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8 Inference and group invariance/equivariance

8.1 Group invariance

Let (X , A, P) be a statistical model. Denote as X the observation and by P, Q, . . . (or PX,

QX, . . .) the distributions in P. Throughout, we assume identifiability : distinct elements P, Q of

P denote distinct distributions on (X , A). In the parametric case P = {Pθθθ : θθθ ∈ Θ}, identifiability
is equivalent to θθθ 7→ Pθθθ being injective: θθθ1 ̸= θθθ2 implies Pθθθ1 ̸= Pθθθ2 .

Let G,◦ be a group of measurable transformations g : x 7→ g(x) of (X ,A).

Definition 1. The model (X , A, P) (or the family P) is invariant under G,◦ if, for all P ∈ P and

all g ∈ G, there exists Q ∈ P such that Pg(X) = Q.

In view of the identifiability assumption, such Q automatically is unique. It only depends on P

and g: denote it as Q =: ḡ(P ). The characteristic relation Pg(X) = Q then takes the form

Pg(X) = ḡ(PX). (8.1)

For any g ∈ G, this defines a transformation ḡ : P 7→ ḡ(P ) of P. Letting Ḡ := {ḡ : g ∈ G}, it is

easy to see that Ḡ,◦ is a group of transformations acting on P—call it the induced (by G,◦) group.

In the parametric case (P = {Pθθθ : θθθ ∈ Θ}), it is convenient to define the induced group Ḡ,◦ as a

group acting on Θ, which leads to the following definition.

Definition 2. The parametric model (X ,A,P), with P = {Pθθθ : θθθ ∈ Θ}, is invariant under G,◦
if, for all g ∈ G and all θθθ ∈ Θ, there exists a (unique in view of the identifiability assumption)

parameter value ηηη, denoted as ḡ(θθθ), such that

P
g(X)
θθθ = PX

ḡ(θθθ). (8.2)

Here again, letting Ḡ := {ḡ : g ∈ G}, it is easy to see that Ḡ,◦ is a group of transformations acting

on Θ—still called the induced (by G,◦) group.
1With slight modifications by Davy Paindaveine and Thomas Verdebout.
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Example 1: Location families.

Example 2: Location-scale families.

Example 3: Nonparametric white noise.

8.2 Generating groups

For any x ∈ X , let Gx = {g(x) : g ∈ G} denote the orbit of x. Assume that, for any x, Gx ∈ A.

Then, these orbits constitute a measurable partition of X . Denote by AG the sub-sigma-field of A
generated by these orbits, and call it the σ-field of orbits.

Similarly, Ḡ induces a partition of P into orbits of the form ḠP = {ḡ(P) : ḡ ∈ Ḡ}. If this

partition consists of one single orbit (for any P ∈ P, ḠP = P), we say that G,◦ is a generating group

for the model (X , A, P) (or for the family P). In such case, indeed,

for all P1,P2 ∈ P, there exists g ∈ G such that PX
2 = P

g(X)
1 ,

or, equivalently,

for all P1,P2 ∈ P, there exists ḡ ∈ Ḡ such that P2 = ḡP1.

Examples 1–3: The groups of translations, of affine transformations, and of continuous strictly

increasing transformations are generating groups in Examples 1–3, respectively.

8.3 Invariant - Maximal invariant

Definition 3. An A-measurable random variable S(X) is called an invariant (of G,◦) if it is con-

stant along the orbits of G, that is, if

x′ = g(x) for some g ∈ G =⇒ S(x′) = S(x).

If follows that S is an invariant iff it is AG-measurable, that is, iff AS ⊆ AG .

Definition 4. An A-measurable random variable S0(X) is called a maximal invariant (of G,◦) if

x′ = g(x) for some g ∈ G ⇐⇒ S0(x′) = S0(x).
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It follows that S0 is maximal invariant iff AS0 = AG—namely, iff it generates the σ-field of the

orbits; hence, S is invariant if and only if it is S0-measurable.

The following properties of invariants (parametric notation is used for simplicity) are important

in the framework of hypothesis testing.

Proposition 1. The probability distribution PS
θθθ of an invariant S is constant along the orbits

of G,◦: for all θθθ ∈ Θ and all ḡ ∈ Ḡ, PS
θθθ = PS

ḡ(θθθ).

