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5 Hypothesis Testing: UMP Tests

5.1 The decision problem

Consider the statistical model (X ,A,P), where P is partitioned into P = H0 ⊕ H1, along

with the decision space D = {RH0, /RH0} = {1, 0}; here, RH0 and /RH0 (equivalently, 1 and

0) respectively stand for “reject H0” and “do not reject H0”. Consider also the loss function

defined by

LP (d) =

{
1 if P ∈ H1 and d = 0

0 otherwise.

The cost of not rejecting H0 when H0 is false (the so-called Type II error) thus is one, while

rejecting H0 when H0 is true (Type I error) has cost zero.

A randomized decision rule—a collection, indexed by x ∈ X , of conditional (on X=x)

distributions over the two points “0” (/RH0) and “1” (RH0)—is entirely described by the X-

measurable probability mass it puts on “1” (RH0), that is, an X-measurable statistic, ϕ(X),

say, with values in [0, 1]. The set of all possible randomized decision rules is thus

T := {ϕ : ϕ(x) a statistic with values in ([0, 1],B[0,1])}, B[0,1] := B ∩ [0, 1],

with the interpretation that, in case the randomized decision rule ϕ is adopted, conditional

on X = x, decision “1” (RH0) will be taken with probability ϕ(x). If x is observed and

ϕ(x) = 1/2, then the statistician thus can flip a fair coin in order to decide between RH0

and /RH0; if ϕ(x) = 1/6, then she/he can roll a dice, etc. Of course, if ϕ(x) = 1 or 0, then

she/he will reject or not reject without randomization.

1With slight modifications by Davy Paindaveine and Thomas Verdebout.
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A specific terminology is associated with this decision problem:

– H0 is called the null hypothesis, H1 the alternative hypothesis; together, they charac-

terize a testing problem.

– A decision rule ϕ (a statistic with values in [0, 1]) is called a (randomized) test. If ϕ

is such that P[ϕ(X) ∈ {0, 1}] = 1 for any P ∈ P , it is called a nonrandomized or pure

test.

– The unconditional probability under P that a given test ϕ eventually leads to the

rejection of H0 is

EP[ϕ] =

∫
X
ϕ(x) dP(x);

this quantity is called the size of ϕ when P ∈ H0, the power of ϕ when P ∈ H1.

– The risk (the expected loss) associated with a test ϕ is

Rϕ
P =

{
1− EP[ϕ] if P ∈ H1

0 if P ∈ H0

(under P ∈ H1, that risk is the probability of ϕ committing Type II error and is called

the Type II risk). That risk Rϕ
P is to be minimized uniformly in P ∈ H1. Equivalently,

the power of ϕ, EP[ϕ], P ∈ H1, is to be maximized uniformly in P ∈ H1.

Clearly, if the power is to be maximized with respect to ϕ ∈ T , without placing any

restriction on ϕ, then the trivial test ϕ(x) = 1 P-almost surely, which rejects H0 irrespective

of the observed value x ofX, qualifies as the uniformly most powerful test, hence the solution

of the testing problem. Such a trivial solution is ruled out by the following principle.

The Neyman principle. Fix some α ∈ (0, 1), and restrict to the class Cα of α-level

tests, i.e., of the tests ϕ satisfying the level constraint

EP[ϕ] ≤ α for all P ∈ H0. (5.1)

A test ϕ∗ is said to be uniformly most powerful (UMP) within a class C of tests if
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(a) ϕ∗ ∈ C, and

(b) for all ϕ ∈ C and all P ∈ H1, EP[ϕ
∗] ≥ EP[ϕ].

That principle, often complemented by some further ones, will be considered throughout

the chapters on hypothesis testing. A test ϕ∗ which is uniformly most powerful within the

class Cα = {ϕ : EP[ϕ] ≤ α for all P ∈ H0} of α-level tests is called uniformly most powerful

at level α, or α-level uniformly most powerful.

5.2 The Neyman-Pearson Lemma

5.2.1 Testing a simple null against a simple alternative

A hypothesis H (null or alternative) is called simple if it contains a single element. Else,

it is called composite. The simplest of all hypothesis testing problems is that of testing a

simple null H0 = {P0} against a simple alternative H1 = {P1}. The problem then consists

in maximizing E1[ϕ] := EP1 [ϕ] =
∫
ϕ(x)dP1(x) under the level constraint E0[ϕ] := EP0 [ϕ] =∫

ϕ(x)dP0(x) ≤ α. Maximizing such an integral under an integral constraint is a standard

variational problem. Its solution, along with some properties, is summarized in the following

remark, known as the Neyman-Pearson Fundamental Lemma.

Note that P0 and P1 are dominated by the sum µ := P0 + P1; it will be convenient to

use the corresponding densities

f0 :=
dP0

dµ
and f1 :=

dP1

dµ
·

Also, instead of “uniformly most powerful” (UMP), in this context, we simply say “most

powerful” (MP); “uniformly” here indeed means “uniformly in P ∈ H1”, which in the present

case is superfluous, as H1 is simple.

Before stating the Neyman-Pearson Lemma, let us define a Neyman test with constant k
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(for the simple H0 against the simple H1) as a test of the form

ϕ(x) :=


1 if f1(x) > kf0(x)

γ(x) if f1(x) = kf0(x)

0 if f1(x) < kf0(x),

where k ∈ R̄+ := R+ ∪ {∞} and x 7→ γ(x) takes values in [0, 1].

The Neyman-Pearson Lemma generally consists of the following fourfold statement.

