m$; on this point, we refer
to Part (iv) of the proposition).
(iii) Let $\phi$ satisfy $\mathrm{E}_{i}[\phi] \leq c_{i}, i=1, \ldots, m$. Since $k_{i} \geq 0, i=1, \ldots, m$, nonnegativity of (5.7) now yields

$$
\begin{aligned}
\int_{\mathcal{X}}\left(\phi^{*}(\mathbf{x})-\phi(\mathbf{x})\right) f_{m+1}(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}) & \geq \sum_{i=1}^{m} k_{i} \int\left(\phi^{*}(\mathbf{x})-\phi(\mathbf{x})\right) f_{i}(\mathbf{x}) \mathrm{d} \mu(\mathbf{x}) \\
& =\sum_{i=1}^{m} k_{i}\left(c_{i}-\mathrm{E}_{i}[\phi]\right) \geq 0
\end{aligned}
$$

which provides again $\mathrm{E}_{m+1}\left[\phi^{*}\right] \geq \mathrm{E}_{m+1}[\phi]$ (that conclusion is invalid as soon as one at least of the $k_{i}$ 's is negative).
(iv) Convexity of $\mathcal{M}_{m+1}$ and the Separating Hyperplane Theorem imply the existence of a hyperplane H such that $\mathrm{B}^{+}$(defined in Part (i) of the result) belongs to H and $\mathcal{M}_{m+1}$ lies entirely on one side of H . The point $\mathbf{c}$ belongs to the interior of $\mathcal{M}_{m}$, so that $\mathrm{B}^{-} \neq$ $\mathrm{B}^{+}$. It clearly follows that $\mathrm{B}^{-} \in \mathcal{M}_{m+1}$ lies "below" $\mathrm{B}^{+}$, so that $\mathcal{M}_{m+1}$ also entirely lies "below" H . The equation of H is (the general equation of a hyperplane through a point $\mathrm{B}^{+}$ with coordinates $\left.\left(c_{1}, \ldots, c_{m}, b^{+}\right)\right)$

$$
\sum_{i=1}^{m} \tilde{k}_{i} y_{i}+\tilde{k}_{m+1} y_{m+1}=\sum_{i=1}^{m} \tilde{k}_{i} c_{i}+\tilde{k}_{m+1} b^{+}, \quad \mathbf{y} \in \mathbb{R}^{m+1}
$$

where the coefficients $\tilde{k}_{i}$ are defined up to a multiplicative constant. We have $\tilde{k}_{m+1} \neq 0$. Indeed, $\tilde{k}_{m+1}=0$ would imply that the vertical line through $\left[\mathrm{B}^{-}, \mathrm{B}^{+}\right]$belongs to H , which is not compatible with $\mathcal{M}_{m+1}$ being "below" H unless $\mathrm{B}^{-}=\mathrm{B}^{+}$; this, however, is ruled out by the assumption that $\mathbf{c}$ is an interior point of $\mathcal{M}_{m}$. Since $\tilde{k}_{m+1} \neq 0$, we may, without any loss of generality, assume $\tilde{k}_{m+1}=1$. Putting $k_{i}=-\tilde{k}_{i}$, we then have that

$$
\begin{gathered}
y_{m+1}-\sum_{i=1}^{m} k_{i} y_{i}=b^{+}-\sum_{i=1}^{m} k_{i} c_{i} \quad \text { if and only if } \mathbf{y} \text { "on" } \mathrm{H} \\
y_{m+1}-\sum_{i=1}^{m} k_{i} y_{i}<b^{+}-\sum_{i=1}^{m} k_{i} c_{i} \quad \text { if and only if } \mathbf{y} \text { "below" } \mathrm{H} .
\end{gathered}
$$

Since $\mathcal{M}_{m+1}$ is entirely below H , any test $\phi$ provides

$$
\mathrm{E}_{m+1}[\phi]-\sum_{i=1}^{m} k_{i} \mathrm{E}_{i}[\phi] \leq \mathrm{E}_{m+1}\left[\phi^{+}\right]-\sum_{i=1}^{m} k_{i} \mathrm{E}_{m+1}\left[\phi^{+}\right]
$$

where $\phi^{+}$is a test represented by $\mathrm{B}^{+}$. This rewrites

$$
\int_{\mathcal{X}} \phi(\mathbf{x})\left(f_{m+1}(\mathbf{x})-\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x})\right) \mathrm{d} \mu(\mathbf{x}) \leq \int_{\mathcal{X}} \phi^{+}(\mathbf{x})\left(f_{m+1}(\mathbf{x})-\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x})\right) \mathrm{d} \mu(\mathbf{x}),
$$

where the $k_{i}$ 's, as the coefficients of the separating hyperplane H , are fixed. Hence, $\phi^{+}$is a maximizer, over all possible tests, of the integral

$$
\int_{\mathcal{X}} \phi(\mathbf{x})\left(f_{m+1}(\mathbf{x})-\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x})\right) \mathrm{d} \mu(\mathbf{x}) .
$$