Proof. Let S take values in (S, BS). Then, for all B ∈ BS , ḡ ∈ Ḡ and θθθ ∈ Θ,

PS
ḡ(θθθ)[B] := PX

ḡ(θθθ)[S
−1(B)] = P

g(X)
θθθ [S−1(B)] = P

S(g(X))
θθθ [B].

But, since S is invariant, P
S(g(X))
θθθ = PS

θθθ , which completes the proof.

In particular, we have the following result.

Corollary 1. If G,◦ is a generating group, then invariants are distribution-free.

8.4 Invariant tests

Assume that, in the statistical model (X ,A,P = {P}), one wants to test H0 against H1. If this

model is invariant under a group of transformations G,◦ and if the null submodel (X ,A,H0) also

is, then the testing problem is said to be invariant under G,◦. In this framework, the invariance

principle leads to restricting to invariant tests ϕ, that is, to tests satisfying ϕ(g(x)) = ϕ(x) for

any x ∈ X and any g ∈ G. The results from the previous sections entail that a test ϕ is invariant

if and only if ϕ is measurable with respect to a maximal invariant, T = T(x), of G,◦, i.e., if and
only if ϕ(x) = φ(T(x)) for some measurable function φ. In other words, invariant tests are to be

defined in the induced model (T ,BT ,PT = {PT}). Tests that are UMP in this induced model will

then be said to be UMPI (Uniformly Most Powerful Invariant) in the original model, tests that are

UMP in this induced model will then be said to be UMPUI (Uniformly Most Powerful Unbiased

Invariant) in the original model, etc.

Let us illustrate this with two examples. Consider first the problem of testing

H0 : X ∼ fθ(x) = f0(x1 − θ, . . . , xn − θ) for some unspecified θ ∈ R

against

H1 : X ∼ gθ(x) = g0(x1 − θ, . . . , xn − θ) for some unspecified θ ∈ R
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at level α, where f0 and g0 are two given (different) densities over Rn. The null hypothesis

and alternative hypothesis are thus two different location families, and the location parame-

ter θ is a nuisance parameter. The testing problem is then invariant under the group of trans-

lations (x1, . . . , xn) 7→ (x1 + a, . . . , xn + a) indexed by a ∈ R. The class of invariant tests is thus

the class of tests that are of the form ϕ(x) = φ(T(x)), where T(x) = (x2 − x1, . . . , xn − x1) is the

corresponding maximal invariant. Since the group of translations is a generating group for the null

submodel, the maximal invariant, hence also all invariant tests, are distribution-free under the null

hypothesis. In the induced model, the testing problem consists in testing

H0 : T ∼ fT0 (t) =

∫ ∞

−∞
f0(z, t1 + z, . . . , tn−1 + z) dz

against

H1 : T ∼ gT0 (t) =

∫ ∞

−∞
g0(z, t1 + z, . . . , tn−1 + z) dz

at level α. This is a problem involving a simple null hypothesis against a simple alternative

hypothesis, for which the test defined by

φ∗
α(t) :=


1 if gT0 (t) > kfT0 (t)

γ if gT0 (t) = kfT0 (t)

0 if gT0 (t) < kfT0 (t),

where k and γ are such that EfT
0
[φ∗

α(T)] = α, is (U)MP test at level α. The test

ϕ∗α(x) :=


1 if gT0 (T(x)) > kfT0 (T(x))

γ if gT0 (T(x)) = kfT0 (T(x))

0 if gT0 (T(x)) < kfT0 (T(x))

is therefore UMPI at level α for the original testing problem.

As a second example, consider the problem of testing H0 : σ2 ≤ σ20 against H1 : σ2 > σ20 at

level α when one observes X = (X1, . . . , Xn), where the Xi’s are i.i.d. Gaussian with mean µ and

variance σ2 (the location parameter µ thus plays the role of a nuisance). This testing problem

is invariant under the same group of translations as in the first example, so that the invariance

principle leads to restricting to tests that are measurable with respect to the same maximal invari-

ant T(x) = (x2−x1, . . . , xn−x1). If X ∼ Pµ,σ2 , then T = T(X) is multivariate normal with mean
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vector zero and covariance matrix σ2V, with

V :=


2 1 . . . 1

1 1 1
...

. . .
...

1 . . . 2

 .

Thus, the induced model is associated with the densities

fTσ2(t) =

(
1

2πσ2

)(n−1)/2

exp

(
− 1

2πσ2
t′V−1t

)
, σ2 > 0.