Lemma 1 (Neyman-Pearson Lemma). Consider the statistical model (X ,A,P), with P :=

{P0,P1}, the null hypothesis H0 := {P0}, and the alternative H1 := {P1}. Fix α ∈ (0, 1).

Then, we have the following:

(i) There exist k ∈ R+ and γ ∈ [0, 1] such that the test

ϕ∗
α(x) :=


1 if f1(x) > kf0(x)

γ if f1(x) = kf0(x)

0 if f1(x) < kf0(x)

satisfies E0[ϕ
∗
α] = α (size constraint).

(ii) The test ϕ∗
α is most powerful at level α.

(iii) Conversely, if ϕ is such that E0[ϕ] ≤ α and E1[ϕ] = E1[ϕ
∗
α], then (ϕ∗

α(x)−ϕ′(x))(f1(x) ̸=
kf0(x)) = 0 µ-a.e., or equivalently, (ϕ∗

α(x)− ϕ′(x))I[f1(x) ̸= kf0(x)] = 0 µ-a.e. (if an

α-level test ϕ′ is as powerful as ϕ∗
α, then it is also a Neyman test with constant k).

(iv) E1[ϕ
∗
α] > α.

Proof. (i) Let F0(z) := P0[f1(X) ≤ zf0(X)] for any z. Noting that z 7→ F0(z) is a cumulative

distribution function, define

k := inf{z : F0(z) > 1− α} and γ =


F0(k)− (1− α)

F0(k)− F0(k − 0)
if F0(k) > F0(k − 0)

0 if F0(k) = F0(k − 0),
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where F0(k − 0) denotes the limit of F0(z) when z converges to k from below. Then,

E0[ϕ
∗
α] = P0[f1(X) > kf0(X)] + γP0[f1(X) = kf0(X)] + 0× P0[f1(X) < kf0(X)]

= 1− F0(k) +
F0(k)− (1− α)

F0(k)− F0(k − 0)
(F0(k)− F0(k − 0)) = α.

Remark 1: Note that if F−1
0 is well-defined at 1− α, then F0(k) = 1− α and γ = 0: ϕ∗

α

is a pure test involving no randomization. If not, F0(k− 0) ≤ 1−α < F0(k), and 0 < γ ≤ 1.

In case γ < 1, ϕ∗
α is a randomized test (in case γ = 1, again, no randomization is involved,

but the critical region is of the form {x : f1(x) ≥ kf0(x)}).

(ii) For any ϕ satisfying E0[ϕ] ≤ α, consider the integral (with respect to µ = P0 + P1)∫
X
(ϕ∗

α(x)− ϕ(x))(f1(x)− kf0(x))dµ(x). (5.2)

The integrand in (5.2) is nonnegative for all x: indeed,

– either f1(x) − kf0(x) < 0; then ϕ∗
α(x) − ϕ(x) = −ϕ(x) ≤ 0, and the integrand is

nonnegative;

– or f1(x) − kf0(x) > 0; then ϕ∗
α(x) − ϕ(x) = 1 − ϕ(x) ≥ 0, and the integrand again is

nonnegative;

– or f1(x)− kf0(x) = 0, and the integrand is zero, hence in particular nonnegative.

It follows that the integral itself is nonnegative. Developing that integral yields

0 ≤ E1[ϕ
∗
α]− E1[ϕ]− k(E0[ϕ

∗
α]− E0[ϕ])

= E1[ϕ
∗
α]− E1[ϕ]− k(α− E0[ϕ]), (5.3)

hence (since k ≥ 0 and E0[ϕ] ≤ α)

E1[ϕ
∗
α]− E1[ϕ] ≥ k(α− E0[ϕ]) ≥ 0,

as was to be shown.
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(iii) Assume that ϕ satisfies E0[ϕ] ≤ α and is as powerful as ϕ∗
α. Then, (5.3) yields

0 ≤ E1[ϕ
∗
α]− E1[ϕ]− k(α− E0[ϕ]) = −k(α− E0[ϕ]) ≤ 0, (5.4)

so that the integral (5.2) is zero. As an integral with nonnegative integrand, however, (5.2)

only can take value 0 if that integrand is µ-almost everywhere zero, which establishes the

result (that is, ϕ∗
α and ϕ coincide µ-almost everywhere, except possibly in the possible ran-

domization part where f1(x) = kf0(x)).

(iv) Clearly, the trivial test defined by ϕ0(x) = α for any x has level α. Since ϕ∗
α is most

powerful at level α, we must then have E1[ϕ
∗
α] ≥ E1[ϕ0] = α. Now, assume that E1[ϕ

∗
α] = α.

Then,

µ({x : f1(x) ̸= kf0(x)})

= µ({x : f1(x) ̸= kf0(x), ϕ
∗
α(x) = ϕ0(x)}) + µ({x : f1(x) ̸= kf0(x), ϕ

∗
α(x) ̸= ϕ0(x)})

=: T1 + T2 = 0

(T1 is zero because ϕ0(x) = α(∈ (0, 1)) cannot be equal to ϕ∗
α(x) when f1(x) ̸= kf0(x),

whereas T2 is zero from Part (iii) of the lemma). Thus, f1(x) = kf0(x) µ-almost every-

where. Since
∫
X f0(x)dµ(x) =

∫
X f1(x)dµ(x) = 1, we then have that f1(x) = f0(x) µ-almost

everywhere, which implies that P0 = P1, a contradiction. This completes the proof of the

lemma.