That maximum, for $\phi$ ranging over the set of all possible tests, is clearly

$$
\int_{\mathcal{X}}\left(f_{m+1}(\mathbf{x})-\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x})\right)^{+} \mathrm{d} \mu
$$

where $(z)^{+}=\max (z, 0)$ is the positive part of a number $z$, and this maximum can only be achieved if $\phi^{*}$ is, $\mu$-almost everywhere, of the form

$$
\phi^{*}(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } f_{m+1}(\mathbf{x})>\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x}) \\
\gamma(\mathbf{x}) & \text { if } f_{m+1}(\mathbf{x})=\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x}) \\
0 & \text { if } f_{m+1}(\mathbf{x})<\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x})
\end{array}\right.
$$

that is, if it is a Neyman test with constants $k_{i}, i=1, \ldots, m$.
Two important remarks are in order.
Remark 1: The proof of Proposition 1 can actually be extended easily to cover the following slightly more general version of the result, that will be useful in the next chapter.

Proposition 2 (The generalized Neyman-Pearson Lemma - 2nd version). Let $g_{1}, \ldots, g_{m+1}$ : $(\mathcal{X}, \mathcal{A}) \rightarrow(\mathbb{R}, \mathcal{B})$ be measurable functions that are $\mu$-integrable, and consider

$$
\mathcal{M}_{m}=\left\{\left(\int_{\mathcal{X}} \phi(\mathbf{x}) g_{1}(\mathbf{x}) d \mu(\mathbf{x}), \ldots, \int_{\mathcal{X}} \phi(\mathbf{x}) g_{m}(\mathbf{x}) d \mu(\mathbf{x})\right): \phi \text { a test }\right\} .
$$

In this framework, calling "a generalized Neyman test" a test of the form

$$
\phi(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } g_{m+1}(\mathbf{x})>\sum_{i=1}^{m} k_{i} g_{i}(\mathbf{x}) \\
\gamma(\mathbf{x}) & \text { if } g_{m+1}(\mathbf{x})=\sum_{i=1}^{m} k_{i} g_{i}(\mathbf{x}) \\
0 & \text { if } g_{m+1}(\mathbf{x})<\sum_{i=1}^{m} k_{i} g_{i}(\mathbf{x})
\end{array}\right.
$$

where $k_{1}, \ldots, k_{m}$ are real numbers, we have the following:
(i) For all $\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right) \in \mathcal{M}_{m}$, there exists a test maximizing $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{m+1}(\mathbf{x}) d \mu(\mathbf{x})$ under the size constraints $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{i}(\mathbf{x}) d \mu(\mathbf{x})=c_{i}$ for $i=1, \ldots, m$.
(ii) If $\phi^{*}$ satisfies $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{i}(\mathbf{x}) d \mu(\mathbf{x})=c_{i}, i=1, \ldots, m$, with $\mathbf{c} \in \mathcal{M}_{m}$ and is of the generalized Neyman type, then it maximizes $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{m+1}(\mathbf{x}) d \mu(\mathbf{x})$ under the constraints $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{i}(\mathbf{x}) d \mu(\mathbf{x})=c_{i}$ for $i=1, \ldots, m$.
(iii) If, moreover, the Neyman test $\phi^{*}$ in (ii) is such that $k_{i} \geq 0$ for $i=1, \ldots, m$, then it also maximizes $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{m+1}(\mathbf{x}) d \mu(\mathbf{x})$ under the constraints $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{i}(\mathbf{x}) d \mu(\mathbf{x}) \leq c_{i}$ for $i=1, \ldots, m$.
(iv) if $\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right)$ is an interior point of $\mathcal{M}_{m}$, then there exists a Neyman test such that $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{i}(\mathbf{x}) d \mu(\mathbf{x})=c_{i}$ for $i=1, \ldots, m$ (it follows from (ii) that this test automatically maximizes $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{m+1}(\mathbf{x}) d \mu(\mathbf{x})$ under the constraints $\int_{\mathcal{X}} \phi(\mathbf{x}) g_{i}(\mathbf{x}) d \mu(\mathbf{x})=c_{i}$ for $i=1, \ldots, m)$.

