
Lecture Notes for STAT-F404

6 Hypothesis Testing: UMPU Tests

6.1 Unbiasedness and similarity

Let H0 and H1 characterize a testing problem in a parametric family indexed by θθθ ∈ Θ ⊂ Rk.

Recall that a test ϕ is an α-level test if Eθθθ[ϕ] ≤ α for any θθθ ∈ H0. It is not unnatural to

require that a test rejects more often under H1 than under H0, which leads to the concept

of unbiasedness.

Definition 1. A test ϕ for H0 against H1 is unbiased at level α if (i) ϕ is an α-level test

and (ii) Eθθθ[ϕ] ≥ α for any θθθ ∈ H1.

The unbiasedness principle then consists in restricting to tests that are unbiased at level α:

a test ϕ∗ will be said to be uniformly most powerful unbiased (UMPU) at level α if (a) ϕ∗ is

unbiased at level α, and (b) for any ϕ that is unbiased at level α, one has Eθθθ[ϕ
∗] ≥ Eθθθ[ϕ] for

any θθθ ∈ H1.

Now, if the size/power function θθθ 7→ Eθθθ[ϕ] is continuous (as it is for any test in the

framework of exponential families), then a necessary condition for unbiasedness is similarity.

Definition 2. A test ϕ for H0 against H1 is similar at level α (or α-similar) if Eθθθ[ϕ] = α

for any θθθ ∈ H̄, where H̄ := adh(H0) ∩ adh(H1) is the boundary between H0 and H1.

Parallel as above, we say that a test ϕ∗ is uniformly most powerful in the class of α-similar

tests if (a) ϕ∗ is similar at level α, and (b) for any ϕ that is α-similar, one has Eθθθ[ϕ
∗] ≥ Eθθθ[ϕ]

for any θθθ ∈ H1. As an exercise, the reader can prove that the following statement holds as

soon as θθθ 7→ Eθθθ[ϕ] is continuous: if ϕ∗ is uniformly most powerful in the class of α-similar

tests and if ϕ∗ is an α-level test, then ϕ∗ is UMPU at level α.
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6.2 Two-sided testing problems in exponential families

Let (X ,A,P = {Pθ : θ ∈ Θ ⊂ R}) be an exponential model indexed by a scalar parameter θ

(here, Θ is an interval of R, or R itself). Recall that, after appropriately choosing the σ-finite

dominating measure µ at hand, this implies that the corresponding densities take the form

fθ(x) = C(θ) exp(θT (x)),

and that, when X ∼ Pθ, the distribution of T admits the density

fT
θ (t) = C(θ) exp(θt)

with respect to the induced dominating measure µT . In this framework, consider the two-

sided problem

H0 : θ = θ0 vs H1 : θ ̸= θ0,

where θ0 is a fixed value in the interior of Θ. Since a UMP test at level α cannot exist for

this problem (why?), we are after a UMPU test at level α.

Theorem 1. In the exponential model above, fix α ∈ (0, 1) and θ0 ∈ int(Θ). Then, (i) there

exist γ1,α, γ2,α ∈ [0, 1] and t1,α, t2,α ∈ R with t1,α ≤ t2,α such that the test defined by

ϕ∗
α(x) =


1 if T (x) /∈ [t1,α, t2,α]

γ1,α if T (x) = t1,α

γ2,α if T (x) = t2,α

0 if T (x) ∈ (t1,α, t2,α)

satisfies Eθ0 [ϕ
∗
α] = α and Eθ0 [ϕ

∗
αT ] = αEθ0 [T ]. (ii) The test ϕ∗

α is UMPU at level α for the

problem of testing H0 : θ = θ0 against H1 : θ ̸= θ0.
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We now give an interpretation for the constraint Eθ0 [ϕ
∗
αT ] = αEθ0 [T ]. Note that we have

d

dθ
Eθ[ϕ] =

∫
X
ϕ(x)

d

dθ

(
C(θ) exp(θT (x))

)
dµ(x)

=
C ′(θ)

C(θ)
Eθ[ϕ] + Eθ[ϕT ], (6.1)

which, for ϕ ≡ 1, yields Eθ[T ] = −C ′(θ)/C(θ). Using this in (6.1) provides

d

dθ
Eθ[ϕ] = Eθ[ϕT ]− Eθ[ϕ]Eθ[T ] (= Covθ[ϕ, T ]).