Remark 2: It follows from the proof of the Neyman-Pearson Lemma that

(a) any test of the form

ϕ(x) =

{
1 if f1(x) > kf0(x)

0 if f1(x) < kf0(x)
(5.5)

for some k ≥ 0 (no specification in case f1(x) = kf0(x)) is most powerful, at level E0[ϕ],

for {P0} against {P1};
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(b) for any test of the form (5.5), there exists a test of the form

ϕ′(x) =


1 if f1(x) > kf0(x)

γ if f1(x) = kf0(x)

0 if f1(x) < kf0(x),

with γ ∈ [0, 1], such that E0[ϕ
′] = E0[ϕ] and E1[ϕ

′] = E1[ϕ];

(c) unless P0 = P1, any test of the form (5.5) with E0[ϕ] < 1 is such that E1[ϕ] > E0[ϕ].

The intuitive interpretation of the optimality property of test of the Neyman type

is essentially the following: with P0-probability one, f1(X) > kf0(X) is equivalent to

f1(X)/f0(X) > k, where f1(x)/f0(x), the likelihood ratio, can be interpreted as an “ex-

change rate” between size and power, between type I risk (the P0-probability of rejecting)

and power (the P1-probability of rejecting). The optimal test ϕ∗
α in part (ii) of the Lemma

thus consists in spending “a total amount α” of type I risk on those points x where the

“exchange rate” is most favorable.

5.2.2 The power diagram

If two tests ϕ′ and ϕ′′ are such that E0[ϕ
′] = E0[ϕ

′′] and E1[ϕ
′] = E1[ϕ

′′], they are perfectly

equivalent from a decision-theoretic point of view: same size, same power. Therefore, we may

identify all tests ϕ having (for a given testing problem, of the form H0 = {P0}, H1 = {P1})
the same size E0[ϕ] and the same power E1[ϕ] with the point (E0[ϕ], E1[ϕ]) in the unit square.

The set

M := {(E0[ϕ],E1[ϕ]) : ϕ is a test}

is called the power diagram (for P0 and P1). It has the following typical form.
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The lefthand panel corresponds to the particular case where P0 and P1 are absolutely

continuous with respect to each other, whereas the righthand panel is the general case. As

for the quantities α0 and β1,

– β1 := P1[f0(X) = 0] is the maximal power of a test with size zero (achieved by

ϕ(x) = I[f0(x) = 0]), whereas

– (1 − α0) := P0[f1(X) > 0] is the minimal size of a test with power one (achieved by

ϕ(x) = I[f1(x) > 0]).

Less importantly, α0 = P0[f1(X) = 0] is then the maximal size of a test with power zero

(achieved by ϕ(x) = I[f1(x) = 0]) and (1−β1) = P1[f0(X) > 0] is then the minimal power of

a test with size one (achieved by ϕ(x) = I[f0(x) > 0]). Whenever P0 and P1 are absolutely

continuous with respect to each other, α0 = β1 = 0.

The following proposition provides some elementary properties of power diagrams.

Proposition. (i) The main diagonal of the unit square, representing the tests of the

form ϕ0 = α µ-almost everywhere (α ∈ [0, 1]), is in M;

(ii) M is symmetric with respect to (1
2
, 1
2
);
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(iii) M is convex;

(iv) the “upper boundary” of M represents the Neyman-Pearson Lemma tests;

(v) M is closed, hence compact.

Except for part (v), all statements in this proposition are quite elementary; proofs are

left to the reader.

5.3 Families with monotone likelihood ratios

Testing a simple null against a simple alternative is of theoretical rather than practical

interest. The simplest problems (for a one-parameter family {Pθ : θ ∈ Θ}, where Θ is an

interval of R—possibly, R itself) that are of practical relevance are of the form

H0 = {Pθ : θ ≤ θ0} vs H1 = {Pθ : θ > θ0},

which is often simply written as H0 : θ ≤ θ0 vs H1 : θ > θ0. Such hypotheses are called

one-sided. They only make sense, of course, for θ0 ∈ int(Θ)—an assumption which is tacitly

made throughout this section. Of course, the opposite problem, with H0 : θ ≥ θ0 and

H1 : θ < θ0, is equally interesting, but essentially equivalent.

A family P = {Pθ : θ ∈ Θ} is said to have monotone likelihood ratio in the (real-valued)

statistic T if (i) it is dominated by some σ-finite measure µ and (ii) there exist versions of

the densities fθ :=
dPθ

dµ
such that, for any θ < θ′, the ratio

fθ′(x)

fθ(x)

is a nondecreasing function of T (x).

Example 1: Binomial Bin(n, p) families, with densities (over R, with respect to the count-

ing measure of the set {0, 1, . . . , n})

fp(x) =

(
n

x

)
px(1− p)n−x
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indexed by θ = p ∈ [0, 1], have monotone likelihood ratio with respect to T (x) = x.

Example 2: Poisson families, with densities (over Rn for a sample of size n, with respect

to the counting measure of Nn)

fλ(x) = e−nλ λ
∑n

i=1 xi∏n
i=1 xi!

x = (x1, . . . , xn)

indexed by λ ∈ R+
0 , have monotone likelihood ratio with respect to T (x) =

∑n
i=1 xi.

Example 3: More generally, one-parameter exponential families, with densities (indexed

by θ ∈ Θ)

fθ(x) = C(θ)h(x) exp(θT (x))

is a monotone likelihood ratio family with respect to the natural statistic T (x).

As we shall see, the conclusions of the Neyman-Pearson Lemma almost directly extend to

one-sided testing problems in families with monotone likelihood ratios—a fact we summarize

in the following theorem (Karlin and Rubin, 1956).