Of course, the first version of the generalized Neyman-Pearson lemma is recovered when $g_{i}$ is taken as a density function $f_{i}$ for any $i=1, \ldots, m$.

Remark 2: In the "favorable" cases described by Proposition 1(iii), the optimal test is of
the form

$$
\phi(\mathbf{x})=1 \text { if } f_{m+1}(\mathbf{x})>k\left(\sum_{i=1}^{m} \frac{k_{i}}{k} f_{i}(\mathbf{x})\right)
$$

where $k:=\sum_{i=1}^{m} k_{i}$ is the sum of the nonnegative coefficients $k_{i}$ 's. Since $k_{i} / k \geq 0$ for $i=$ $1, \ldots, m$ and $\sum_{i=1}^{m}\left(k_{i} / k\right)=1$, this test is a Neyman test (in the sense of the fundamental lemma) for a mixture density of the form

$$
f_{0}:=\sum_{i=1}^{m} \frac{k_{i}}{k} f_{i}
$$

against $\left\{f_{m+1}\right\}$. This remark is exploited in the next section.

### 5.5 Least favorable distributions

### 5.5.1 Mixtures

The generalized Neyman-Pearson Lemma tells us that, in the "favorable cases", most powerful tests of a composite null hypothesis $H_{0}=\left\{f_{1}, \ldots, f_{m}\right\}$ against $H_{1}=\left\{f_{m+1}\right\}$, under a level condition $\mathrm{E}_{f_{i}}[\phi] \leq \alpha$ for $i=1, \ldots, m$, exist and are of the form

$$
\phi^{*}(\mathbf{x})= \begin{cases}1 & \text { if } f_{m+1}(\mathbf{x})>\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x}) \\ \gamma & \text { if } f_{m+1}(\mathbf{x})=\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x}) \\ 0 & \text { if } f_{m+1}(\mathbf{x})<\sum_{i=1}^{m} k_{i} f_{i}(\mathbf{x})\end{cases}
$$

with $k_{i} \geq 0$ for $i=1, \ldots, m$ and $\gamma$ determined by $\mathrm{E}_{f_{i}}[\phi] \leq \alpha$ for $i=1, \ldots, m$. By "favorable cases", we mean that such a test exists. Letting $k:=\sum_{i=1}^{n} k_{i}$, this test rewrites as

$$
\phi^{*}(\mathbf{x})= \begin{cases}1 & \text { if } f_{m+1}(\mathbf{x})>k\left(\sum_{i=1}^{m} \frac{k_{i}}{k} f_{i}(\mathbf{x})\right) \\ \gamma & \text { if } f_{m+1}(\mathbf{x})=k\left(\sum_{i=1}^{m} \frac{k_{i}}{k} f_{i}(\mathbf{x})\right) \\ 0 & \text { if } f_{m+1}(\mathbf{x})<k\left(\sum_{i=1}^{m} \frac{k_{i}}{k} f_{i}(\mathbf{x})\right)\end{cases}
$$

which is the Neyman-Pearson test for the simple hypothesis $\left\{\sum_{i=1}^{m} \frac{k_{i}}{k} f_{i}\right\}$ against the simple alternative $\left\{f_{m+1}\right\}$ under $\alpha$-level constraint. This density $\sum_{i=1}^{m} \frac{k_{i}}{k} f_{i}$ (one easily checks that
it is a density) is a mixture of $f_{1}, \ldots, f_{m}$, with mixing probabilities $\frac{k_{1}}{k}, \ldots, \frac{k_{m}}{k}$. When testing for a composite null hypothesis $H_{0}$, this suggests looking at mixtures of the densities in $H_{0}$.