The constraint Eθ0 [ϕ
∗
αT ] = αEθ0 [T ] in the theorem above may then be interpreted as

d

dθ
Eθ[ϕ

∗
α]|θ=θ0 = 0.

In the exponential family considered (where the size/power function of any test is smooth),

the constraints Eθ0 [ϕ
∗
α] = α and Eθ0 [ϕ

∗
αT ] = αEθ0 [T ] thus clearly are necessary conditions

for the test ϕ∗
α to be unbiased at level α. This will play a role in the proof of the theorem.

Proof. (i) Consider the induced model (T ,B,PT = {PT
θ : θ ∈ Θ}), which, as recalled above,

is dominated by the induced measure µT , leading to the corresponding densities fT
θ (t) =

C(θ) exp(θt). In this induced model, fix θ1 > θ0 arbitrarily, and consider the problem of

testing H0 : θ = θ0 against H1 : θ = θ1 in the class of tests φ = φ(T ) satisfying∫
T
φ(t)fT

θ0
(t) dµT (x) = Eθ0 [φ]

= α (6.2)

and ∫
T
φ(t)tfT

θ0
(t) dµT (x) = Eθ0 [φT ]

= αEθ0 [T ]. (6.3)
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For this problem, consider

M = {(Eθ0 [φ],Eθ0 [φT ]) : φ a test}.

For any u in a neighborhood [α − ε, α + ε] of α, the UMP test, φ+
u say, for H0 : θ ≤ θ0

against H1 : θ > θ0 at level u provides (Eθ0 [φ
+
u ],Eθ0 [φ

+
u T ]) = (u, c+u ), with c+u > uEθ0 [T ]

(since d
dθ
Eθ[φ

+
u ]|θ=θ0 = Eθ0 [φ

+
u T ] − uEθ0 [T ] > 0; see the remark at the end of Section 5.3).

Similarly, for any u ∈ [α − ε, α + ε], the UMP test, ϕ−
u say, for H0 : θ ≥ θ0 against H1 :

θ < θ0 at level u provides (Eθ0 [φ
−
u ],Eθ0 [φ

−
u T ]) = (u, c−u ), with c−u < uEθ0 [T ]. Jointly with

the convexity of M, this implies that (α, αEθ0 [T ]) is an interior point of M. Part (iv)

of the second version of the generalized Neyman-Pearson lemma thus implies that there

exist k1, k2 ∈ R and a measurable function γ(·) such that the test φ defined by

φ(t) =


1 if fT

θ1
(t) > k1f

T
θ0
(t) + k2tf

T
θ0
(t)

γ(t) if fT
θ1
(t) = k1f

T
θ0
(t) + k2tf

T
θ0
(t)

0 if fT
θ1
(t) < k1f

T
θ0
(t) + k2tf

T
θ0
(t)

satisfies (6.2)–(6.3). Using the explicit expression of fT
θ1
, this test rewrites

φ(t) =


1 if exp((θ1 − θ0)t) > ℓ1 + ℓ2t

γ(t) if exp((θ1 − θ0)t) = ℓ1 + ℓ2t

0 if exp((θ1 − θ0)t) < ℓ1 + ℓ2t,

where we let ℓi := kiC(θ0)/C(θ1), i = 1, 2. Since we cannot have φ(t) = 1 for any t (this

would provide Eθ0 [φ] = 1 ̸= α, which would contradict (6.2)), nor either of

φ(t) =


1 if t > t0

γ if t = t0

0 if t < t0

or φ(t) =


1 if t < t0

γ if t = t0

0 if t > t0

(this would provide d
dθ
Eθ[φ]|θ=θ0 = Eθ0 [φT ]− αEθ0 [T ] > 0 or < 0, respectively, which would
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contradict (6.3)), we must then have

φ(t) =


1 if t /∈ [t1, t2]

γ1 if t = t1

γ2 if t = t2

0 if t ∈ (t1, t2),

for some t1, t2 such that t1 ≤ t2. It follows that the test ϕ defined by

ϕ(x) = φ(T (x)) =


1 if T (x) /∈ [t1, t2]

γ1 if T (x) = t1

γ2 if T (x) = t2

0 if T (x) ∈ (t1, t2)

satisfies Eθ0 [ϕ] = α and Eθ0 [ϕT ] = αEθ0 [T ], which establishes the result.