This is an exponential family with natural parameter θ = −1/(2πσ2) and natural statistic t′V−1t.

For the problem of testingH0 : σ
2 ≤ σ20 againstH1 : σ

2 > σ20 at level α in this induced model (which,

letting θ0 = −1/(2πσ20) is equivalent to the problem of testing H0 : θ ≤ θ0 against H1 : θ > θ0),

the test defined by

φ∗
α(t) =


1 if t′V−1t > cα

γα if t′V−1t = cα

0 if t′V−1t < cα,

where cα and γα are such that Eσ2
0
[φ∗

α] = α, is UMP at level α. The resulting test

ϕ∗α(x) = φ∗
α(T(x)) =


1 if (T(x))′V−1T(x) > cα

γα if (T(x))′V−1T(x) = cα

0 if (T(x))′V−1T(x) < cα

is then UMPI at level α in the original model. Algebraic computations actually yield

V−1 :=
1

n


n− 1 −1 . . . −1

−1 n− 1 −1
...

. . .
...

−1 . . . n− 1

 and (T(x))′V−1T(x) = ns2
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(with s2 = 1
n

∑n
i=1(Xi − X̄)2), so that the test

ϕ∗α(x) =

{
1 if ns2/σ20 > χ2

n−1,1−α

0 if ns2/σ20 ≤ χ2
n−1,1−α,

where χ2
n−1,1−α is the (1− α)-quantile of the χ2

n−1 distribution, is UMPI for the original problem.

Note that this test is the one we had shown to be UMPU at level α for the same problem in the

previous chapter.

8.5 Equivariance

Assume that the family P is invariant under G,◦. For simplicity, assume that P is a parametric

family with parameter θθθ, and consider the problem of estimating θθθ. If X ∼ PX
θθθ and T(X) is

a “good” estimator of θθθ, then one may argue that, since g(X) ∼ P
g(X)
θθθ = PX

ḡ(θθθ), the relation of

T(g(X)) to ḡ(θθθ) is the same as that of T(X) to θθθ, so that

T(g(X)) should be a “good” estimator of ḡ(θθθ). (8.3)

This is, however, a “soft argument”, and there is nothing mathematically compelling about (8.3).

Now, another soft argument is: if T(X) qualifies as a “good” estimator of θθθ, that qualification

should resist the transformations of Ḡ: more precisely,

ḡ(T(X)) should be a “good” estimator of ḡ(θθθ). (8.4)

If both points of view (8.3) and (8.4) are to be reconciled, then T should satisfy

T(g(X)) = ḡ(T(X)) for all g ∈ G.

The following definition formalizes that property in a general context where the family P needs

not be parametric.

Definition 5. Let the model (X ,A,P), be invariant under the group G,◦. An estimator T = T(X)

such that T(g(x)) = ḡ(T(x)) for all g ∈ G and all x ∈ X is called equivariant (under G,◦).

Intuitively, an equivariant estimator has the same behavior, under the action G, as the parameter

it is estimating. If, however, (8.3) and (8.4) are to make sense, then the loss function (t, θθθ) 7→ Lθθθ(t)
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(where Lθθθ(t) is the loss incurred if the estimator takes value t when the true parameter value is θθθ)

used in the definition of a “good” estimator should be compatible with the group structure of the

model, and satisfy

Lḡ(θθθ)(ḡ(t)) = Lθθθ(t) for all g ∈ G and θθθ ∈ Θ. (8.5)

Definition 6. A loss function (t,P) 7→ LP(t) (where LP(t) is the loss incurred if the estimator

takes value t when X has distribution P) is called invariant if

Lḡ(P)(T(g(x))) = LP(T(x)) for all g ∈ G, x ∈ X and P ∈ P. (8.6)

Note that, in the parametric case, (8.6) applied to equivariant estimators T reduces to (8.5).

If equivariance is considered a reasonable property, then one may adhere to the Principle of

equivariance, which consists (in the context described in this chapter) in restricting to equivariant

estimators; just as the Principle of unbiasedness, it is a statistical principle, that is, a rule one may

decide or not to adopt. As we shall see, however, the benefits of equivariance are that optimal

equivariant estimators typically exist in models that are generated by a group G,◦. This is actually
based on the following property (parametric notation is used for simplicity).

Proposition 2. The risk RT
θθθ of an equivariant estimator T, for an invariant loss function Lθθθ(t),

is constant along the orbits of Ḡ,◦.