### 5.5.2 Least Favorable Mixtures

Consider the problem of testing $H_{0}=\left\{f_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \Theta\right\}$ against $H_{1}=\{g\}$, where $f_{\boldsymbol{\theta}}$ and $g$ are densities, with respect to some $\sigma$-finite measure $\mu$, over $(\mathcal{X}, \mathcal{A})$, and $\Theta \subseteq \mathbb{R}^{k}$ is equipped with the Borel $\sigma$-field $\mathcal{B}^{k} \cap \Theta$. Let $\lambda$ denote a probability measure over $\left(\Theta, \mathcal{B}^{k} \cap \Theta\right)$. Then, $h_{\lambda}: \mathbf{x} \mapsto h_{\lambda}(\mathbf{x}):=\int_{\Theta} f_{\boldsymbol{\theta}}(\mathbf{x}) \mathrm{d} \lambda(\mathbf{x})$ is still a probability density with respect to $\mu$ over $(\mathcal{X}, \mathcal{A})$ a mixture of the densities $f_{\boldsymbol{\theta}}, \boldsymbol{\theta} \in \Theta$.

For any $\lambda$, denote by $H_{\lambda}:=\left\{h_{\lambda}\right\}$ the simple hypothesis under which the observation has density $h_{\lambda}$. Consider the Neyman-Pearson $\alpha$-level test $\phi_{\lambda}$ of $H_{\lambda}$ against $H_{1}$, and write $\pi_{\lambda}:=$ $\mathrm{E}_{g}\left[\phi_{\lambda}\right]$ for its power under $H_{1}$. We adopt the following definition.

Definition 1. The mixing measure $\lambda_{\mathrm{LF}}$, or the corresponding mixture density $h_{\lambda_{\mathrm{LF}}}$, are called least favorable if $\pi_{\lambda_{\mathrm{LF}}} \leq \pi_{\lambda}$ for any probability measure $\lambda$ over $\Theta$.

We then have the following result.
Proposition 3. Let $\lambda_{0}$ be such that $\mathrm{E}_{\boldsymbol{\theta}}\left[\phi_{\lambda_{0}}\right] \leq \alpha$ for all $\boldsymbol{\theta} \in \Theta$. Then, (i) the test $\phi_{\lambda_{0}}$ is most powerful, at level $\alpha$, for $H_{0}$ against $H_{1}$; (ii) the density $h_{\lambda_{0}}$ is least favorable.

Proof. (i) By assumption, $\phi_{\lambda_{0}}$ is an $\alpha$-level for $H_{0}$ against $H_{1}$. Let then $\phi$ be an arbitrary $\alpha$-level test for the same problem, that is, $\mathrm{E}_{\boldsymbol{\theta}}[\phi] \leq \alpha$ for all $\boldsymbol{\theta} \in \Theta$. Then, Fubini's Theorem yields that

$$
\begin{align*}
& \mathrm{E}_{{\lambda_{0}}}[\phi]=\int_{\mathcal{X}} \phi(\mathbf{x}) h_{\lambda_{0}}(\mathbf{x}) d \mu(\mathbf{x})=\int_{\mathcal{X}} \phi(\mathbf{x})\left(\int_{\Theta} f_{\boldsymbol{\theta}}(\mathbf{x}) d \lambda_{0}(\boldsymbol{\theta})\right) d \mu(\mathbf{x})  \tag{5.8}\\
& \quad=\int_{\mathcal{X}} \int_{\Theta} \phi(\mathbf{x}) f_{\boldsymbol{\theta}}(\mathbf{x}) d \lambda_{0}(\boldsymbol{\theta}) d \mu(\mathbf{x})=\int_{\Theta}\left(\int_{\mathcal{X}} \phi(\mathbf{x}) f_{\boldsymbol{\theta}}(\mathbf{x}) d \mu(\mathbf{x})\right) d \lambda_{0}(\boldsymbol{\theta})=\int_{\Theta} \mathrm{E}_{\boldsymbol{\theta}}[\phi] d \lambda_{0}(\boldsymbol{\theta}) \leq \alpha
\end{align*}
$$

so that $\phi$ is an $\alpha$-level test for $H_{\lambda_{0}}=\left\{h_{\lambda_{0}}\right\}$ against $H_{1}=\{g\}$. Since $\phi_{\lambda_{0}}$ is the most powerful test at level $\alpha$ for the latter problem, we must then have $\mathrm{E}_{g}\left[\phi_{\lambda_{0}}\right] \geq \mathrm{E}_{g}[\phi]$.
(ii) Fix an arbitrary mixture distribution $\lambda$. Proceeding as in (5.8), we have