Theorem 1. Let P = {Pθ : θ ∈ Θ} be a family with monotone likelihood ratio with respect

to T (x). Fix α ∈ (0, 1) and θ0 ∈ int(Θ). Then, (i) There exist tα ∈ R and γα ∈ [0, 1] such

that the test

ϕ∗
α(x) =


1 if T (x) > tα

γα if T (x) = tα

0 if T (x) < tα

has size α under Pθ0, that is, satisfies Eθ0 [ϕ
∗
α] = α. (ii) The size/power function θ 7→ Eθ[ϕ

∗
α]

is strictly monotone increasing. (iii) The test ϕ∗
α is uniformly most powerful in the class of

α-level tests for the problem of testing H0 : θ ≤ θ0 against H1 : θ > θ0.

Proof. (i) The proof of this part is very similar to the proof of the first part of the Neyman-

Pearson fundamental lemma. Let t 7→ F T
θ0
(t) := P0[T (X) ≤ t] be the cumulative distribution
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function of T under Pθ0 . Then, with

tα := inf{z : F T
θ0
(t) > 1−α} and γα =


F T
θ0
(tα)− (1− α)

F T
θ0
(tα)− F T

θ0
(tα − 0)

if F T
θ0
(tα) > F T

θ0
(tα − 0)

0 if F T
θ0
(tα) = F T

θ0
(tα − 0),

we have

Eθ0 [ϕ
∗
α] = Pθ0 [T (X) > tα] + γαPθ0 [T (X) = tα] + 0× Pθ0 [T (X) < tα]

= 1− F T
θ0
(tα) +

F T
θ0
(tα)− (1− α)

F T
θ0
(tα)− F T

θ0
(tα − 0)

(F T
θ0
(tα)− F T

θ0
(tα − 0)) = α.

(ii) Fix θ′ < θ′′ in Θ. In view of the monotone likelihood property, we have that T (x) is

larger than, equal to, or smaller than tα if and only if fθ′′(x)/fθ′(x) is larger than, equal to,

or smaller than some k = k(θ′, θ′′, tα). Thus, the test ϕ∗
α rewrites

ϕ∗
α(x) :=


1 if fθ′′(x) > kfθ′(x)

γα if fθ′′(x) = kfθ′(x)

0 if fθ′′(x) < kfθ′(x).

(5.6)

This is the Neyman-Pearson test for H0 : θ = θ′ against H1 : θ = θ′′ at level Eθ′ [ϕ
∗]. From

Part (iv) of the Neyman-Pearson lemma, we thus have that Eθ′′ [ϕ
∗
α] > Eθ′ [ϕ

∗
α].

(iii) It directly follows from (i)–(ii) that ϕ∗
α is an α-level test for the problem of testing

H0 : θ ≤ θ0 against H1 : θ > θ0. Let then ϕ be an arbitrary α-level test for this problem.

Fix θ1 > θ0 arbitrarily. Since ϕ is an α-level test for the problem of testing H0 : θ = θ0

against H1 : θ = θ1 and since ϕ∗
α is the Neyman-Pearson test for this problem at level α (this

is seen by proceeding as in (ii) with θ′ = θ0 and θ′′ = θ1), we must have Eθ1 [ϕ
∗
α] ≥ Eθ1 [ϕ].

This establishes the result.

The result shows in particular that the size/power function θ 7→ Eθ[ϕ
∗
α] is strictly mono-
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tone increasing. In exponential families, it can actually be shown that

d

dθ
Eθ[ϕ

∗
α] > 0

at any θ such that 0 < Eθ[ϕ
∗
α] < 1 (a proof is available on request), which will actually play

an important role in the next chapter.

5.4 A generalized Neyman-Pearson Lemma

Consider next the problem of testing the composite null hypothesis H0 = {P1, . . . ,Pm}
against the simple alternative H1 = {Pm+1}. Writing µ := P1 + . . .+ Pm+1, let

fi :=
dPi

dµ
, i = 1, . . . ,m+ 1,

and define the corresponding power diagram as

Mm+1 := {(E1[ϕ], . . . ,Em+1[ϕ]) : ϕ is a test}

(each point y in Mm+1 represents a class of tests which are all equivalent from the point

of view of size and power, therefore essentially the same from a decisional point of view).

The power diagram Mm+1 enjoys all elementary properties of M2: convexity, compactness,

symmetry, etc. Note that the projection of Mm+1 onto the space of its first m components

is nothing else but Mm.

A test of the form

ϕ(x) =


1 if fm+1(x) >

∑m
i=1 kifi(x)

γ(x) if fm+1(x) =
∑m

i=1 kifi(x)

0 if fm+1(x) <
∑m

i=1 kifi(x),

where k1, . . . , km are real numbers (not necessarily positive) is called a generalized Neyman

test. The following result extends (in a somewhat weaker form, though) the fundamental

Neyman-Pearson Lemma to the present context.
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Proposition 1 (The generalized Neyman-Pearson Lemma — 1st version). (i) For all c =

(c1, . . . , cm) ∈ Mm, there exists a test maximizing Em+1[ϕ] under the size constraints

Ei[ϕ] = ci for i = 1, . . . ,m.

(ii) If ϕ∗ satisfies Ei[ϕ] = ci, i = 1, . . . ,m, with c ∈ Mm and is of the generalized Neyman

type, then it maximizes Em+1[ϕ] under the constraints Ei[ϕ] = ci for i = 1, . . . ,m.