Proof. First note that, for any measurable function Ψ which is Pθθθ-integrable for all θθθ,

Eḡ(θθθ)[Ψ(X)] =

∫
Ψ(x)dPX

ḡ(θθθ)(x) =

∫
Ψ(x)dPgX

θθθ (x) = Eθθθ[Ψ(g(X))]. (8.7)

Now, RT
ḡ(θθθ) = Eḡ(θθθ)[Lḡ(θθθ)(T(X))]. Applying (8.7) with Ψ = Lḡ(θθθ) yields, since T is equivariant and

the loss L invariant,

RT
ḡ(θθθ) = Eḡ(θθθ)[Lḡ(θθθ)(T(X))] = Eθθθ[Lḡ(θθθ)(T(g(X)))] = Eθθθ[Lḡ(θθθ)(ḡ(T(X)))] = Eθθθ[Lθθθ(T(X))] = RT

θθθ .

The result follows.

Corollary 2. If G,◦ is a generating group and the loss function is invariant, the risk RT
θθθ of any

equivariant estimate T is constant (its value does not depend on θθθ).

This corollary has the very important consequence that, when the model is generated by a
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group G, then two equivariant estimators (T1 and T2, say) are always comparable: either

RT1

θθθ ≤ RT2

θθθ for all θθθ, and T1 ⪰ T2

or

RT1

θθθ ≥ RT2

θθθ for all θθθ, and T1 ⪯ T2.

Uniformly minimum risk equivariant estimators (UMRE) thus are very likely to exist for any

invariant loss function.

8.6 UMRE estimates for location

Consider an observed n-tuple X = (X1, . . . , Xn) in a location family. Let θ̃(x) be equivariant (such

θ̃ exists: take for instance θ̃(x) = x1). Denote by θ̂(x) any other equivariant estimator (such θ̂

exists: take, for instance, θ̂(x) = x2). Equivariance of θ̃ and θ̂ implies that, for any a ∈ R,

θ̂(x+ a1) = θ̂(x) + a,

θ̃(x+ a1) = θ̃(x) + a,

hence

θ̂(x+ a1)− θ̃(x+ a1) = θ̂(x)− θ̃(x).

It follows that θ̂ − θ̃ is invariant; therefore, it is measurable with respect to the maximal invari-

ant T = T(X) := (X2 −X1, X3 −X1, . . . , Xn −X1) (equivalently, θ̂ − θ̃ is AG-measurable). Since

this holds for any equivariant θ̃ and θ̂, the class of all equivariant estimators can be described as{
θ̃(X) + ψ(T) : ψ measurable

}
,

where θ̃ denotes an arbitrary initial equivariant estimator. Thus, a UMRE estimator, if it exists,

is of the form

θ∗(X) = θ̃(X) + ψ∗(T)

where ψ∗ (uniformly in θ) minimizes (over all measurable functions) the risk: for any θ ∈ Θ and

measurable ψ,

Eθ

[
Lθ

(
θ̃ + ψ∗(T)

)]
≤ Eθ

[
Lθ

(
θ̃ + ψ(T)

)]
. (8.8)
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Such ψ∗ typically depends on the loss function adopted.

8.6.1 Quadratic loss

Under quadratic loss Lθ(t) = (t− θ)2, the condition (8.8) takes the form

Eθ

[(
θ̃ + ψ∗(T)− θ

)2] ≤ Eθ

[(
θ̃ + ψ(T)− θ

)2]
(8.9)

for all θ ∈ Θ and all measurable ψ, or equivalently,

Eθ

[(
(θ − θ̃)− ψ∗(T)

)2] ≤ Eθ

[(
(θ − θ̃)− ψ(T)

)2]
(8.10)

for all θ ∈ Θ and all measurable ψ. As seen when covering conditional expectations in Chapter 2,

this condition is satisfied for

ψ∗(T) = Eθ

[
θ − θ̃|T

]
= −Eθ

[
θ̃ − θ|T

]
.

Hence, the UMRE for quadratic loss is

θ∗ = θ̃ − Eθ[θ̃ − θ|T]

= θ̃ − E0[θ̃|T],

since (due to the equivariance of θ̃(X) and invariance of T)

(θ̃(X)− θ,T(X)) = (θ̃(X− θ1),T (X− θ1)),

which, under X ∼ Pθ has the same distribution as (θ̃(X),T(X)) under X ∼ P0; formally,

P
(θ̃(X)−θ,T(X))
θ = P

(θ̃(X−θ1),T(X−θ1))
θ = P

(θ̃(X),T(X))
0 . It follows that θ∗ is a statistic that does

not depend on θ, and that it is also essentially unique.