$$
\begin{aligned}
& \mathrm{E}_{h_{\lambda}}\left[\phi_{\lambda_{0}}\right]=\int_{\mathcal{X}} \phi_{\lambda_{0}}(\mathbf{x}) h_{\lambda}(\mathbf{x}) d \mu(\mathbf{x})=\int_{\mathcal{X}} \phi_{\lambda_{0}}(\mathbf{x})\left(\int_{\Theta} f_{\boldsymbol{\theta}}(\mathbf{x}) d \lambda(\boldsymbol{\theta})\right) d \mu(\mathbf{x}) \\
& =\int_{\mathcal{X}} \int_{\Theta} \phi_{\lambda_{0}}(\mathbf{x}) f_{\boldsymbol{\theta}}(\mathbf{x}) d \lambda(\boldsymbol{\theta}) d \mu(\mathbf{x})=\int_{\Theta}\left(\int_{\mathcal{X}} \phi_{\lambda_{0}}(\mathbf{x}) f_{\boldsymbol{\theta}}(\mathbf{x}) d \mu(\mathbf{x})\right) d \lambda(\boldsymbol{\theta})=\int_{\Theta} \mathrm{E}_{\boldsymbol{\theta}}\left[\phi_{\lambda_{0}}\right] d \lambda(\boldsymbol{\theta}) \leq \alpha .
\end{aligned}
$$

Thus, $\phi_{\lambda_{0}}$ satisfies the level constraint under $H_{\lambda}$ and, therefore, is at most as powerful as $\phi_{\lambda}$ : $\mathrm{E}_{g}\left[\phi_{\lambda_{0}}\right] \leq \mathrm{E}_{g}\left[\phi_{\lambda}\right]$. This shows that $\pi_{\lambda_{0}} \leq \pi_{\lambda}$ for any $\lambda$, so that $h_{\lambda_{0}}$ is least favorable.

### 5.5.3 Application 1: one-sided tests in one-parameter exponential families

In the one-parameter family of exponential densities

$$
f_{\theta}(\mathbf{x})=C(\theta) \exp (\theta T(\mathbf{x}))
$$

(densities are with respect to some dominating measure $\mu$, and $\theta \in \Theta$, where $\Theta$ is an interval of $\mathbb{R}$ ), consider the one-sided testing problem $H_{0}: \theta \leq \theta_{0}$ versus the alternative $H_{1}: \theta>\theta_{0}$. Uniformly most powerful tests at level $\alpha$ have been obtained for that problem in Section 5.3. As we now show, they also follow from a least-favorable approach.

Proposition 4. The test

$$
\phi^{*}(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } T(\mathbf{x})>t_{\alpha} \\
\gamma_{\alpha} & \text { if } T(\mathbf{x})=t_{\alpha} \\
0 & \text { if } T(\mathbf{x})<t_{\alpha}
\end{array}\right.
$$

where $\gamma_{\alpha}$ and $t_{\alpha}$ are determined by the size condition $\mathrm{E}_{\theta_{0}}\left[\phi^{*}\right]=\alpha$, is uniformly most powerful, at level $\alpha$, for $H_{0}: \theta \leq \theta_{0}$ against $H_{1}: \theta>\theta_{0}$.

Proof. Fix $\theta_{1}>\theta_{0}$ arbitrarily and consider the problem of testing $\mathcal{H}_{0}: \theta \leq \theta_{0}$ against $H_{1}$ : $\theta=\theta_{1}$. We show that, for this problem, $f_{\theta_{0}}$ (the degenerate mixture associated with $\left.\lambda\left(\left\{\theta_{0}\right\}\right)=1\right)$ is least favorable. The Neyman-Pearson test for $\left\{f_{\theta_{0}}\right\}$ against $\left\{f_{\theta_{1}}\right\}$ has the
form

$$
\phi(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } C\left(\theta_{1}\right) \exp \left(\theta_{1} T(\mathbf{x})\right)>k_{\alpha} C\left(\theta_{0}\right) \exp \left(\theta_{0} T(\mathbf{x})\right) \\
\gamma_{\alpha} & \text { if } C\left(\theta_{1}\right) \exp \left(\theta_{1} T(\mathbf{x})\right)=k_{\alpha} C\left(\theta_{0}\right) \exp \left(\theta_{0} T(\mathbf{x})\right) \\
0 & \text { if } C\left(\theta_{1}\right) \exp \left(\theta_{1} T(\mathbf{x})\right)<k_{\alpha} C\left(\theta_{0}\right) \exp \left(\theta_{0} T(\mathbf{x})\right)
\end{array}\right.
$$