(ii) Let ϕ∗
α be the test described in Part (i) of the theorem. Fix θ1 ̸= θ0 arbitrarily. Then,

it is possible (why?1) to find ℓ1, ℓ2 ∈ R such that

ϕ∗
α(x) =


1 if exp((θ1 − θ0)T (x)) > ℓ1 + ℓ2T (x)

γ1 if T (x) = t1

γ2 if T (x) = t2

0 if exp((θ1 − θ0)T (x)) < ℓ1 + ℓ2T (x).

Thus,

ϕ∗
α(x) =


1 if fθ1(T (x)) > k1fθ0(T (x)) + k2T (x)fθ0(T (x))

γ1 if T (x) = t1

γ2 if T (x) = t2

0 if fθ1(T (x)) < k1fθ0(T (x)) + k2T (x)fθ0(T (x))

for some k1, k2 ∈ R. Part (ii) of the second version of the generalized Neyman-Pearson lemma

thus entails that ϕ∗
α is most powerful for the problem of testingH0 : θ = θ0 againstH1 : θ = θ1

1When answering this question, do not forget the case t1,α = t2,α
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in the class of tests satisfying Eθ0 [ϕ] = α and Eθ0 [ϕT ] = αEθ0 [T ]. Since ϕ∗
α does not depend

on θ1, it follows that ϕ
∗
α is uniformly most powerful for the problem of testing H0 : θ = θ0

against H1 : θ ̸= θ0 in the class of tests satisfying Eθ0 [ϕ] = α and Eθ0 [ϕT ] = αEθ0 [T ].

Recalling that any unbiased test at level α must satisfy these constraints, ϕ∗
α is then UMPU

at level α for the problem of testing H0 : θ = θ0 against H1 : θ ̸= θ0 (unbiasedness of ϕ∗
α at

level α follows by comparing its power function to that of the trivial test defined by ϕ(x) = α

for any x).

If the distribution of T under Pθ0 is symmetric (automatically about Eθ0 [T ]), then it is

always possible to find γα ∈ [0, 1] and hα ∈ R+ such that the test ϕ∗
α defined by

ϕ∗
α(x) =


1 if T (x) /∈ [Eθ0 [T ]− hα,Eθ0 [T ] + hα]

γα if T (x) ∈ {Eθ0 [T ]− hα,Eθ0 [T ] + hα}

0 if T (x) ∈ (Eθ0 [T ]− hα,Eθ0 [T ] + hα)

(6.4)

satisfies Eθ0 [ϕ
∗
α] = α (this can be checked by rewriting this test as

ϕ∗
α(x) =


1 if |T (x)− Eθ0 [T ]| > hα

γα if |T (x)− Eθ0 [T ]| = hα

0 if |T (x)− Eθ0 [T ]| < hα

and by proceeding as in the proof of Theorem 1(i) from the previous chapter). For this test,

note that we have

Eθ0 [ϕ
∗
αT ] = Eθ0 [ϕ

∗
α(T − Eθ0 [T ])] + Eθ0 [ϕ

∗
α]Eθ0 [T ]

= 0 + αEθ0 [T ]

= αEθ0 [T ],

so that the second constraint is then automatically satisfied, which implies that this test is

UMPU at level α. A typical example is obtained when testing H0 : µ = µ0 against H1 :

µ ̸= µ0 at level α on the basis of X = (X1, . . . , Xn), where the Xi’s are i.i.d. Gaussian with
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unknown mean µ and fixed variance σ2
0. If the distribution of T under Pθ0 is not symmetric,

then both constraints need to be imposed (which, in practice, sometimes can only be achieved

numerically); an example is obtained when testing H0 : σ2 = σ2
0 against H1 : σ2 ̸= σ2

0 at

level α on the basis of X = (X1, . . . , Xn), where the Xi’s are i.i.d. Gaussian with fixed

mean µ0 and unknown variance σ2.

6.3 Problems in exponential families with nuisance parameters

Let (X ,A,P = {Pτ,λλλ}) be an exponential model with densities (with respect to a σ-finite

dominating measure µ) of the form

fτ,λλλ(x) = C(τ,λλλ) exp(τT (x) + λλλ′S(x)),

with τ ∈ R and λλλ ∈ Rs. In this framework, consider the one-sided problem

H0 =
{
Pτ,λλλ : τ ≤ τ0

}
vs H1 =

{
Pτ,λλλ : τ > τ0

}
(6.5)

at level α, where τ0 is a fixed value and λλλ remains unspecified, hence plays the role of a

nuisance parameter. Using the notation from Section 6.1, we have

H̄ =
{
Pτ,λλλ : τ = τ0

}
,

which is an exponential subfamily indexed by λλλ and with natural statistic S. For the corre-

sponding submodel, S is thus sufficient and complete.