(iii) If, moreover, the Neyman test ϕ∗ in (ii) is such that ki ≥ 0 for i = 1, . . . ,m, then it

also maximizes Em+1[ϕ] under the level constraints Ei[ϕ] ≤ ci for i = 1, . . . ,m.

(iv) if c = (c1, . . . , cm) is an interior point of Mm, then there exists a Neyman test such

that Ei[ϕ] = ci for i = 1, . . . ,m (it follows from (ii) that this test automatically maxi-

mizes Em+1[ϕ] under the constraints Ei[ϕ] = ci for i = 1, . . . ,m).

Proof. (i) Denote by D the “vertical” straight line through c. The tests satisfying the

constraints Ei[ϕ] = ci, for i = 1, . . . ,m, are those represented by D ∩ Mm+1. Due to

convexity, D ∩ Mm+1 is a (“vertical”) segment [B−,B+], with B± := (c1, . . . , cm, b
±) and

b+ ≥ b−. Any test represented by B+ (a nonempty class) achieves the desired maximization,

and the maximal value is b+.

(ii) Let ϕ satisfy Ei[ϕ] = ci. The integrand in∫
X
(ϕ∗(x)− ϕ(x))

(
fm+1(x)−

m∑
i=1

kifi(x)
)
dµ(x) (5.7)

is nonnegative; hence the integral also is. Thus,∫
X
(ϕ∗(x)− ϕ(x))fm+1(x) dµ(x) ≥

m∑
i=1

ki

∫
(ϕ∗(x)− ϕ(x))fi(x) dµ(x)

=
m∑
i=1

ki(ci − Ei[ϕ]) = 0,

which reads Em+1[ϕ
∗] ≥ Em+1[ϕ] (note, however, that this does not tell us anything about

the existence of such a ϕ∗, nor about the values of ki, i = 1, . . . ,m; on this point, we refer
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to Part (iv) of the proposition).

(iii) Let ϕ satisfy Ei[ϕ] ≤ ci, i = 1, . . . ,m. Since ki ≥ 0, i = 1, . . . ,m, nonnegativity

of (5.7) now yields∫
X
(ϕ∗(x)− ϕ(x))fm+1(x) dµ(x) ≥

m∑
i=1

ki

∫
(ϕ∗(x)− ϕ(x))fi(x) dµ(x)

=
m∑
i=1

ki(ci − Ei[ϕ]) ≥ 0,

which provides again Em+1[ϕ
∗] ≥ Em+1[ϕ] (that conclusion is invalid as soon as one at least

of the ki’s is negative).

(iv) Convexity of Mm+1 and the Separating Hyperplane Theorem imply the existence

of a hyperplane H such that B+ (defined in Part (i) of the result) belongs to H and Mm+1

lies entirely on one side of H. The point c belongs to the interior of Mm, so that B− ̸=
B+. It clearly follows that B− ∈ Mm+1 lies “below” B+, so that Mm+1 also entirely lies

“below” H. The equation of H is (the general equation of a hyperplane through a point B+

with coordinates (c1, . . . , cm, b
+))

m∑
i=1

k̃iyi + k̃m+1ym+1 =
m∑
i=1

k̃ici + k̃m+1b
+, y ∈ Rm+1,

where the coefficients k̃i are defined up to a multiplicative constant. We have k̃m+1 ̸= 0.

Indeed, k̃m+1 = 0 would imply that the vertical line through [B−,B+] belongs to H, which

is not compatible with Mm+1 being “below” H unless B− = B+; this, however, is ruled out

by the assumption that c is an interior point of Mm. Since k̃m+1 ̸= 0, we may, without any

loss of generality, assume k̃m+1 = 1. Putting ki = −k̃i, we then have that

ym+1 −
m∑
i=1

kiyi = b+ −
m∑
i=1

kici if and only if y “on” H

ym+1 −
m∑
i=1

kiyi < b+ −
m∑
i=1

kici if and only if y “below” H.
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Since Mm+1 is entirely below H, any test ϕ provides

Em+1[ϕ]−
m∑
i=1

kiEi[ϕ] ≤ Em+1[ϕ
+]−

m∑
i=1

kiEm+1[ϕ
+],

where ϕ+ is a test represented by B+. This rewrites∫
X
ϕ(x)

(
fm+1(x)−

m∑
i=1

kifi(x)
)
dµ(x) ≤

∫
X
ϕ+(x)

(
fm+1(x)−

m∑
i=1

kifi(x)
)
dµ(x),

where the ki’s, as the coefficients of the separating hyperplane H, are fixed. Hence, ϕ+ is a

maximizer, over all possible tests, of the integral∫
X
ϕ(x)

(
fm+1(x)−

m∑
i=1

kifi(x)
)
dµ(x).

That maximum, for ϕ ranging over the set of all possible tests, is clearly∫
X

(
fm+1(x)−

m∑
i=1

kifi(x)
)+

dµ,

where (z)+ = max(z, 0) is the positive part of a number z, and this maximum can only be

achieved if ϕ∗ is, µ-almost everywhere, of the form

ϕ∗(x) =


1 if fm+1(x) >

∑m
i=1 kifi(x)

γ(x) if fm+1(x) =
∑m

i=1 kifi(x)

0 if fm+1(x) <
∑m

i=1 kifi(x),

that is, if it is a Neyman test with constants ki, i = 1, . . . ,m.

Two important remarks are in order.