with $k_{\alpha}$ and $\gamma_{\alpha}$ determined by $\mathrm{E}_{\theta_{0}}[\phi]=\alpha$. Equivalently,

$$
\phi(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } \exp \left(\left(\theta_{1}-\theta_{0}\right) T(\mathbf{x})\right)>k_{\alpha} C\left(\theta_{0}\right) / C\left(\theta_{1}\right) \\
\gamma_{\alpha} & \text { if } \exp \left(\left(\theta_{1}-\theta_{0}\right) T(\mathbf{x})\right)=k_{\alpha} C\left(\theta_{0}\right) / C\left(\theta_{1}\right) \\
0 & \text { if } \exp \left(\left(\theta_{1}-\theta_{0}\right) T(\mathbf{x})\right)<k_{\alpha} C\left(\theta_{0}\right) / C\left(\theta_{1}\right)
\end{array}\right.
$$

or again

$$
\phi(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } T(\mathbf{x})>t_{\alpha}:=\left(\theta_{1}-\theta_{0}\right)^{-1} \log \left(k_{\alpha} C\left(\theta_{0}\right) / C\left(\theta_{1}\right)\right) \\
\gamma_{\alpha} & \text { if } T(\mathbf{x})=t_{\alpha}:=\left(\theta_{1}-\theta_{0}\right)^{-1} \log \left(k_{\alpha} C\left(\theta_{0}\right) / C\left(\theta_{1}\right)\right) \\
0 & \text { if } T(\mathbf{x})<t_{\alpha}:=\left(\theta_{1}-\theta_{0}\right)^{-1} \log \left(k_{\alpha} C\left(\theta_{0}\right) / C\left(\theta_{1}\right)\right)
\end{array}\right.
$$

where $t_{\alpha}$ and $\gamma_{\alpha}$ are determined by $\mathrm{E}_{\theta_{0}}[\phi]=\alpha$. Hence, $\phi$ coincides with the test $\phi_{\alpha}^{*}$ from Theorem 1(i) (irrespective of $\theta_{1}$ ).

Now, for any $\theta^{\prime}<\theta_{0}$, note that $\phi_{\alpha}^{*}$ is also the Neyman-Pearson Lemma test for $\left\{\mathrm{P}_{\theta^{\prime}}\right\}$ against $\left\{\mathrm{P}_{\theta_{0}}\right\}$ at level $\mathrm{E}_{\theta^{\prime}}\left[\phi_{\alpha}^{*}\right]$, so that the Neyman-Pearson lemma implies that $\mathrm{E}_{\theta^{\prime}}\left[\phi_{\alpha}^{*}\right]<$ $\mathrm{E}_{\theta_{0}}\left[\phi_{\alpha}^{*}\right]=\alpha$. It follows from Proposition 3(ii) that the degenerate mixture at $\left\{\theta_{0}\right\}$ is indeed least favorable and from Proposition 3(i) that $\phi_{\alpha}^{*}$ is uniformly most powerful, at level $\alpha$, for $\mathcal{H}_{0}: \theta \leq \theta_{0}$ against $H_{1}: \theta=\theta_{1}$. Since $\theta_{1}\left(>\theta_{0}\right)$ was fixed arbitrarily, we conclude that the same test is also uniformly most powerful, at level $\alpha$, for $\mathcal{H}_{0}: \theta \leq \theta_{0}$ against $H_{1}: \theta>\theta_{0}$.

A particular case of an exponential family with one parameter is the Bernoulli family. Let $X_{1}, \ldots, X_{n}$ be i.i.d. $\operatorname{Bin}(1, p)$ random variables, with $p \in(0,1)$, and consider the problem of testing

$$
H_{0}: p \leq p_{0} \quad \text { against } \quad H_{1}: p>p_{0}
$$

The Bernoulli family is an exponential family with natural parameter $\theta=\log \left(\frac{p}{1-p}\right)$ and privileged statistic $\sum_{i=1}^{n} X_{i}$. Note that

$$
\log \left(\frac{p}{1-p}\right) \leq \log \left(\frac{p_{0}}{1-p_{0}}\right) \text { if and only if } p \leq p_{0}
$$

so that the testing problem considered is of the form

$$
H_{0}: \theta \leq \theta_{0} \quad \text { against } \quad H_{1}: \theta>\theta_{0}
$$

The test

$$
\phi_{\alpha}^{*}(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } \sum_{i=1}^{n} x_{i}>t_{\alpha} \\
\gamma_{\alpha} & \text { if } \sum_{i=1}^{n} x_{i}=t_{\alpha} \\
0 & \text { if } \sum_{i=1}^{n} x_{i}<t_{\alpha}
\end{array}\right.
$$

with $t_{\alpha}$ and $\gamma_{\alpha}$ fixed by the condition $\mathrm{E}_{p_{0}}\left[\phi_{\alpha}^{*}\right]=\alpha$, is then uniformly most powerful at level $\alpha$.