Remark 1: θ∗ is unbiased: for any θ ∈ Θ, we indeed have

Eθ[θ
∗] = Eθ[θ̃ − Eθ[θ̃ − θ|T]] = Eθ[θ̃]− Eθ[θ̃ − θ] = θ

(actually, θ∗ is obtained by subtracting from θ̃ its conditional bias: therefore, θ∗ is conditionally

unbiased, hence unconditionally unbiased). The corresponding risk is thus Rθ∗
θ = Varθ[θ

∗].
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Remark 2: In the Gaussian sampling model X = (X1, . . . , Xn), where the Xi’s are i.i.d. N (µ, σ20)

with µ ∈ R, we have θ∗ = X̄ almost surely. Indeed, denoting by RX̄
θ the quadratic risk for X̄, we

have that, under Gaussian density,

RX̄
θ ≥ Rθ∗

θ ∀θ ∈ Θ, since X̄ is equivariant and θ∗ is UMRE (8.11a)

RX̄
θ ≤ Rθ∗

θ ∀θ ∈ Θ, since X̄ is UMVU and θ∗ is unbiased. (8.11b)

Hence, RX̄
θ = Rθ∗

θ ∀θ ∈ Θ, X̄ is also UMRE, and X̄ = θ∗ Pθ-almost surely, in view of the Pθ-almost

sure unicity of θ∗. Since nothing here depends on σ20, the same remark holds for the case of an

unspecified variance σ2.

Remark 3: Note that (8.11) in Remark 2 always holds:

Varθ[θ
∗] = Rθ∗

θ ≤ RX̄
θ = Varθ[X̄] =

σ2

n

(assuming finite moments of order two), whereas, in the Gaussian case,

Varθ[θ
∗] = Varθ[X̄] =

σ2

n
·

It follows that the Gaussian case is “least favorable” for equivariant estimation of location under

quadratic loss.
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Remark 4: Pitman form. Choose θ̃ = X1. Then,

θ∗ = X1 − E0

[
X1|

Y2︷ ︸︸ ︷
X2 −X1, . . . ,

Yn︷ ︸︸ ︷
Xn −X1

]
= X1 −

∫
uf0(u, Y2 + u, . . . , Yn + u) du∫
f0(u, Y2 + u, . . . , Yn + u) du

= X1 −
∫
uf0(u,X2 −X1 + u, . . . ,Xn −X1 + u) du∫
f0(u,X2 −X1 + u, . . . ,Xn −X1 + u) du

= X1 −
∫
(X1 − t)f0(X1 − t,X2 − t, . . . ,Xn − t) dt∫

f0(X1 − t,X2 − t, . . . ,Xn − t) dt

= /X1 − /X1 +

∫
tf0(X1 − t,X2 − t, . . . ,Xn − t) dt∫
f0(X1 − t,X2 − t, . . . ,Xn − t) dt

=

∫
tft(X1, X2, . . . , Xn) dt∫
ft(X1, X2, . . . , Xn) dt

,

where we let u = X1 − t in order to obtain a more symmetric expression.

Remark 5: Still for quadratic loss, if a UMVU estimator exists and is equivariant, then it is UMRE

(compare with Remark 2).

8.6.2 Absolute deviation loss

For the absolute deviation loss is given by Lθ(t) = |t− θ|, Condition (8.8) takes the form

Eθ[|θ̃ − ψ∗(T)− θ|] ≤ Eθ[|θ̃ − ψ(T)− θ|]

for any measurable ψ. This condition is satisfied for ψ∗(T) = −Medθ[θ̃−θ|T], where Medθ[θ̃−θ|T]

denotes the conditional median of θ̃− θ (conditional on T). This readily follows from the fact that,

for any (X ,A)-measurable ζ and sub-sigma field A0 ⊆ A,

arg min
µ,A0-measurable

E [|ζ − µ|] = Med [ζ|A0] .
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Hence, the UMRE for the least absolute deviation (LAD) estimator is

θ∗ = θ̃ −Medθ[θ̃ − θ|T]

= θ̃ −Med0[θ̃|T],

with the same reasoning as above.
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