Remark 1: The proof of Proposition 1 can actually be extended easily to cover the fol-

lowing slightly more general version of the result, that will be useful in the next chapter.
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Proposition 2 (The generalized Neyman-Pearson Lemma— 2nd version). Let g1, . . . , gm+1 :

(X ,A) → (R,B) be measurable functions that are µ-integrable, and consider

Mm =

{(∫
X
ϕ(x)g1(x) dµ(x), . . . ,

∫
X
ϕ(x)gm(x) dµ(x)

)
: ϕ a test

}
.

In this framework, calling “a generalized Neyman test” a test of the form

ϕ(x) =


1 if gm+1(x) >

∑m
i=1 kigi(x)

γ(x) if gm+1(x) =
∑m

i=1 kigi(x)

0 if gm+1(x) <
∑m

i=1 kigi(x),

where k1, . . . , km are real numbers, we have the following:

(i) For all c = (c1, . . . , cm) ∈ Mm, there exists a test maximizing
∫
X ϕ(x)gm+1(x) dµ(x)

under the size constraints
∫
X ϕ(x)gi(x) dµ(x) = ci for i = 1, . . . ,m.

(ii) If ϕ∗ satisfies
∫
X ϕ(x)gi(x) dµ(x) = ci, i = 1, . . . ,m, with c ∈ Mm and is of the gen-

eralized Neyman type, then it maximizes
∫
X ϕ(x)gm+1(x) dµ(x) under the constraints∫

X ϕ(x)gi(x) dµ(x) = ci for i = 1, . . . ,m.

(iii) If, moreover, the Neyman test ϕ∗ in (ii) is such that ki ≥ 0 for i = 1, . . . ,m, then

it also maximizes
∫
X ϕ(x)gm+1(x) dµ(x) under the constraints

∫
X ϕ(x)gi(x) dµ(x) ≤ ci

for i = 1, . . . ,m.

(iv) if c = (c1, . . . , cm) is an interior point of Mm, then there exists a Neyman test such

that
∫
X ϕ(x)gi(x) dµ(x) = ci for i = 1, . . . ,m (it follows from (ii) that this test automat-

ically maximizes
∫
X ϕ(x)gm+1(x) dµ(x) under the constraints

∫
X ϕ(x)gi(x) dµ(x) = ci

for i = 1, . . . ,m).

Of course, the first version of the generalized Neyman-Pearson lemma is recovered when gi

is taken as a density function fi for any i = 1, . . . ,m.

Remark 2: In the “favorable” cases described by Proposition 1(iii), the optimal test is of

16



the form

ϕ(x) = 1 if fm+1(x) > k

( m∑
i=1

ki
k
fi(x)

)
,

where k :=
∑m

i=1 ki is the sum of the nonnegative coefficients ki’s. Since ki/k ≥ 0 for i =

1, . . . ,m and
∑m

i=1(ki/k) = 1, this test is a Neyman test (in the sense of the fundamental

lemma) for a mixture density of the form

f0 :=
m∑
i=1

ki
k
fi

against {fm+1}. This remark is exploited in the next section.

5.5 Least favorable distributions

5.5.1 Mixtures

The generalized Neyman-Pearson Lemma tells us that, in the “favorable cases”, most pow-

erful tests of a composite null hypothesis H0 = {f1, . . . , fm} against H1 = {fm+1}, under a
level condition Efi [ϕ] ≤ α for i = 1, . . . ,m, exist and are of the form

ϕ∗(x) =


1 if fm+1(x) >

∑m
i=1 kifi(x)

γ if fm+1(x) =
∑m

i=1 kifi(x)

0 if fm+1(x) <
∑m

i=1 kifi(x),

with ki ≥ 0 for i = 1, . . . ,m and γ determined by Efi [ϕ] ≤ α for i = 1, . . . ,m. By “favorable

cases”, we mean that such a test exists. Letting k :=
∑n

i=1 ki, this test rewrites as

ϕ∗(x) =


1 if fm+1(x) > k

(∑m
i=1

ki
k
fi(x)

)
γ if fm+1(x) = k

(∑m
i=1

ki
k
fi(x)

)
0 if fm+1(x) < k

(∑m
i=1

ki
k
fi(x)

)
,

which is the Neyman-Pearson test for the simple hypothesis {
∑m

i=1
ki
k
fi} against the simple

alternative {fm+1} under α-level constraint. This density
∑m

i=1
ki
k
fi (one easily checks that
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it is a density) is a mixture of f1, . . . , fm, with mixing probabilities k1
k
, . . . , km

k
. When testing

for a composite null hypothesis H0, this suggests looking at mixtures of the densities in H0.

5.5.2 Least Favorable Mixtures

Consider the problem of testing H0 = {fθθθ : θθθ ∈ Θ} against H1 = {g}, where fθθθ and g are

densities, with respect to some σ-finite measure µ, over (X ,A), and Θ ⊆ Rk is equipped

with the Borel σ-field Bk ∩Θ. Let λ denote a probability measure over (Θ,Bk ∩Θ). Then,

hλ : x 7→ hλ(x) :=
∫
Θ
fθθθ(x)dλ(x) is still a probability density with respect to µ over (X ,A)—

a mixture of the densities fθθθ, θθθ ∈ Θ.

For any λ, denote by Hλ := {hλ} the simple hypothesis under which the observation has

density hλ. Consider the Neyman-Pearson α-level test ϕλ of Hλ against H1, and write πλ :=

Eg[ϕλ] for its power under H1. We adopt the following definition.