### 5.5.4 Application 2: the sign test

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ collect $n$ independently and identically distributed observations of $X$, with density $f \in \mathcal{F}$, where $\mathcal{F}$ is the family of all probability densities with respect to the Lebesgue measure over $(\mathbb{R}, \mathcal{B})$. Consider, for given $p_{0} \in(0,1)$, the testing problem

$$
\left\{\begin{array}{l}
H_{0}: x_{\left(p_{0}\right)} \geq x_{0} \\
H_{1}: x_{\left(p_{0}\right)}<x_{0}
\end{array}\right.
$$

where $x_{0}$ is some given real number, and $x_{\left(p_{0}\right)}$ is the quantile of order $p_{0}$ of $X$. Writing $p:=$ $\mathrm{P}\left[X \leq x_{0}\right]=\int_{-\infty}^{x_{0}} f(x) \mathrm{d} \mu(x)$, the same testing problem takes the form

$$
\left\{\begin{array}{l}
H_{0}: p \leq p_{0} \\
H_{1}: p>p_{0}
\end{array}\right.
$$

Denote as $M=M(\mathbf{X}):=\#\left\{i=1, \ldots, n: X_{i} \leq x_{0}\right\}$ the number of observations that are not larger than $x_{0}$ : clearly, $M \sim \operatorname{Bin}(n, p)$. The test

$$
\phi_{\mathrm{sign}}(\mathbf{x}):=\left\{\begin{align*}
1 & \text { if } M(\mathbf{x})>m_{\alpha}  \tag{5.9}\\
\gamma_{\alpha} & \text { if } M(\mathbf{x})=m_{\alpha} \\
0 & \text { if } M(\mathbf{x})<m_{\alpha}
\end{align*}\right.
$$

where $m_{\alpha}$ and $\gamma_{\alpha}$ are determined by $\mathrm{E}_{p_{0}}\left[\phi_{\text {sign }}\right]=\alpha$, is called a sign test (here, we write $\mathrm{E}_{p_{0}}$ for the expectation of an $M$-measurable variable under $M \sim \operatorname{Bin}\left(n, p_{0}\right)$ ).

Proposition 5. The sign test (5.9) is uniformly most powerful for $H_{0}$ against $H_{1}$ at level $\alpha$.
Proof. Any $f \in \mathcal{F}$ can be characterized as a triple ( $p, f^{+}, f^{-}$), where $p:=\int_{-\infty}^{x_{0}} f(x) \mathrm{d} \mu(x) \in$ $(0,1), f^{+}(x):=f(x) \mathbb{I}\left[x>x_{0}\right] /(1-p)$ is the conditional density of $X \sim f$, conditional on $X \geq x_{0}$, and $f^{-}(x):=f(x) \mathbb{I}\left[x \leq x_{0}\right] / p$ is the conditional density of $X \sim f$, conditional on $X<x_{0}$. The null hypothesis and the alternative then take the forms

$$
H_{0}=\left\{\left(p, f^{-}, f^{+}\right): p \leq p_{0}, f^{-} \in \mathcal{F}^{-}, f^{+} \in \mathcal{F}^{+}\right\}
$$

and

$$
H_{1}=\left\{\left(p, f^{-}, f^{+}\right): p>p_{0}, f^{-} \in \mathcal{F}^{-}, f^{+} \in \mathcal{F}^{+}\right\}
$$

respectively, where $\mathcal{F}^{-}$(resp., $\mathcal{F}^{+}$) is the set of all possible conditional densities $f^{+}$(resp., $\left.f^{-}\right)$. The joint density under $\left(p, f^{+}, f^{-}\right)$of $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ at $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is

$$
p^{m}(1-p)^{n-m} f^{-}\left(x_{i_{1}}\right) \ldots f^{-}\left(x_{i_{m}}\right) f^{+}\left(x_{j_{1}}\right) \ldots f^{+}\left(x_{j_{n-m}}\right)
$$