Theorem 2. Fix α ∈ (0, 1). Then, we have the following in the framework above: (i) there

exists a test of the form

ϕ∗
α(x) =


1 if T (x) > t(S(x))

γ(S(x)) if T (x) = t(S(x))

0 if T (x) < t(S(x))
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satisfying

E
τ0,/λλλ [ϕ

∗
α|S] = α Pτ0,λλλ-a.s. for any λλλ. (6.6)

(ii) This test is UMPU at level α for the testing problem (6.5).

A test that satisfies (6.6) is said to have Neyman α-structure with respect to S for the

testing problem (6.5). Note that a test has Neyman α-structure with respect to S if and

only if it is α-similar for the same problem (the necessary condition is trivial, whereas the

sufficient one follows from sufficiency and completeness of S in the H̄-submodel). A corollary

is that one may restrict to tests having Neyman α-structure with respect to S when looking

for a UMPU test at level α, which makes condition (6.6) natural.

As an exercise, one can apply Theorem 2 to show that, when X1, . . . , Xn are i.i.d. Gaus-

sian with mean µ and variance σ2, then

ϕ∗
α(x) =

{
1 if ns2/σ2

0 > χ2
n−1,1−α

0 if ns2/σ2
0 ≤ χ2

n−1,1−α,

where s2 = 1
n

∑n
i=1(Xi − X̄)2 and χ2

n−1,1−α is the (1 − α)-quantile of the χ2
n−1 distribution,

is UMPU at level α for the problem of testing H0 : σ
2 ≤ σ2

0 against H1 : σ
2 > σ2

0, and that,

in the same model,

ϕ∗
α(x) =

{
1 if

√
n− 1(X̄ − µ0)/s > tn−1,1−α

0 if
√
n− 1(X̄ − µ0)/s ≤ tn−1,1−α,

where tn−1,1−α is the (1 − α)-quantile of the tn−1 distribution, is UMPU at level α for the

problem of testingH0 : µ ≤ µ0 againstH1 : µ > µ0 (the exercise is actually more complicated

for this second testing problem2).

In the same general exponential framework as in the beginning of this section, one may

also consider the two-sided problem

H0 =
{
Pτ,λλλ : τ = τ0

}
vs H1 =

{
Pτ,λλλ : τ ̸= τ0

}
(6.7)

2Do the change of variables Xi ⇝ Xi − µ0, which makes the null hypothesis become H0 : µ ≤ 0, and use
the fact that X̄/s = X̄/( 1n

∑
i X

2
i − X̄2)1/2 is an increasing function of X̄ for fixed

∑
i X

2
i .
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at level α, where τ0 is still a fixed value and λλλ remains unspecified—which yields again H̄ =

{Pτ,λλλ : τ = τ0}. We have the following analog of Theorem 2.

Theorem 3. Fix α ∈ (0, 1). Then, we have the following in the framework above: (i) there

exists a test of the form

ϕ∗
α(x) =


1 if T (x) /∈ [t1(S(x)), t2(S(x))]

γ1(S(x)) if T (x) = t1(S(x))

γ2(S(x)) if T (x) = t2(S(x))

0 if T (x) ∈ (t1(S(x)), t2(S(x)))

satisfying both

E
τ0,/λλλ [ϕ

∗
α|S] = α Pτ0,λλλ-a.s. for any λλλ

and

E
τ0,/λλλ [ϕ

∗
αT |S] = αE

τ0,/λλλ [ϕ
∗
α|S] Pτ0,λλλ-a.s. for any λλλ.

(ii) This test is UMPU at level α for the testing problem (6.7).

Coming back to the Gaussian model considered above, one may then show in particular

that the test defined by

ϕ∗
α(x) =

{
1 if |

√
n− 1(X̄ − µ0)/s| > tn−1,1−(α/2)

0 if |
√
n− 1(X̄ − µ0)/s| ≤ tn−1,1−(α/2)

is UMPU at level α for the problem of testing H0 : µ = µ0 against H1 : µ ̸= µ0.
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