Definition 1. The mixing measure λLF, or the corresponding mixture density hλLF
, are called

least favorable if πλLF
≤ πλ for any probability measure λ over Θ.

We then have the following result.

Proposition 3. Let λ0 be such that Eθθθ[ϕλ0 ] ≤ α for all θθθ ∈ Θ. Then, (i) the test ϕλ0 is

most powerful, at level α, for H0 against H1; (ii) the density hλ0 is least favorable.

Proof. (i) By assumption, ϕλ0 is an α-level for H0 against H1. Let then ϕ be an arbitrary

α-level test for the same problem, that is, Eθθθ[ϕ] ≤ α for all θθθ ∈ Θ. Then, Fubini’s Theorem

yields that

Ehλ0
[ϕ] =

∫
X
ϕ(x)hλ0(x)dµ(x) =

∫
X
ϕ(x)

(∫
Θ

fθθθ(x)dλ0(θθθ)

)
dµ(x) (5.8)

=

∫
X

∫
Θ

ϕ(x)fθθθ(x)dλ0(θθθ)dµ(x) =

∫
Θ

(∫
X
ϕ(x)fθθθ(x)dµ(x)

)
dλ0(θθθ) =

∫
Θ

Eθθθ[ϕ]dλ0(θθθ) ≤ α,

so that ϕ is an α-level test for Hλ0 = {hλ0} against H1 = {g}. Since ϕλ0 is the most powerful

test at level α for the latter problem, we must then have Eg[ϕλ0 ] ≥ Eg[ϕ].
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(ii) Fix an arbitrary mixture distribution λ. Proceeding as in (5.8), we have

Ehλ
[ϕλ0 ] =

∫
X
ϕλ0(x)hλ(x)dµ(x) =

∫
X
ϕλ0(x)

(∫
Θ

fθθθ(x)dλ(θθθ)

)
dµ(x)

=

∫
X

∫
Θ

ϕλ0(x)fθθθ(x)dλ(θθθ)dµ(x) =

∫
Θ

(∫
X
ϕλ0(x)fθθθ(x)dµ(x)

)
dλ(θθθ) =

∫
Θ

Eθθθ[ϕλ0 ]dλ(θθθ) ≤ α.

Thus, ϕλ0 satisfies the level constraint under Hλ and, therefore, is at most as powerful as ϕλ:

Eg[ϕλ0 ] ≤ Eg[ϕλ]. This shows that πλ0 ≤ πλ for any λ, so that hλ0 is least favorable.

5.5.3 Application 1: one-sided tests in one-parameter exponential families

In the one-parameter family of exponential densities

fθ(x) = C(θ) exp(θT (x))

(densities are with respect to some dominating measure µ, and θ ∈ Θ, where Θ is an interval

of R), consider the one-sided testing problem H0 : θ ≤ θ0 versus the alternative H1 : θ > θ0.

Uniformly most powerful tests at level α have been obtained for that problem in Section 5.3.

As we now show, they also follow from a least-favorable approach.

Proposition 4. The test

ϕ∗(x) =


1 if T (x) > tα

γα if T (x) = tα

0 if T (x) < tα,

where γα and tα are determined by the size condition Eθ0 [ϕ
∗] = α, is uniformly most powerful,

at level α, for H0 : θ ≤ θ0 against H1 : θ > θ0.

Proof. Fix θ1 > θ0 arbitrarily and consider the problem of testing H0 : θ ≤ θ0 against H1 :

θ = θ1. We show that, for this problem, fθ0 (the degenerate mixture associated with

λ({θ0}) = 1) is least favorable. The Neyman-Pearson test for {fθ0} against {fθ1} has the
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form

ϕ(x) =


1 if C(θ1) exp(θ1T (x)) > kαC(θ0) exp(θ0T (x))

γα if C(θ1) exp(θ1T (x)) = kαC(θ0) exp(θ0T (x))

0 if C(θ1) exp(θ1T (x)) < kαC(θ0) exp(θ0T (x)),

with kα and γα determined by Eθ0 [ϕ] = α. Equivalently,

ϕ(x) =


1 if exp((θ1 − θ0)T (x)) > kαC(θ0)/C(θ1)

γα if exp((θ1 − θ0)T (x)) = kαC(θ0)/C(θ1)

0 if exp((θ1 − θ0)T (x)) < kαC(θ0)/C(θ1),

or again

ϕ(x) =


1 if T (x) > tα := (θ1 − θ0)

−1 log(kαC(θ0)/C(θ1))

γα if T (x) = tα := (θ1 − θ0)
−1 log(kαC(θ0)/C(θ1))

0 if T (x) < tα := (θ1 − θ0)
−1 log(kαC(θ0)/C(θ1)),

where tα and γα are determined by Eθ0 [ϕ] = α. Hence, ϕ coincides with the test ϕ∗
α from

Theorem 1(i) (irrespective of θ1).

Now, for any θ′ < θ0, note that ϕ∗
α is also the Neyman-Pearson Lemma test for {Pθ′}

against {Pθ0} at level Eθ′ [ϕ
∗
α], so that the Neyman-Pearson lemma implies that Eθ′ [ϕ

∗
α] <

Eθ0 [ϕ
∗
α] = α. It follows from Proposition 3(ii) that the degenerate mixture at {θ0} is indeed

least favorable and from Proposition 3(i) that ϕ∗
α is uniformly most powerful, at level α,

for H0 : θ ≤ θ0 against H1 : θ = θ1. Since θ1(> θ0) was fixed arbitrarily, we conclude that the

same test is also uniformly most powerful, at level α, for H0 : θ ≤ θ0 against H1 : θ > θ0.