where $m=M(\mathbf{x})=\#\left\{i=1, \ldots, n: x_{i} \leq x_{0}\right\}$ and $i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{n-m}$ are such that

$$
x_{i_{1}}, \ldots, x_{i_{m}} \leq x_{0}<x_{j_{1}}, \ldots, x_{j_{n-m}}
$$

Now, fix a distribution $\left(p_{1}, f_{1}^{-}, f_{1}^{+}\right)$in $H_{1}$ (hence, $\left.p_{1}>p_{0}\right)$ : intuitively, the "closest" distribution in $H_{0}$ could well be $\left(p_{0}, f_{1}^{-}, f_{1}^{+}\right)$. Let us show that indeed ( $p_{0}, f_{1}^{-}, f_{1}^{+}$) is the least favorable mixture (against the fixed alternative $\left\{\left(p_{1}, f_{1}^{-}, f_{1}^{+}\right)\right\}$). To this end, we first construct the Neyman-Pearson test for $\left\{\left(p_{0}, f_{1}^{-}, f_{1}^{+}\right)\right\}$against $\left\{\left(p_{1}, f_{1}^{-}, f_{1}^{+}\right)\right\}$. Recalling that $m=M(\mathbf{x})$, this test is

$$
\phi^{*}(\mathbf{x})= \begin{cases}1 & \text { if }\left(\frac{p_{1}}{p_{0}}\right)^{m}\left(\frac{1-p_{1}}{1-p_{0}}\right)^{n-m}>k_{\alpha} \\ \gamma_{\alpha} & \text { if }\left(\frac{p_{1}}{p_{0}}\right)^{m}\left(\frac{1-p_{1}}{1-p_{0}}\right)^{n-m}=k_{\alpha} \\ 0 & \text { if }\left(\frac{p_{1}}{p_{0}}\right)^{m}\left(\frac{1-p_{1}}{1-p_{0}}\right)^{n-m}<k_{\alpha}\end{cases}
$$

where $k_{\alpha}$ and $\gamma_{\alpha}$ are determined by $\mathrm{E}_{\left(p_{0}, f_{1}^{-}, f_{1}^{+}\right)}\left[\phi^{*}\right]=\alpha$ (note that this expectation does not depend on $f_{1}^{-}$nor on $f_{1}^{+}$since the distribution of $M$ under $\left(p_{0}, f_{1}^{-}, f_{1}^{+}\right)$is the $\operatorname{Bin}\left(n, p_{0}\right)$ distribution). Clearly, since $p_{1}>p_{0}$, this test takes the simpler form

$$
\phi^{*}(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } M(\mathbf{x})>m_{\alpha} \\
\gamma_{\alpha} & \text { if } M(\mathbf{x})=m_{\alpha} \\
0 & \text { if } M(\mathbf{x})<m_{\alpha}
\end{array}\right.
$$

where $m_{\alpha}$ and $\gamma_{\alpha}$ still are determined by $\mathrm{E}_{\left(p_{0}, f_{1}^{-}, f_{1}^{+}\right)}\left[\phi^{*}\right]=\alpha$. This test $\phi^{*}$ thus coincides with the previously described sign test $\phi_{\text {sign }}$. Now, in order to use the least favorable argument, it only remains to show that $\mathrm{E}_{\left(p, f^{-}, f^{+}\right)}\left[\phi^{*}\right] \leq \alpha$ for any $p \leq p_{0}, f^{-} \in \mathcal{F}^{-}$and $f^{+} \in \mathcal{F}^{+}$. But this follows from the fact that $\mathrm{E}_{\left(p, f^{-}, f^{+}\right)}\left[\phi^{*}\right]$ does not depend on $\left(f^{-}, f^{+}\right)$and is increasing in $p$-one way to show this is to note that $\phi^{*}$ is actually the uniformly most powerful test for $\left\{p \leq p_{0}\right\}$ against $\left\{p>p_{0}\right\}$ in the (exponential) Bernoulli model under which $\mathbb{I}\left[X_{1} \leq\right.$ $\left.x_{0}\right], \ldots, \mathbb{I}\left[X_{n} \leq x_{0}\right]$ are independently and identically distributed $\operatorname{Bin}(1, p)$ random variables (see Section 5.5.3).


[^0]:    ${ }^{1}$ With slight modifications by Davy Paindaveine and Thomas Verdebout.