A particular case of an exponential family with one parameter is the Bernoulli family.

Let X1, . . . , Xn be i.i.d. Bin(1, p) random variables, with p ∈ (0, 1), and consider the problem

of testing

H0 : p ≤ p0 against H1 : p > p0.

The Bernoulli family is an exponential family with natural parameter θ = log( p
1−p

) and

privileged statistic
∑n

i=1 Xi. Note that

log
( p

1− p

)
≤ log

( p0
1− p0

)
if and only if p ≤ p0,
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so that the testing problem considered is of the form

H0 : θ ≤ θ0 against H1 : θ > θ0.

The test

ϕ∗
α(x) =


1 if

∑n
i=1 xi > tα

γα if
∑n

i=1 xi = tα

0 if
∑n

i=1 xi < tα,

with tα and γα fixed by the condition Ep0 [ϕ
∗
α] = α, is then uniformly most powerful at level α.

5.5.4 Application 2: the sign test

Let X = (X1, . . . , Xn) collect n independently and identically distributed observations of X,

with density f ∈ F , where F is the family of all probability densities with respect to the

Lebesgue measure over (R,B). Consider, for given p0 ∈ (0, 1), the testing problem{
H0 : x(p0) ≥ x0

H1 : x(p0) < x0,

where x0 is some given real number, and x(p0) is the quantile of order p0 of X. Writing p :=

P[X ≤ x0] =
∫ x0

−∞ f(x)dµ(x), the same testing problem takes the form{
H0 : p ≤ p0

H1 : p > p0.

Denote as M = M(X) := #{i = 1, . . . , n : Xi ≤ x0} the number of observations that are

not larger than x0: clearly, M ∼ Bin(n, p). The test

ϕsign(x) :=


1 if M(x) > mα

γα if M(x) = mα

0 if M(x) < mα,

(5.9)
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where mα and γα are determined by Ep0 [ϕsign] = α, is called a sign test (here, we write Ep0

for the expectation of an M -measurable variable under M ∼ Bin(n, p0)).

Proposition 5. The sign test (5.9) is uniformly most powerful for H0 against H1 at level α.

Proof. Any f ∈ F can be characterized as a triple (p, f+, f−), where p :=
∫ x0

−∞ f(x)dµ(x) ∈
(0, 1), f+(x) := f(x)I[x > x0]/(1− p) is the conditional density of X ∼ f , conditional on

X ≥ x0, and f−(x) := f(x)I[x ≤ x0]/p is the conditional density of X ∼ f , conditional on

X < x0. The null hypothesis and the alternative then take the forms

H0 = {(p, f−, f+) : p ≤ p0, f− ∈ F−, f+ ∈ F+}

and

H1 = {(p, f−, f+) : p > p0, f− ∈ F−, f+ ∈ F+},

respectively, where F− (resp., F+) is the set of all possible conditional densities f+ (resp.,

f−). The joint density under (p, f+, f−) of X = (X1, . . . , Xn) at x = (x1, . . . , xn) ∈ Rn is

pm(1− p)n−mf−(xi1) . . . f
−(xim)f

+(xj1) . . . f
+(xjn−m),

where m = M(x) = #{i = 1, . . . , n : xi ≤ x0} and i1, . . . , im, j1, . . . , jn−m are such that

xi1 , . . . , xim ≤ x0 < xj1 , . . . , xjn−m .

Now, fix a distribution (p1, f
−
1 , f

+
1 ) in H1 (hence, p1 > p0): intuitively, the “closest”

distribution in H0 could well be (p0, f
−
1 , f

+
1 ). Let us show that indeed (p0, f

−
1 , f

+
1 ) is the

least favorable mixture (against the fixed alternative {(p1, f−
1 , f

+
1 )}). To this end, we first

construct the Neyman-Pearson test for {(p0, f−
1 , f

+
1 )} against {(p1, f−

1 , f
+
1 )}. Recalling that

m = M(x), this test is

ϕ∗(x) =


1 if

(
p1
p0

)m(1−p1
1−p0

)n−m
> kα

γα if
(
p1
p0

)m(1−p1
1−p0

)n−m
= kα

0 if
(
p1
p0

)m(1−p1
1−p0

)n−m
< kα,
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where kα and γα are determined by E(p0,f
−
1 ,f+

1 )[ϕ
∗] = α (note that this expectation does not

depend on f−
1 nor on f+

1 since the distribution of M under (p0, f
−
1 , f

+
1 ) is the Bin(n, p0)

distribution). Clearly, since p1 > p0, this test takes the simpler form

ϕ∗(x) =


1 if M(x) > mα

γα if M(x) = mα

0 if M(x) < mα,

where mα and γα still are determined by E(p0,f
−
1 ,f+

1 )[ϕ
∗] = α. This test ϕ∗ thus coincides with

the previously described sign test ϕsign. Now, in order to use the least favorable argument,

it only remains to show that E(p,f−,f+)[ϕ
∗] ≤ α for any p ≤ p0, f

− ∈ F− and f+ ∈ F+. But

this follows from the fact that E(p,f−,f+)[ϕ
∗] does not depend on (f−, f+) and is increasing

in p—one way to show this is to note that ϕ∗ is actually the uniformly most powerful test

for {p ≤ p0} against {p > p0} in the (exponential) Bernoulli model under which I[X1 ≤
x0], . . . , I[Xn ≤ x0] are independently and identically distributed Bin(1, p) random variables

(see Section 5.5.3).
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